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Abstract

Streptococcus agalactiae or Group B Streptococcus (GBS) is a leading cause of sepsis in

neonates. As a preventative measure prophylactic antibiotic administration is common in

pregnant women colonised with GBS, but antibiotic-resistance and adverse effects on neo-

natal microbiomes may result. Use of bacteriophages (phages) is one option for targeted

therapy. To this end, four phages (LF1 –LF4) were isolated from wastewater. They dis-

played lytic activity in vitro against S. agalactiae isolates collected from pregnant women

and neonates, with 190/246 isolates (77.2%) and 10/10 (100%) isolates susceptible to at

least one phage, respectively. Phage genomes ranged from 32,205–44,768 bp and all

phages were members of the Siphoviridae family. High nucleotide identity (99.9%) was

observed between LF1 and LF4, which were closely related to a putative prophage of S.

agalactiae. The genome organisation of LF2 differed, and it showed similarity to a different

S. agalactiae prophage, while LF3 was more closely related to a Streptococcus pyogenes

phage. Lysogenic gene presence (integrase, repressor and regulatory modules), was

suggestive of temperate phages. In a therapeutic context, temperate phages are not ideal

candidates, however, the broad host range activity of these phages observed on clinical iso-

lates in vitro is promising for future therapeutic approaches including bioengineered phage

or lysin applications.

1. Introduction

As a leading neonatal pathogen, Streptococcus agalactiae is an important consideration for pro-

phylactic antenatal treatment. Transmission of this organism to neonates from a colonised

mother has led to the implementation of universal screening programs in various countries

worldwide [1]. These consist of either risk- or culture-based approaches and result in the

administration of intrapartum antibiotics. Colonisation by S. agalactiae occurs in 10–30% of

pregnant women and as such there is widespread use of antibiotics given this treatment
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approach [2]. While this strategy has been effective in reducing the disease burden of early

onset sepsis [1], there are implications to consider. Antibiotic exposure in utero as a result of

intrapartum prophylaxis has been reported to have an impact on the infant microbiome, with

description of altered community structure, species richness and diversity in the infant gut [3],

the long term impact of which is not well understood [4].

In addition to microbiome-related effects is the potential for resistance emergence among

S. agalactiae isolates. Clindamycin and erythromycin resistance have been frequently reported

in the literature [5, 6] with rates as high as 70.8%, which is of particular concern for those

women with penicillin allergies who often receive clindamycin as an alternative. Tolerance to

penicillin was described as far back as 1994 by Betriu and colleagues [7] and since then further

studies have observed reduced susceptibility to penicillin in S. agalactiae [8, 9]. Multi-drug

resistance within a clone exhibiting intermediate susceptibility to penicillin has increased rap-

idly over the last decade in Japan [9]. This incidence of rising resistance coupled with the

unknown effects of antenatal antibiotic administration on the infant are justified reasons for

evaluation of alternative strategies for S. agalactiae prophylaxis during pregnancy.

Bacteriophages or phages, are being re-considered in the Western world as an alternative

antimicrobial therapy in the face of increasing rates of antibiotic resistance [10]. These bacte-

rial viruses typically have narrow antibacterial host ranges, are self-limiting, and are unable to

infect human cells. These attributes make for an attractive solution to treatment of bacterial

infections. Use of human phage therapy in the Western world has been a challenge and its use

during pregnancy and the perinatal period presents an even greater one due to the vulnerabil-

ity of this population [11]. Regardless, the prospects for phage therapy as a targeted alternative

to antibiotics, particularly for the eradication of S. agalactiae in pregnant women, have huge

potential. Antenatal S. agalactiae colonisation represents a niche opportunity in which a single

bacterial species is the target; an ideal scenario considering the host specificity of phages.

Phage therapy could potentially resolve issues associated with microbiome dysbiosis, as well as

limiting the development of antibiotic resistance.

Several studies have explored phages active against S. agalactiae, however, none to date

have isolated phages which are obligately lytic. Bai and colleagues isolated a total of four phages

from bovine milk sources with the prospect of use in cases of bovine mastitis, of which S. aga-
lactiae is an important cause [12, 13]. Domelier et al. isolated 36 phages by inducing 114 S. aga-
lactiae isolates with mitomycin C and observing the resultant lytic activity [14]. Both studies

failed to isolate phages that would be ideal for therapeutic use though, due to their temperate

nature. With the risk of lysogeny in treated strains, other studies have focussed on utilising

phage components such as lysins, which are responsible for bacterial cell wall degradation, as

treatment options. One example of this is seen in a study by Cheng et al., which found that vag-

inal inoculation with S. agalactiae phage lysin PlyGBS (purified from a temperate S. agalactiae
phage) successfully eradicated the colonising S. agalactiae isolates in a mouse model [15]. Our

study aimed to isolate phages with lytic activity against clinical S. agalactiae isolates collected

from pregnant women and neonates for potential use in future therapeutic ventures.

2. Materials and methods

2.1. Bacteriophage isolation

Wastewater from the Subiaco area, Western Australia was collected as an environmental

source of phages (approval granted by Water Corporation, 39 Lemnos St, Shenton Park, West-

ern Australia, Australia) and enriched using a panel of 20 S. agalactiae isolates (courtesy of Dr

Kong and Prof. Gilbert, S1 Table) as per standard enrichment protocols [16]. The resulting

0.2 μm filtrate was spot tested on a range of S. agalactiae isolates to detect lytic phage activity
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[16]. Trypticase Soy Broth (Becton Dickinson, USA) supplemented with 12 mM Ca2+ was

used in the enrichment process and as semi-solid media supplemented with 0.5% agar, while

Tryptic Soy Agar (Becton Dickinson, USA) was used as solid media for whole plate and drop-

on-plate (spot test) assays [17, 18]. Plaques were selected and purified on the propagating host

in three separate purification rounds. The resulting pure phage suspensions were propagated

to a high titre for further analysis.

2.2. Host range testing

A total of 256 clinical isolates were used for host range testing, including 246 carriage S. agalac-
tiae isolates from consenting Western Australian (WA) pregnant women which were collected

from 2015–2017 as part of a larger cohort study, Predict1000, which was approved by the

Women and Newborn Health Service Human Research Ethics Committee (201535EW). In

addition, 10 neonatal invasive disease S. agalactiae isolates from WA collected from 2012–

2014 (courtesy of Dr Anthony Keil) were included. Other organisms that were included to test

phage specificity were the closely-related species (n = 17), Streptococcus pyogenes (ATCC

12203), Streptococcus equinus (ATCC 15351), Streptococcus mitis (M2611), Streptococcus dys-
galactiae subspecies equisimilis (NCTC 5371), Streptococcus dysgalactiae (clinical isolate),

Streptococcus gordonii (ATCC 10558), Streptococcus anginosus (NCTC 8037), Streptococcus sal-
ivarius (clinical isolate), Staphylococcus aureus (ATCC 9144), Staphylococcus saprophyticus
(ATCC 15305), Staphylococcus epidermidis (ATCC 14990), Enterococcus faecalis (ATCC

19433), Lactobacillus crispatus (BEI HM-637), Lactobacillus gasseri (BEI HM-104), Lactobacil-
lus jensenii (BEI HM-105), Lactobacillus johnsonii (BEI HM-643) and Lactobacillus rhamnosus
(BEI HM-106). All these Lactobacilli apart from L. rhamnosus are common vaginal bacteria

associated with vaginal health: important for assessment of phage host range in the context of

S. agalactiae antenatal prophylaxis. Host range testing involved the whole plate and drop-on-

plate assays (including 1:10 phage dilution series), as described previously [17, 18]. Results

were determined as positive for activity if the drop zone produced full clearing and/or plaques,

and turbidity of the drop sites was noted. No observable activity on the lawn was recorded as

negative for activity. Those with observed activity were assayed as a dilution series via drop-

on-plate assay to detect plaques.

2.3. Clinical S. agalactiae host characteristics

All of the carriage S. agalactiae isolates were serotyped via multiplex assay to detect serotypes

Ia, Ib and III [19] and remaining serotypes were determined by standard PCR and gel electro-

phoresis [20]. In addition to serotyping, 42 of the 246 carriage isolates, 10 of the 10 neonatal

invasive isolates and 14 of the 15 reference isolates had whole genome sequence data available

[21].

2.4. Microscopy

Transmission electron microscopy (TEM) was used to confirm phage presence and determine

structure and taxonomy. Concentrated phage filtrates (1010 PFU/mL) were stained using 2%

uranyl acetate on carbon-coated 200 mesh copper grids (SPI Supplies1, USA) and examined

using a JEOL 2100 microscope operating at 120 kV. All TEM images collected were analysed

using Fiji and Image J, including measurements of phage virions (minimum of ten single viri-

ons measured per phage) [22].
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2.5. Sequencing

All phage lysates were treated with Turbo™ DNase (Life Technologies, USA) to remove bacte-

rial host DNA contamination in the library preparation and phage DNA was extracted using

the Phage DNA Isolation Kit (Norgen Biotek Corp., Canada). Extracted DNA was quantified

using a Qubit™ fluorometer and 1.0 ng of DNA was used in the Illumina Nextera XT library

preparation protocol as per manufacturer’s instructions (Illumina). Briefly, the genomic DNA

was fragmented, indexed by PCR and purified using AMPure XP beads. Library pooling

was performed after quantification of the library size using the LabChip1 GXII. The pooled

DNA library was sequenced on an Illumina Nextseq and paired-end 300 bp reads generated.

Genome analysis was carried out using Geneious (version 10.2.4) with phage genomes assem-

bled using SPAdes (version 3.10.3) [23] and assessed for circularised genomes using Unicycler

[24]. Open reading frames (ORFs) were predicted using Geneious based on Glimmer (version

3) [25] and the GenBank database was used to annotate these ORFs. RASTtk was also used for

annotation [26]. Easyfig was used to produce genome maps and alignments [27] and Interac-

tive Tree of Life (iTOL) was used to visualise the phylogenetic tree including 263 complete

Streptococcus phage genomes, from the NCBI database, used for comparison [28]. PHASTER

was used to evaluate the presence of putative prophages in reference isolates for comparison

[29]. The genome sequences were deposited under the NCBI BioProject PRJNA631803 and

GenBank under accession numbers MH853355 (LF1), MH853356 (LF2), MH853357 (LF3)

and MH853358 (LF4).

3. Results

3.1. Phage isolation

Four bacteriophages, LF1, LF2, LF3 and LF4, were isolated from local wastewater sources (Sub-

iaco area, Western Australia, Australia) with propagating hosts of S. agalactiae reference iso-

lates Kong_7 (LF1 and LF2), Kong_10 (LF3) and Kong_28 (LF4). All phages were found to

belong to the Siphoviridae family based on TEM (Fig 1). Members of this family have an icosa-

hedral head and long non-contractile tail; all phage dimensions were significantly different

(p< 0.01) in at least one virion measurement according to student t-test (Table 1).

3.2. Host range activity

Activity of each phage against the 256 clinical S. agalactiae isolates (carriage and invasive) var-

ied with 55 (21.5%), 53 (20.7%), 60 (23.5%) and 59 (23.1%) isolates sensitive (plaques or

Fig 1. Transmission electron micrographs of the four S. agalactiae phages (LF1 –LF4). Scale bar of 50 nm included in each micrograph.

https://doi.org/10.1371/journal.pone.0235002.g001
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clearing) to LF1, LF2, LF3 and LF4, respectively (Table 2). Each phage had a different host

range pattern. Between all four phages, activity was observed across 201 (78.2%) of the isolates,

however, this consisted of both clear and turbid clearing results (Fig 2). The specificity testing

showed no activity of the phages against closely-related organisms or commensal vaginal bac-

teria tested, except for the single clinical S. salivarius isolate that was sensitive to LF1, LF2 and

LF4 phages. Serotyping of the 256 clinical S. agalactiae isolates revealed the presence of sero-

types Ia, Ib, II, III, IV, V, VI, VIII, IX and non-typeable (NT) strains. Comparison between

Table 1. S. agalactiae phages LF1, LF2, LF3 and LF4 virion measurements�.

Mean (nm) ± SD LF1 LF2 LF3 LF4

Tail length 109.6 ± 2.9 108.6 ± 4.0 125.3 ± 4.6 198.9 ± 9.1

Capsid width 41.4 ± 1.5 43.3 ± 1.8 44.1 ± 4.1 46.3 ± 2.6

Capsid length 38.7 ± 2.2 42.9 ± 1.2 44 ± 4.2 45.7 ± 3.5

�A minimum of ten virions were measured per phage.

https://doi.org/10.1371/journal.pone.0235002.t001

Table 2. The host range activity of four S. agalactiae phages against clinical carriage (antenatal) and disease (neo-

natal) S. agalactiae isolates (n = 256). The activity is divided into plaque formation, clear lysis zones, turbid zones

and no activity.

Phage activity against GBS isolates n (%)

Plaques Lysis zone Turbid Negative

LF1 3 (1.2) 52 (20.3) 70 (27.3) 131 (51.2)

LF2 3 (1.2) 50 (19.5) 38 (14.8) 165 (64.5)

LF3 34 (13.3) 26 (10.2) 15 (5.9) 181 (70.7)

LF4 2 (0.8) 57 (22.3) 92 (35.9) 105 (41.0)

https://doi.org/10.1371/journal.pone.0235002.t002

Fig 2. Representative examples of the spot test outcomes including plaques, clear, turbid and negative.

https://doi.org/10.1371/journal.pone.0235002.g002
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individual phage activities based on serotype suggested that activity was serotype independent

(Fig 3).

3.3. Phage genomic analysis

Assembly of the phage sequence data showed variation in size and G/C% across three of the

four phages. LF1 and LF4 were highly similar, and assembly resulted in complete circularised

genomes for each (total length 37,421 bp) with G/C content of 37% and read coverage of

14,862 x and 16,724 x, respectively. LF2 (44,768 bp) and LF3 (32,205 bp) were annotated and

assessed based on their largest contig, which represented all gene modules expected in a phage

genome and contained 36.7% and 40.2% G/C content and read coverage of 5,693 x and 24,143

x, respectively. LF2 and LF3 are considered partial genomes as the DNA ends have not been

confirmed. A total of 65, 87, 55 and 65 open reading frames (ORFs) were predicted by Glim-

mer and 60, 76, 47 and 60 ORFs were predicted by RASTtk for phages LF1, LF2, LF3 and LF4,

respectively. Annotation using BLASTN and RASTtk revealed similar structural arrangement

of gene modules for LF1, LF2 and LF4, however LF3 was distinct (Fig 4). All phages were

aligned to assess their sequence similarity (Fig 5). LF1 and LF4 showed 99.9% identity (52 bp

difference overall). LF2 shared regions of similarity with LF1 and LF4, however, LF3 showed

the least similarity, sharing only a small section within the structural module with LF2. BLAST

analysis of LF1 and LF4 suggested similarity to putative prophages of S. agalactiae A909

(Accession#: CP000114; S1 Fig) which had no previous function characterised according to

PHASTER. LF2 appeared to have regions of similarity with the putative prophage character-

ised for S. agalactiae BM110 (Accession#: LT714196; S1 Fig), but rearranged. Lastly, LF3

shared similarity with a partial region of the putative prophage from S. agalactiae SG-M6

(Accession#: CP021869.1; S1 Fig). These putative prophages have not been functionally

described previously and our genome data do not cover the entire putative prophages.

3.4. Annotations

Numerous methods were assessed to annotate the phage genomes including RASTtk (custom-

ised to phage annotations), Glimmer and BLAST (S2 Table). This analysis revealed key genes

involved in lysogeny including those encoding integrase, excisionase, Cro/CI repressors. A

toxin-associated gene, annotated as paratox, was found adjacent to the integrase gene in LF1

and LF4 and near transcriptional regulator genes in LF2. LF3 did not contain paratox, how-

ever, BLASTN analysis revealed 100% identity to a toxin-antitoxin system in S. pyogenes Str03

phage (Accession#: KY363359) and high similarity to an additional antitoxin HicB protein

family gene (~98% identity). No toxin genes were identified in the LF phages. A tyrosine tRNA

(tRNA-Tyr-ATA) was identified within LF2 by RASTtk, located at the terminus of the

genome. Integrase genes of all LF phages were reported as tyrosine recombinases by HHPred,

with<43% similarity except for LF1 and LF4 which shared 99.7%. All putative lysins of our

four phages were tested using BLASTP to assess novelty. LF1, LF2 and LF4 shared similarity

with the Cpl-1 lysozyme/muramidase. LF1 and LF4 shared 98.6% (six amino acid differences)

and 99.8% (one amino acid difference) identity with Streptococcus phage B30 peptidoglycan

endolysin protein (AAN28166.2), respectively. LF2 shared 99.8% similarity with Streptococcus
agalactiae lysin protein (WP_025197090.1) and 93% identity to the LF1 and LF4 endolysin

protein. Distinct from these phages with only 12% identity to the other lysins, LF3 was found

to share 100% identity to S. agalactiae glucosaminidase domain-containing protein

(WP_000512610.1).
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3.5. Phylogenetic analysis

The four LF phages in the context of complete Streptococcus phage genomes shared<60%

similarity with the closest ancestor of the 263 Streptococcus phages assessed (Fig 6). The dis-

tances between the LF phages within the neighbour-joining tree mirrored the percentage simi-

larity observed in Fig 5, with LF1 and LF4 highly similar, LF2 somewhat similar and LF3

distantly related. Alignment of LF1 and LF4, LF2 and LF3 with neighbouring Streptococcus

phages observed a 41.4%, 41.3% and 93% similarity, respectively (S2 Fig). The Streptococcus

phage tree included the virus family where available, and was predominated by Siphoviridae,
however, the closest ancestors to LF2 were Podoviridae family members.

4. Discussion

We describe four temperate S. agalactiae phages isolated from wastewater with activity against

clinical S. agalactiae human isolates. Transmission electron micrographs revealed all phages

were from the Siphoviridae family. A broad range of host activity was observed of all phages

against both antenatal carriage and neonatal disease S. agalactiae isolates, individually span-

ning multiple serotypes. While host range overlapped, each phage had a different host range

pattern including unique activity of LF1, LF2, LF3 and LF4 against 8, 3, 20 and 25 S. agalactiae
isolates screened, respectively. These differences further indicated that the four phages were

distinct. It should be noted that the spot test, however, has limitations because of the instances

Fig 3. The relationship between S. agalactiae host serotype and LF1 (panel A, n = 125/256), LF2 (panel B, n = 91/256), LF3 (panel C, n = 75/256)

and LF4 (panel D, n = 151/256) phage activity presented as the number of isolates that were sensitive (plaques, black; clearing, light grey; and

turbidity, dark grey) and their serotype.

https://doi.org/10.1371/journal.pone.0235002.g003
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of false positives [30]. The detection of plaques via dilution screening was able to provide con-

fidence that activity was due to phages and not bacteriocins.

Phylogenetic comparison with other completed Streptococcus phage genomes showed

clustering which was aligned with other phages on neighbouring branches (S2 Fig). Whole

genome analysis revealed a high sequence similarity between LF1 and LF4 suggesting these

were highly related with only 52 bp (43 amino acid) differences overall. This similarity con-

trasts with the differences observed phenotypically and structurally. These phages shared 108

isolates as hosts, but LF4 was active against an additional 50 isolates, while LF1 lysed only an

additional 24 isolates. Structurally the LF4 tail measured almost twice the length of that of LF1,

and its capsid was significantly larger, the latter possibly related to two amino acid differences

in the major capsid protein (99% similarity to WP_0008410241.1). The amino acid differences

between the two phages were seen across numerous conserved hypothetical proteins in addi-

tion to terminase, lysin, capsid and other structural proteins, including a minor structural pro-

tein within the tail protein cluster (ORF32). This ORF is the longest gene in the genome and

may represent the tape-measure protein, however, no annotations have revealed a direct simi-

larity to other tape-measure proteins. Several tail proteins contained amino acid differences

between LF1 and LF4 phages, however, the direct cause of the morphological difference has

not been confirmed. Previous analyses of mutations in the structural proteins and tail fibres

Fig 4. The organisation of genes in the genomes of four S. agalactiae phages with modules highlighted.

https://doi.org/10.1371/journal.pone.0235002.g004
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that affect host range were reported by Jacobs-Sera and colleagues [31]. They observed single

point mutations resulting in an amino acid substitution in the putative minor tail protein

genes of mycobacteriophages and attributed the differing host ranges to these changes [31].

Similarly, we found a single amino acid substitution in the ORF32 protein of LF1 and LF4

phages in addition to observable host range differences. ORF32 aligns (31% identity, 98%

cover, E value 2e-47) with the genes present in several S. thermophilus phages encoding antire-

ceptor proteins responsible for host specificity [32].

The lysogenic regions including integrase and repressor genes detected within our sequence

data are suggestive that all four phages are temperate. This corresponds with the similarity

with partial regions of S. agalactiae whole genomes reported by BLAST. LF1 and LF4 results

were indicative of a prophage from S. agalactiae A909, a well-known reference isolate, how-

ever, the regions of phage coverage did not correspond with the putative phages outlined by

PHASTER. Similarly, LF2 contained regions of similarity to S. agalactiae BM110: although

rearranged gene modules are evident this is not uncommon in phages [33]. LF3 also shared

similarity with S. agalactiae SG-M6, which corresponded with a partial region of this putative

prophage. Synteny differed between LF3 and the other phages, but LF3 genome organisation

resembled that of other temperate S. agalactiae phages reported including JX01 [13]. These

observed similarities with putative prophages indicate that S. agalactiae isolates are the origin

of the four phages, which have presumably been released as virions into the environment by

spontaneous induction from their hosts. Additional experiments are required to functionally

confirm these findings which include determining whether lysogens can be formed in vitro
and assessing the conditions of prophage induction.

Domelier and colleagues reported the activity of chemically-induced phages originating

from human S. agalactiae isolates. They observed a lineage-based specificity whereby phages

Fig 5. Comparative alignment of all S. agalactiae phages demonstrating the percentage nucleotide similarity of the different genomes (colour

scale percentage similarity).

https://doi.org/10.1371/journal.pone.0235002.g005

PLOS ONE Characterisation of GBS phages

PLOS ONE | https://doi.org/10.1371/journal.pone.0235002 June 23, 2020 9 / 14

https://doi.org/10.1371/journal.pone.0235002.g005
https://doi.org/10.1371/journal.pone.0235002


induced from all clonal complexes (CC), excluding CC17, only lysed isolates of a similar evolu-

tionary origin. In contrast, phages induced from CC17 S. agalactiae isolates demonstrated lytic

activity against all other lineages except for CC23 [14]. The range of serotypes sensitive to each

of the LF phages does not support this finding, unless all four phages originated from a CC17

strain, phages from which Domelier and others showed had a broader host range. Further to

this point, Salloum et al. revealed the clustering of prophage DNA into five groups within a

cohort of 142 S. agalactiae isolates that caused meningitis and bacteraemia in adults and neo-

nates. They showed differences in prophage DNA content between serotypes, STs and CCs

and concluded with the suggestion that mechanisms of gene transfer from cell to cell mediated

by phages are specific to each intraspecies lineage [34]. This is an interesting notion, given that

we have evaluated the serotype and ST for a proportion of the isolates used in our host range

studies, and found to the contrary, that phage activity was observed across all serotypes and

STs. While the majority of these isolates are maternal carriage isolates, the few neonatal inva-

sive disease isolates (n = 10) were also similar with regard to this variation. This activity would

suggest that the polysaccharide capsules containing these serotype determinants are not

responsible for phage attachment, as this is often a very specific binding, and may be a result of

phage evolutionary adaptation to the infection of different serotypes.

Fig 6. The neighbour-joining phylogenetic tree analysis of LF1 –LF4 phages (purple) and 263 complete

Streptococcus phage genomes and their respective viral families.

https://doi.org/10.1371/journal.pone.0235002.g006
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LF2 contained a tRNA gene which was not observed in the other three phage genomes.

Genes encoding tRNAs are common in temperate phage integration sites: in this regard, a ser-

ine tRNA gene was reported to be the integration site for S. pyogenes phage T12 with a 96 bp

homologous sequence in the phage attachment site attP corresponding to the 3’ end of the bac-

terial tRNA gene [35], while a serine tRNA gene was annotated in S. agalactiae JX01 phage

genome by Bai et al. [13]. This interesting link to phage integration may relate to potential

lysogeny by LF2. On the other hand, presence of tRNA genes in phage genomes has often been

attributed to the promotion of more efficient translation of phage-derived mRNA [36].

When considered for therapeutic use, individual phages are not likely to be used, rather a

cocktail of different phages to cover an extensive host range [10]. A cocktail of the phages iso-

lated from this study would result in coverage of 50.1% as a conservative estimate, and as

many as 77.3% when including turbid zones, of the clinical S. agalactiae isolates screened.

Given the possible temperate nature of these phages they are not recommended candidates for

phage therapy, however, as no obligately lytic phages have been described with activity against

S. agalactiae, temperate phages may yet be an option. A similar scenario is observed for Clostri-
dioides difficile, in which to date only temperate phages have been isolated, yet these have been

pursued as a therapeutic option regardless of their potential disadvantages, which has resulted

in promising results in vitro [37]. The activity observed makes for a case to pursue the isolation

and characterisation of S. agalactiae phages and indicates the potential for future bioengineer-

ing of those described here.

The isolation and host range, morphological and genomic characterisation of the four LF

phages adds to our knowledge of S. agalactiae phages and highlights the activity of temperate

phages on relevant clinical isolates comprising both antenatal colonising isolates and neonatal

invasive disease isolates. Further characterisation is required to confirm the temperate nature

of these phages and will be an important step for assessment of bioengineering potential of

these phages in future studies.
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