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Patescibacteria are widely distributed in various environments and often detected in activated sludge. However,
limited information is currently available on their phylogeny, morphology, and ecophysiological role in activated sludge
or interactions with other microorganisms. In the present study, we identified microorganisms that interacted with
Patescibacteria in activated sludge via a correlation analysis using the 16S rRNA gene, and predicted the metabolic
potential of Patescibacteria using a metagenomic analysis. The metagenome-assembled genomes of Patescibacteria
consisted of three Saccharimonadia, three Parcubacteria, and one Gracilibacteria, and showed a strong positive
correlation of relative abundance with Chitinophagales. Metabolic predictions from ten recovered patescibacterial
and five Chitinophagales metagenome-assembled genomes supported mutualistic interactions between a member of
Saccharimonadia and Chitinophagales via N-acetylglucosamine, between a member of Parcubacteria and Chitinophagales
via nitrogen compounds related to denitrification, and between Gracilibacteria and Chitinophagales via phospholipids in
activated sludge. The present results indicate that various interactions between Patescibacteria and Chitinophagales are
important for the survival of Patescibacteria in activated sludge ecosystems.
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The phylogeny and physiology of microorganisms in
activated sludge for wastewater treatment remain unclear
due to their complexity and variations even though the
activated sludge process has been used in wastewater treat‐
ment globally for more than 100 years. The structure of
a microbial community depends on the climate, location,
environment, and process configuration of the wastewater
treatment plant (Zhang et al., 2012). Recent studies reported
that communities appeared to be stable at the genus and sub‐
strate specificity levels (Nielsen et al., 2010; Kindaichi et
al., 2013). Most microorganisms, including those in nature
and in engineered systems, cannot be cultured in laborato‐
ries and are called “microbial dark matter” (Rinke et al.,
2013). In this context, molecular biological methods, such
as a 16S rRNA gene analysis and metagenomic analysis,
have been widely used to predict the metabolic functions of
uncultured bacteria. Large metagenomic data obtained from
samples in various environments revealed the existence of
a large group of bacteria, called Patescibacteria or candi‐
date phyla radiation (CPR) (Rinke et al., 2013; Brown et
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al., 2015). The Patescibacteria or CPR (hereafter called
Patescibacteria) group includes 35 phyla, accounts for 15–
50% of all bacterial phyla, and has been reported to exist
in various environments (Brown et al., 2015; Hug et al.,
2016; Takebe et al., 2020). To date, only a few of its mem‐
bers (i.e., phyla Saccharimonadia and Gracilibacteria) have
been cultured (Soro et al., 2014; He et al., 2015; Ibrahim et
al., 2021; Yakimov et al., 2021). These bacteria are parasitic
on other bacteria for sustenance; however, since most of
them cannot be cultured, the mechanisms underlying their
existence are unclear. Patescibacteria are commonly charac‐
terized by a small genome size (approximately 1.0 Mbp)
(Lemos et al., 2020; Nakai, 2020), limited metabolic poten‐
tial, and fermentation-based metabolism (Wrighton et al.,
2012, 2014; Albertsen et al., 2013; Lemos et al., 2020).
However, the physiology and phylogeny of Patescibacteria
have not yet been elucidated in detail, except for some
cultures in the phyla Saccharimonadia and Gracilibacteria
(Soro et al., 2014; He et al., 2015; Moreira et al., 2021;
Yakimov et al., 2021).

Activated sludge is an environment in which
Patescibacteria are frequently detected. Among them,
Saccharimonadia, Parcubacteria, and Gracilibacteria are
the major phyla (Albertsen et al., 2013; Kindaichi et
al., 2016; Singleton et al., 2021). A moderate constituent
of activated sludge is Saccharimonadia, a well-described
Patescibacteria (Mielczarek et al., 2012; Albertsen et al.,
2013; Kindaichi et al., 2016). Based on the 16S rRNA gene
classification, Saccharimonadia are primarily classified into
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three subdivisions, with members having a filamentous mor‐
phology belonging to subdivision 1, and members with
a coccus or rod morphology belonging to subdivisions
2 and 3 (Hugenholtz et al., 2001). A complete genome
belonging to subdivision 3 was reconstructed from acti‐
vated sludge samples and the data obtained showed that
Saccharimonadia are obligate fermentative metabolic bacte‐
ria that use heterolactic fermentation pathways (Albertsen
et al., 2013). In addition, filamentous Saccharimonadia
were detected in activated sludge from wastewater treat‐
ment plants, and the characteristics of substrate utilization
elucidated by microautoradiography combined with fluores‐
cence in situ hybridization (FISH) revealed more diverse
carbon metabolism, including the utilization of oleic acid
and amino acids, which was not predicted from the available
genome (Kindaichi et al., 2016). Parcubacteria also belong
to Patescibacteria and are found in activated sludge (Zhang
et al., 2012). Parcubacteria have a diverse distribution
within the phylum, with most members being frequently
found in anaerobic environments, such as groundwater.
Parcubacteria are considered to be involved in hydrogen
production, sulfur reduction, and nitrite reduction (Wrighton
et al., 2012; 2014; Rinke et al., 2013; Danczak et al., 2017).
Additionally, a syntrophic relationship with other bacteria
has been suggested as a putative benzene degrader in anae‐
robic environments (Phan et al., 2021). However, some
members of Parcubacteria harbor genes that are capable of
using O2 as a terminal electron acceptor (Nelson and Stegen,
2015). Gracilibacteria include three lineages and belong
to Patescibacteria. Hanke et al. predicted that the terminal
codon UGA encodes glycine in Gracilibacteria (Hanke et
al., 2014). These bacteria have poor metabolic potential
(Sieber et al., 2019), and some strains were reported to be
parasitic on their hosts (Moreira et al., 2021; Yakimov et
al., 2021).

Although many high-quality genomes related to
Patescibacteria have been obtained from various environ‐
ments, their detailed phylogeny, morphology, and ecophy‐
siological role in activated sludge remain largely unknown.
To clarify the phylogenetic and physiological diversities of
Patescibacteria in activated sludge, obtaining high-quality
genomes of Patescibacteria is necessary for further inves‐
tigations in terms of visualization, in situ substrate utiliza‐
tion, and isolation. The purpose of the present study was
to predict the metabolic potential of Patescibacteria in
activated sludge and estimate their physiological role in
activated sludge. A metagenomic approach using three acti‐
vated sludge samples from a municipal wastewater treat‐
ment plant recovered 10 metagenome-assembled genomes
(MAGs) related to Saccharimonadia, Parcubacteria, and
Gracilibacteria within the superphylum Patescibacteria.

Materials and Methods

Sample collection
Four activated sludge samples were collected from aeration

tanks in a wastewater treatment plant in Higashihiroshima city,
which had previously been sampled (Kindaichi et al., 2016; Table
S1) in February 2019 (designated as AS201902), April 2020 (des‐
ignated as AS202004), October 2020 (designated as AS202010R),
and November 2020 (designated as AS202011). The collected

sludge samples were immediately incubated to change the relative
abundance of Patescibacteria. The AS202004 sample was anae‐
robically incubated for 3 d and was then designated as AA202004.
The AS202010R sample was aerobically incubated for 3 d with
washing and designated as AS202010A and without washing as
AS202010B. In detail, 100 mL of the AS202004 sample was trans‐
ferred into a 120-mL sterilized vial, which was sealed with a butyl
rubber stopper. The gas phase was replaced with nitrogen gas, and
the vial was then incubated anaerobically at 20°C for 3 d. One hun‐
dred milliliters of activated sludge from sample AS202010R was
washed with Elix water (Merck) and then incubated at 20°C for
3 d. In the present study, the samples AS201902, AS202004, and
AA202004 were used in a metagenomic analysis, while all seven
samples were subjected to an amplicon analysis. Fresh and incu‐
bated sludge samples were stored at –18°C for further analyses.

Amplicon analysis of the 16S rRNA gene
DNA was extracted from activated sludge samples (0.5 g

wet weight) (AS201902, AS202004, AA202004, AS202010A,
AS202010B, AS202010, and AS202011) using a FastDNA SPIN
kit for soil (MP Biomedicals). PCR amplification was performed
using a primer set for the V3–V4 region of the 16S rRNA genes
(341F and 805R). The primer sequences, detailed PCR conditions,
and purification procedures used are as previously described (Dinh
et al., 2021). Purified DNA was sequenced using a MiSeq platform
with paired-end sequencing (2×300 bp) and a MiSeq Reagent kit
(v.3; Illumina). The obtained sequences were trimmed, merged,
clustered, and analyzed using QIIME 2 core 2021.11, as previously
described (Bolyen et al., 2019; Awata et al., 2021; Kambara et
al., 2022). The SILVA 138 database (Quast et al., 2013) was
used for the assignment. To elucidate the relationship between
Patescibacteria and other co-existing bacteria, operational taxo‐
nomic units (OTUs) that showed a relative abundance of >0.1%
were extracted, and Spearman’s rank-order correlation coefficient
was calculated for each OTU using Past 4.10 (Hammer et al.,
2001). OTUs that met the 5% significance level and correlated
with Patescibacteria were investigated.

Metagenomic analysis
DNA was extracted from activated sludge samples (0.5 g wet

weight) (AS201902, AS202004, and AA202004) using a FastDNA
SPIN kit for soil (MP Biomedicals). Extracted DNA was purified
using Agencourt AMPure XP magnetic beads (Beckman Coulter
Life Sciences). Illumina sequencing libraries were prepared for the
three samples using a TruSeq DNA PCR Free (350) kit (Illumina)
and paired-end sequenced (2×151 bp) using shotgun sequencing
on a HiSeq X system (Illumina). PacBio sequencing libraries were
prepared for three samples using a 20 kb SMRTbell Express Tem‐
plate Prep kit (Pacific Biosciences of California) and sequenced
on a PacBio Sequel II System (Pacific Biosciences of California).
Circular consensus sequence (CCS) reads were generated from
Sequel data with a Phred quality score above 20 (Q20, 99%).

A metagenomic analysis was conducted as previously described
(Hosokawa et al., 2021). Raw paired-end reads from HiSeq X
were trimmed using Trimmomatic v.0.39 (Bolger et al., 2014). The
trimmed reads from HiSeq X and CCS reads from PacBio Sequel
II were co-assembled using SPAdes v.3.13.1 (Bankevich et al.,
2012). BBtools v38.84 was used to obtain mapping information.
Contigs from the assembly were binned using MetaBAT2.0 (Kang
et al., 2019). The relative abundance of the bins (multi-contigs
classified into a taxonomic microorganism) were calculated based
on information from the mapping file (i.e., coverage) generated
in MetaBAT2.0. The completeness and contamination of the bins
were assessed using CheckM v1.1.2 (Parks et al., 2015). The 43
marker genes proposed by Brown et al. (2015) likely provide
improved estimates of CPR genome quality. Contamination in the
obtained bins was manually removed. The bins with contamination
removed were annotated using Prokka v1.13 (Seemann, 2014)
and DRAM v1.2.2 (Shaffer et al., 2020). Predicted amino acid
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sequences were annotated using the KEGG BlastKEGG Orthology
And Links Annotation (BlastKOALA) (Kanehisa et al., 2016)
and KEGG Automatic Annotation Server (KAAS) (Moriya et al.,
2007). BlastKOALA was used to visualize this pathway. A heat‐
map was created using KEGG-Decoder (Graham et al., 2018)
to visualize the percentage of gene possession related to each
gene set. A phylogenetic tree of Patescibacteria, based on 400
marker protein sequences, was constructed using Phylophlan 3.0
(Asnicar et al., 2020). The reference genome was selected from
the genome registered in GenBank, and the complete genome
was derived from activated sludge (Singleton et al., 2021). Pol‐
yhydroxybutyrate (PHB) depolymerase-related sequences were
aligned using mafft-linsi v7.480 (default parameters) (Katoh and
Standley, 2013). Reference protein sequences were obtained from
the top 500 hits for the identified PHB depolymerase-related
protein (FNKGEGDK_00198) and known patescibacterial PHB
depolymerase (OWK27304.1) using the NCBI-nr database. Pro‐
tein sequences were clustered based on ≥70% similarity using
CD-HIT version 4.8.1. (Fu et al., 2012). A phylogenetic tree of
PHB depolymerase-related proteins was constructed using iqtree2
version 2.1.2, with an automatically optimized substitution model
of WAG+R10 (Minh et al., 2020).

Nucleotide sequence accession number
The sequence data of the partial 16S rRNA gene sequence

were deposited in the GenBank/EMBL/DDBJ databases under the
accession number DRA013509. Metagenomic sequence data were
deposited in the DDBJ database under the DDBJ/EMBL/GenBank
accession number DRA013531.

Results and Discussion

Amplicon analysis of 16S rRNA genes
Amplicon sequencing of the 16S rRNA genes was

performed to investigate the relative abundance of
Patescibacteria in the seven activated sludge samples. On
average, 34,573 reads and 549 OTUs were obtained from
the seven samples (Table S3). In all activated sludge sam‐
ples, except AS202004, Patescibacteria were predominant
after Proteobacteria and Bacteroidota, with an average
abundance of 12.1% (Fig. 1A). The most dominant group
within Patescibacteria was Saccharimonadia in all sam‐
ples, with the highest abundance of 13.7% in AS202010R.
Parcubacteria and Gracilibacteria were the second and
third most abundant groups, respectively (Fig. 1B). In
addition to the above-mentioned groups, Microgenomatia
(former candidate division OP11), ABY1, Dojkabacteria
(former candidate division WS6), and Berkelbacteria were
detected; however, their relative abundance was less
than 0.2%. The ranges of the relative abundance of
Saccharimonadia, Parcubacteria, and Gracilibacteria in
untreated activated sludge samples (AS201902, AS202004,
AS202010R, and AS202011) were 4.5–13.7%, 2.4–5.0%,
and 0.4–1.8%, respectively. The relative abundance of
Patescibacteria in all three treated samples (i.e., aero‐
bic and anaerobic incubations) decreased (Fig. S1). The
relative abundance of Saccharimonadia, Parcubacteria,
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Fig. 1. Microbial community composition at the phylum level in four activated sludge samples examined in the present study (A), and the
detailed composition of Patescibacteria in four activated sludge samples (B) based on 16S rRNA gene amplicon sequencing. The total relative
abundance of each sample in panel (B) corresponds to the relative abundance of Patescibacteria (red) in each sample in panel (A).
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and Gracilibacteria in AS202004 were 9.5, 3.5, and
1.1%, respectively, whereas those in AA202004 were 5.5,
2.8, and 0.6%, respectively. The relative abundance of
Saccharimonadia, Parcubacteria, and Gracilibacteria in
AS202010R, AS202010A, and AS202010B were 9.5, 3.5,
and 1.1%, 5.5, 2.8, and 0.6%, and 5.5, 2.8, and 0.6%,
respectively. This decrease may be associated with the
oxygen level or abundance of coexisting bacteria. The rel‐
ative abundance of Patescibacteria in groundwater samples
ranged between 2.1 and 20.7%; however, it was not possi‐
ble to compare these samples directly because they were
enriched using a filter-based sampling method (Danczak et
al., 2017).

Correlation analysis
Pearson’s correlation coefficients were calculated

between the patescibacterial OTUs obtained from ampli‐
con sequencing and other bacterial OTUs with more that
0.1% relative abundance. The OTUs of Proteobacteria,
Chloroflexi, and Planctomycetota showed a positive cor‐
relation with the OTUs of Patescibacteria; however, in
some cases, correlations were negative (data not shown).
In contrast, the correlation between Patescibacteria and
Chitinophagales belonging to the phylum Bacteroidota was
positive (Fig. S2). Among the OTUs shown in Fig. S2,
we extracted OTUs with a sequence that matched the
reconstructed bin with 100% sequence identity (Fig. 2).
Most Chitinophagales OTUs correlated with several pates‐
cibacterial OTUs (HS1, HS2, and HP2). In addition, two
Chitinophagales OTUs correlated with the three lineages
of Patescibacteria. A similar positive correlation between
Saccharimonadia and Chitinophagaceae was found in acid
mine drainage samples (Lemos et al., 2019). Metabolic
interactions between Patescibacteria and Chitinophagales
are discussed in the following section.

Genome reconstruction and basic information on bins
In total, 0.77 billion reads and 0.06 million reads were

obtained from HiSeq X and PacBio CCS sequencing of
the three activated sludge samples, respectively (Table S2).
The hybrid assembly using HiSeq X and PacBio CCS reads

generated 12,097 contigs with an N50 value of 148,787
bp. A total of 8,211 contigs >1,500 bp were extracted
and classified into 320 bins. Ten patescibacterial bins were
reconstructed, which consisted of Saccharimonadia (five
bins, HHAS1–HHAS5), Parcubacteria (four bins, HHAS6–
HHAS9), and Gracilibacteria (one bin, HHAS10) (Table
1). The completeness of Sacchrimonadia and Parcubacteria
ranged between 88.4 and 97.7 and between 62.8 and 90.7%,
respectively, while that of Gracilibacteria was 97.7%.

A phylogenetic tree of the ten bins based on the pro‐
tein sequence is shown in Fig. 3. Bins belonging to
Saccharimonadia were classified into three groups. The
group including HHAS3 and HHAS4 was related to the
well-described saccharimonadial species Candidatus Sac‐
charimonas aalborgensis (CP005957), reconstructed from a
Danish activated sludge sample (Albertsen et al., 2013).
Since this species shows a small coccus morphology
(Albertsen et al., 2013), HHAS3 and HHAS4 were also
considered to be small cocci. The HHAS1 and HHAS5
groups were related to the genomes of activated sludge
samples. According to sequence similarities based on 16S
rRNA genes, the morphology of this group was primarily
filamentous (Kindaichi et al., 2016). The morphology of
filamentous Saccharimonadia needs to be confirmed using
FISH in the future. The HHAS2 bin formed a different
clade from other saccharimonadial genomes with a genome
from activated sludge (Singleton et al., 2021). However, the
details of this group remain largely unknown. The parcubac‐
terial bins were classified into three groups. The HHAS7
bin was classified as Nomurabacteria and was related to
genomes from groundwater samples (Brown et al., 2015).
Groups HHAS6 and HHAS9 belonged to Moranbacteria. In
addition, clades HHAS6 and HHAS9 consisted of genomes
from activated sludge samples (Singleton et al., 2021).
The details of Moranbacteria in activated sludge samples
are also unclear because the majority of information on
Moranbacteria was obtained from groundwater samples
(Anantharaman et al., 2016). The HHAS8 bin did not
belong to any parcubacterial subgroup. HHAS10 was classi‐
fied as belonging to Gracilibacteria. Although some of the
gracilibacterial genomes were also reconstructed from acti‐
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vated sludge samples (Singleton et al., 2021), the HHAS10
bin formed a clade that included genomes from human oral
samples (Dudek et al., 2017).

Metabolic analysis
The predicted metabolic potential of Gracilibacteria,

Parcubacteria, and Saccharimonadia, and the puta‐
tive metabolic interactions between Patescibacteria and
Chitinophagales based on the metagenomic analysis in this
study are shown in Fig. 4. Patescibacterial bins revealed
that Patescibacteria did not possess de novo nucleotide syn‐
thesis, amino acid synthesis, phospholipid synthesis, or a
full TCA cycle. In addition, Patescibacteria possessed ABC
transporters with unknown functions, the peptidoglycan bio‐
synthesis pathway, and type IV pili (Fig. S3). The lack of de
novo amino acid synthesis suggests that peptidases acquire
amino acids. The presence of peptidases was also confirmed
(Table S4). Several patescibacterial bins converted glycine
to serine and harbored serine peptidases. These common
features are consistent with the genomes of activated sludge
samples as well as other natural samples (Wrighton et al.,
2012, 2014; Albertsen et al., 2013; Danczak et al., 2017;
Starr et al., 2018; Lemos et al., 2019; 2020; Sieber et al.,
2019; Chaudhari et al., 2021; Moreira et al., 2021; Yakimov
et al., 2021). The incomplete nucleotide synthesis pathway
and the presence of the comE gene and type IV pili sup‐
port the acquisition of DNA from outside cells (Chen and
Gotschlich, 2001; Starr et al., 2018).

Saccharimonadial bins possessed glycolysis and the pen‐
tose phosphate pathway, with possession patterns depending
on the subgroup (Fig. 4). The members of subdivision
1 (HHAS1 and HHAS5), which are putative filamentous
Saccharimonadia, partially possessed glycolysis, whereas
members of subdivision 3 (HHAS3 and HHAS4) possessed
both glycolysis and the pentose phosphate pathway. The
possession of genes to convert pyruvate to lactate, ace‐
tate, and malate and the lack of a TCA cycle supports
fermentative metabolism. These results are consistent with
previous findings (Wrighton et al., 2012, 2014; Albertsen
et al., 2013; Danczak et al., 2017; Starr et al., 2018;

Lemos et al., 2019; 2020; Sieber et al., 2019; Moreira et
al., 2021; Yakimov et al., 2021). The fermentative path‐
way from pyruvate to lactate or malate may facilitate
the production of NAD+ (Starr et al., 2018; Lemos et
al., 2019). The pentose phosphate pathway in subdivision
3 may be involved in the conversion of glucose-6P to
glyceradehyde-3P and in energy conversion (NADPH to
NADP production) (Albertsen et al., 2013). However, genes
involved in the synthesis of nucleic acids, such as ribose-
phosphate pyrophosphokinase, were absent. Therefore, they
are not expected to contribute to anabolism (the produc‐
tion of deoxyribonucleotides) (Castelle et al., 2018). All
reconstructed saccharimonadial bins in the present study
possessed the NADH dehydrogenase-like protein and com‐
plete cytochrome o ubiquinol oxidase, which is related to
the oxygen scavenging system, despite the absence of the
TCA cycle (Kantor et al., 2013; Starr et al., 2018; Lemos
et al., 2019). In addition, Lemos et al. (2019) suggested
that Saccharimonadia follow non-obligatory fermentative
metabolism with occasional aerobic respiration. As previ‐
ously reported by Lemos et al. (2019), Saccharimonadia
have membrane-bound NADH dehydrogenase to supply
NAD+ and pass the electron to ubiquinone, which trans‐
fers it to cytochrome O ubiquinol oxidase. Cytochrome
then reduces O2 to H2O as the final receptor, delivering
protons through the plasma membrane to generate the
proton electromotive force used for ATP synthesis by
ATP synthase. Filamentous Saccharimonadia in activated
sludge took up N-acetylglucosamine under aerobic condi‐
tions, as demonstrated by microautoradiography combined
with FISH (Kindaichi et al., 2016). Chitinophagales bins
(HHAS12, HHAS13, and HHAS14) possessed chitinase
(MHHEHLFG_00073, MHHEHLFG_01825, AECFEMFL_
01184, and KHEBLPDM_00108) and all Chitinophagales
bins harbored beta-acetylhexosamidase (MHHEHLFG_
00810, CLEEFKKN_01010, AECFEMFL_02009, and
KHEBLPDM_01401). Chitinophagales have the potential
to convert chitin to N-acetylglucosamine via chitobiose
(Fig. 4). All Chitinophagales bins encoded poly-beta-1,6
N-acetyl-d-glucosamine synthase (PgaC). This enzyme

Table 1. Characteristics of patescibacterial bins obtained in the present study

Bin ID Taxonomy Bin size
(Mbp)

Completeness
(%)

Contamination
(%)

Number of
contigs

Number of
CDSs

Relative abundance (%)†

AS201902 AS202004 AA202004
HHAS1 Saccharimonadia 0.91 88.37* 0* 3 946 1.79 0.04 0.03
HHAS2 Saccharimonadia 0.83 97.67* 0* 3 847 0.20 0 0
HHAS3 Saccharimonadia 1.00 93.02* 0* 2 1027 1.47 0 0
HHAS4 Saccharimonadia 0.73 90.70* 0* 3 759 2.26 0 0
HHAS5 Saccharimonadia 0.71 88.37* 0* 6 746 0.29 0 0
HHAS6 Parcubacteria 0.53 90.70* 0* 8 536 0.15 0 0
HHAS7 Parcubacteria 0.60 62.79* 0* 2 627 0.48 0 0
HHAS8 Parcubacteria 0.60 90.70* 0* 5 619 0.02 0.26 0.19
HHAS9 Parcubacteria 0.96 79.07* 0* 6 942 0.29 0.27 0.44
HHAS10 Gracilibacteria 1.30 97.67* 0* 3 1175 0.02 0.22 0.10
HHAS11 Chitinophagales 2.37 75.24 0 17 2051 0 0.17 0.23
HHAS12 Chitinophagales 2.79 75.2 3.96 21 2435 0.97 0 0.02
HHAS13 Chitinophagales 3.13 94.77 3.45 5 2669 1.85 0 0
HHAS14 Chitinophagales 2.99 91.21 2.72 14 2354 0.78 0 0

* Calculated using the CPR marker set.
† Calculated based on the mapping file generated in MetaBAT2.0
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catalyzes the polymerization of uridine diphosphate-N-
acetylglucosamine to produce poly-N-acetylglucosamine
(PGA). There were other bins in active sludge belonging to
Ignavibacteria, Acidobacteria, Actinobacteria, Bacteroidota,
Chloroflexi, Nitrospira, Proteobacteria, and Verrucomicrobia.
These bacteria possessed PgaC and were present in approxi‐
mately 38–41% of samples from AS201902, AS202004,
and AA202004. Filamentous Saccharimonadia in activated
sludge took up N-acetylglucosamine, which strongly sup‐
ports the metabolic interaction between Chitinophagales
and Saccharimonadia via N-acetylglucosamine in activated
sludge. In addition, Saccharimonadia have been suggested
to use some of the PGA produced by bacteria (Hosokawa et
al., 2021). The mechanisms by which N-acetylglucosamine
is assimilated or catabolized by Saccharimonadia currently
remain unclear. Investigations on the metabolism of incor‐
porated N-acetylglucosamine are highly challenging, but are
warranted.

Parcubacterial bins possessed glycolysis and/or the pen‐
tose phosphate pathway. Parcubacterial bins also encoded
genes involved in the conversion of pyruvate to acetate
and malate (Fig. 4). The possession of these pathways
and the lack of a TCA cycle are similar features to
those of saccharimonadial bins and support fermentative
metabolism, as reported in previous studies (Wrighton
et al., 2012; 2014; Albertsen et al., 2013; Danczak et
al., 2017; Lemos et al., 2019; 2020; Starr et al., 2018;
Sieber et al., 2019; Moreira et al., 2021; Yakimov et
al., 2021). A moranbacterial bin (HHAS9) possessed chi‐
tinase (DEAMOMGP_00832 and DEAMOMGP_00955)

(Fig. 4), but not the genes to convert N-acetylglucosamine
to other compounds. The nomurabacterial bin (HHAS7)
possessed the copper-containing nitrite reductase gene
(JCNBLHJH_00228, nirK) (Fig. 4). Some members of
Parcubacteria are known to be involved in nitrite reduc‐
tion (Castelle et al., 2017; Danczak et al., 2017; He et al.,
2021). In addition, several Chitinophagales bins (HHAS12
and HHAS13) possessed the nitric oxide reductase subunit
B/C (norB/C) (CLEEFKKN_01663, CLEEFKKN_01664,
AECFEMFL_01795, and AECFEMFL_01795) and
nitrous-oxide reductase (nosZ) (CLEEFKKN_01654 and
AECFEMFL_02605). Therefore, Nomurabacteria were
partially responsible for denitrification along with
Chitinophagaceae in the activated sludge process.

The gracilibacterial bin (HHAS10) had negligible
central carbon metabolism. It possessed only pyru‐
vate kinase (FNKGEGDK_00842), malate dehydrogen‐
ase (FNKGEGDK_00357), and 2-oxoglutarate/2-oxoacid
ferredoxin oxidoreductase (FNKGEGDK_00164 and
FNKGEGDK_00166). Although the poor metabolic poten‐
tial of Gracilibacteria has also been reported (Sieber
et al., 2019), the gracilibacterial genomes in previous
studies were mainly reconstructed from other habitats,
such as oral and ground water samples. The genome
size of the HHAS10 bin was 1.3 Mbp, which is simi‐
lar to that of other Gracilibacteria (Sieber et al., 2019),
and completeness was relatively high (Table 1). Never‐
theless, it was not possible to predict the metabolic
potential of Gracilibacteria reconstructed in the present
study using the current databases. The accumulation

NosZ
NorB/C

N2N2ONO

lipopolysaccharide

phospholipid
Heme

lipoprotein

H+

ADP + Pi

ATP

Chitin

GlcNAc

Chitinophagales

Nomurabacteria
Moranbacteria

Glycolysis Pentose Phosphate
Pathway

Pyruvate

Acetyl-CoA

OAA TCA Cycle

?

?

Poly-GlcNAc
Chitobiose

?

?

Parcubacteria

GlcNAc

Chitin

?

H+

NO2
-

NO

peptide

ADP + Pi

ATP

DNA

Glycolysis

Glucose-6p

Pentose Phosphate
Pathway

TCA Cycle
Acetate

(S)-malatePyruvate

Acetyl-CoA

PE

NirK

ComE

Subdivision 3
Subdivision 1

C
om

E

GlcNAc

PE

ATP
ADP + Pi

H+

Glycolysis

Glucose-6p

Pentose Phosphate
Pathway

TCA CycleAcetate

(S)-malate
D-LactatePyruvate

Acetyl-P

CyUO

4H+ + O22H2O

NDH

NADH

NAD+ + H+

Sugar
compound

Saccharimonadia

DNA

peptide Pentose Phosphate
Pathway

TCA Cycle

H+

PHAD

PE
Com

E

DNA

Gracilibacteria

PEP

Pyruvate

Acetyl-CoA

Acetate

(S)-malate

ATP
ADP + Pi

PE

Fatty acids +
Lipophilic substance

peptide

Missing pathway

ABC transporter ATPase

+ Peptideglycan Biosynthesis
+ Nucleotide Repair

  Nucleotide Synthesis
  Aminoacid Synthesis
  Phospholipid Synthesis

+ Peptidase

Common features of Patescibacteria

type IV
        pili

type IV pili

type IV pili

Fig. 4. Predicted metabolic potential of Gracilibacteria, Parcubacteria, and Saccharimonadia, and putative metabolic interactions between
Patescibacteria and Chitinophagales based on the genetic information obtained from the metagenomic analysis. The colored circles below
Saccharimonadia (light green and green) and Parcubacteria (pink and yellow) indicate the presence of genes only found in the subdivision/
subgroup members. Semicircles indicate that one of the two possessed the genes. The common features of Patescibacteria are also shown.
Abbreviations: CyUO, cytochrome O ubiquinol oxidase; NDH, NADH dehydrogenase; PHAD, polyhydroxyalkanoate depolymerase; ComEC,
competence protein ComEC; PE, peptidases; OAA, oxaloacetate; GlcNAc, N-acetylglucosamine; PEP, phosphoenolpyruvate.

Patescibacteria in Activated Sludge

7 / 10 Article ME22012



of genomic information on Gracilibacteria in activated
sludge is necessary to construct substantial databases.
In contrast, the gracilibacterial bin (HHAS10) possessed
four copies of peptidase belonging to the M23 family
(Table S4), which lyses the cell walls of other micro‐
organisms. The HHAS10 bin also possessed a phospho‐
lipase gene (FNKGEGDK_00603, FNKGEGDK_00841),
whereas Chitinophagales possessed an ABC transporter
(MHHEHLFG_00269, MHHEHLFG_00294, MHHEHLFG_
00428, MHHEHLFG_01772, MHHEHLFG_01773,
MHHEHLFG_01879, KHEBLPDM_00308, KHEBLPDM_
00309, and KHEBLPDM_02272), which releases phospho‐
lipids (Fig. 4). Therefore, the metabolic flow of phos‐
pholipids between Chitinophagales and Gracilibacteria
in activated sludge was considerable. The HHAS10 bin
possessed a homolog of polyhydroxyalkanoate (PHA)
depolymerase (FNKGEGDK_00792), which showed >40%
homology (<1e-65) to PHA depolymerases of known spe‐
cies (Table 2). This feature may help to obtain an energy
source, even though Gracilibacteria have negligible central
carbon metabolism. In general, PHA is degraded by PHA
depolymerase to monomers, such as 3HB, which are then
oxidized to acetoacetyl-CoA in a reaction catalyzed by
3HB dehydrogenase. This is then converted to acetyl-CoA
by β-ketothiolase (Ong et al., 2017). Although Candidatus
Parcunitrobacter nitroensis belonging to Parcubacteria also
possessed PHB, which is a PHA, depolymerase, and pep‐
tidase that acts extracellularly and converts PHB to ace‐
tate, suggesting that PHB may be used as a carbon
source (Castelle et al., 2017), no genes related to the
reaction pathway of hydroxybutyrate in the HHAS10 bin
were identified. Based on an amino acid sequence homol‐
ogy search using the NCBI-nr database, we found that
the genome of HHAS10 bin had a surface layer protein
(FNKGEGDK_00198) that was widely conserved in gra‐
cilibacterial genomes with high similarity (Table 2 and
Fig. S4). Besides, the proteins showed 28% (41/145 bp,
3e-15) and 27–30% (<1e-16) homology with the PHB
depolymerases of Candidatus Parcunitrobacter nitroensis
(OWK27304.1) and other taxa (Myxococcales, Sorangium
cellulosum, and Streptomyces sp.), respectively. Further

studies are needed on the generality and roles of PHA/PHB
depolymerases in Gracilibacteria.

Conclusions

In the present study, the metabolic potential of
Patescibacteria was predicted from the MAGs of acti‐
vated sludge samples, and the physiological role of
Patescibacteria in activated sludge was estimated. The
genomes of three Saccharimonadia, three Parcubacteria,
and one Gracilibacteria species revealed a lack of de novo
nucleotide synthesis, amino acid synthesis, phospholipid
synthesis, and a full TCA cycle. Ten reconstructed genomes
showed a strong positive correlation of relative abundance
with Chitinophagales based on 16S rRNA genes. Meta‐
bolic interactions between a member of Saccharimonadia
and Chitinophagales via N-acetylglucosamine, between a
member of Parcubacteria and Chitinophagales via nitro‐
gen compounds related to denitrification, and between
Gracilibacteria and Chitinophagales via phospholipids
in activated sludge were supported by metabolic predic‐
tions from 10 recovered Patescibacteria MAGs and five
Chitinophagales MAGs. The high abundance of peptidases
in Gracilibacteria suggests their role in cell lysis in acti‐
vated sludge. Further studies related to visualization with
FISH and the enrichment of Patescibacteria are necessary
to elucidate the in situ physiological roles of Patescibacteria
in the activated sludge process.
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