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Mitochondria are ubiquitous organelles that play a pivotal role in the supply
of energy through the production of adenosine triphosphate in all eukaryotic
cells. The importance of mitochondria in cells is demonstrated in the poor
survival outcomes observed in patients with defects in mitochondrial gene
or RNA expression. Studies have identified that mitochondria are influenced
by the cell’s cytoskeletal environment. This is evident in pathological con-
ditions such as cardiomyopathy where the cytoskeleton is in disarray and
leads to alterations in mitochondrial oxygen consumption and electron
transport. In cancer, reorganization of the actin cytoskeleton is critical for
trans-differentiation of epithelial-like cells into motile mesenchymal-like
cells that promotes cancer progression. The cytoskeleton is critical to the
shape and elongation of neurons, facilitating communication during devel-
opment and nerve signalling. Although it is recognized that cytoskeletal
proteins physically tether mitochondria, it is not well understood how cyto-
skeletal proteins alter mitochondrial function. Since end-stage disease
frequently involves poor energy production, understanding the role of the
cytoskeleton in the progression of chronic pathology may enable the devel-
opment of therapeutics to improve energy production and consumption and
slow disease progression.

This article is part of the theme issue ‘The cardiomyocyte: new revel-
ations on the interplay between architecture and function in growth,
health, and disease’.
1. Role of mitochondria in energy production
Mitochondria are ubiquitous organelles that are present in most eukaryotic cells
[1] where they play a vital role in the production of energy or adenosine tripho-
sphate (ATP) [2]. Mitochondria are also key regulators in cell apoptosis, reactive
oxygen species (ROS) production, calcium (Ca2+) homeostasis, and contribute
to the biosynthesis of amino acids, steroid hormones, haem, lipids and iron–
sulfur clusters [2]. The voltage-dependent anion channel (VDAC), a major
protein located on the mitochondrial outer membrane (MOM), plays an impor-
tant role in regulating mitochondrial metabolism, apoptosis and Ca2+ signalling
[3,4]. VDAC also forms large complexes with other enzymes involved in metab-
olism, such as cytosolic hexokinase and mitochondrial creatine kinase (mtCK)
to facilitate the efficient cycling of metabolites. For example, VDAC provides
hexokinase access to mitochondrial ATP for catalysing the phosphorylation of
glucose to glucose-6-phosphate [5]. VDAC complex with mtCK at the inter-
membrane space and adenine nucleotide translocator at mitochondrial inner
membrane facilitate high-energy phosphate transfer [6]. Efficient transportation
of metabolites such as cytosolic adenosine diphosphate (ADP) and inorganic
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phosphate, across both mitochondrial membranes, is vital for
ATP production within the matrix [7,8]. While the majority
(approx. 75%) of ATP is generated via oxidative phosphoryl-
ation (OXPHOS) in mitochondria, some is produced via
aerobic glycolysis in the cytosol [9]. The energetic yield of
ATP per molecule of glucose is substantially lower for aerobic
glycolysis (4 moles ATP per mole glucose) compared to
OXPHOS (36 moles ATP per mole glucose), therefore,
OXPHOS is the more energetically efficient metabolic path-
way [10]. Failure of mitochondria to maintain ATP
production results in energy deficits and impairments in
cell function.
 tb
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2. Role of the cytoskeletal network in cell
function

In eukaryotic cells, the cytoskeleton is comprised of microtu-
bules, actin filaments (F-actin) and intermediate filaments.
These components differ in stiffness, polarity, modulators,
dynamics of their formation and their overall role within
cells [11].

Microtubules are the stiffest and are composed of α- and
β-tubulin heterodimers [11]. They play critical roles in main-
taining cell shape, trafficking of proteins and organelles,
and chromosomal segregation during cell division [11].
Microtubules can readily shift between states of rapid
elongation by the polymerization of tubulin dimers, as well
as rapid depolymerization, thus allowing the dynamic cytos-
keleton to reorganize cellular spaces and organelles quickly,
for example during the different phases of the cell cycle
[11]. F-actins are less stiff in comparison to microtubules
and are comprised of two intertwined strands of monomeric
globular (G) actin [12]. F-actin also polymerizes and depoly-
merizes in response to local signalling cues [11], and can
provide rigidity and shape to cells, dynamically alter cell
shape and initiate cell motility [13]. F-actin uses ATP and gen-
erates pulling forces through sliding interactions of actin and
myosin filaments [14]. While this mechanism is most notably
evident in muscle cells during muscle contraction, it is also
applicable to non-muscle cells for other processes such as
migration, cytokinesis, modification of cell shape, organiz-
ation of the extracellular matrix (ECM) and formation of
cell–cell/cell–matrix junctions [13]. Intermediate filaments
are involved in maintaining the structure and mechanical
integrity of cells, particularly bearing tension and creating a
supportive scaffold for the internal cellular environment [15].
While intermediate filaments have recently been found to
play a role in signal transduction and mechanotransduction,
they have less involvement in cell motility compared to
microtubules and F-actin [15].
3. Cytoskeletal protein regulation of
mitochondrial function

Cytoskeletal components work collaboratively to regulate
mitochondrial processes of fission/fusion, mitophagy and
morphology in response to extracellular stressors [16]. The
coordinated action of cytoskeletal components, particularly
microtubules and F-actin, are also critical to mitochondrial
motility via the distribution and anchoring of the organelles
to their appropriate sites in the cell [17]. Specifically, it has
been suggested that alterations to the cytoskeleton can
affect mitochondria, resulting in functional modifications in
the organelle.

While a majority of the previous research linking mito-
chondria and the cytoskeleton has mostly been investigated
in yeast, there have been an increasing number of studies
exploring the role of cytoskeletal components in mitochon-
drial motility and fission/fusion dynamics in mammalian
cells [18–21]. These studies have examined the effects of
cytoskeletal inhibitors on mitochondrial motility, mitochon-
drial membrane potential (Ψm), morphology and respiration
as these can all be indicative of function. We further
examine the regulatory role of the cytoskeleton on mitochon-
drial energetics in different cell types and its implication in
disease pathologies.

(a) Cytoskeletal regulation of mitochondria in
cardiomyocytes

In the neonatal heart, energy metabolism occurs predomi-
nantly via aerobic glycolysis where the massive proliferation
of cardiac myocytes is required for the developing heart
[22,23]. This differs from the adult heart in which energy is
obtained primarily through OXPHOS, reflecting postnatal
energy requirements and increased cardiac efficiency [22,23].
Owing to the high-energy demands of the adult heart, mito-
chondria play an important role in ATP generation in cardiac
myocytes, as well as being involved in Ca2+ handling, ROS
generation and apoptosis [24]. While cardiac function predo-
minantly relies on ATP generation via OXPHOS, creatine
kinase (CK) serves as the heart’s primary energy reserve via
the phosphocreatine/creatine kinase (PCr/CK) system [25].
This system is critical as it allows rapid generation of high
levels of ATP during increased metabolic demand, when
ATP usage exceeds its production by OXPHOS, for example
during high-intensity physical exercise or ischaemia. In cases
of heart failure owing to cardiomyopathy, impairments in
energy metabolism have been attributed to reduced myo-
cardial PCr/ATP ratios, indicative of an increased cost of
contraction and inefficient metabolism [26].

The cytoskeletal network forms the scaffold of cardiac
muscle cells and extends from the plasma membrane to
z-discs of the sarcomere, as well as traversing organelles
including t-tubules, sarcoplasmic reticulum (SR) and mito-
chondria (figure 1). The positioning of sarcomeres within
adult cardiomyocytes is tightly regulated by the cytoskeletal
network and the SR.

Cardiac L-type Ca2+ channel (ICaL) activation and inacti-
vation kinetics are vital to the processes of excitation and
contraction. The ICaL is physically anchored to F-actin via the
channel’s auxiliary β2-subunit and F-actin-associated protein
AHNAK [27]. Mitochondria are also structurally associated
with F-actin via mitochondrial docking proteins [28]. ICaL acti-
vation kinetics can modulate mitochondrial function through
this physical association, as observed in isolated cardiac myo-
cytes, where ICaL activation with ICaL agonist BayK(-) directly
results in increased Ψm under Ca2+-free experimental con-
ditions [29]. This increased response is attenuated in the
presence of the F-actin depolymerizing agent latrunculin A
[29]. As the response is dependent on an intact cytoskeleton,
this indicates that cytoskeletal changes can modulate mito-
chondrial energetics through alterations in ICaL kinetics
[29,30]. This is consistent with other studies in which the
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Figure 1. Structure of cardiac myofibrils and the sarcomere. Cardiac myocytes are surrounded by the sarcolemma and contain myofibril bundles that are comprised
of repeating contractile units (sarcomeres). Sarcomeres are composed of regions where thin filaments (actin) overlap with thick filaments (myosin) (A-band) and
regions of actin only (I-band). Z-discs delineate adjacent sarcomeres and are pulled together during muscle contraction. T-tubules, an extension of the sarcolemma,
penetrate through myofibrils and contain various ion channels including the L-type calcium channel (ICaL). The SR is a specialized structure found within myocytes
dedicated to the storage of Ca2+ ions. During muscle contraction, Ca2+ entry through the ICaL triggers Ca

2+-induced Ca2+-release from receptors on the SR. Mito-
chondria are strategically localized between myofibrils in order to meet the energy requirements of muscle contraction by providing ATP via oxidative
phosphorylation (OXPHOS). Adapted from ‘Myofibril Structure’, by BioRender.com (2022). Retrieved from https://app.biorender.com/biorender-templates.
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dissociation of microtubules or depolymerization of F-actin
alters ICaL inactivation rate [30].

A pivotal study undertaken by Saks et al. [31] demon-
strated the existence of a diffusion barrier for ADP in MOM.
Specifically, they found that respiration of isolated mitochon-
dria is characterized by an apparent Km for exogenous ADP
of approximately 10-fold lower than in permeabilized cells
and that mild trypsin treatment of cells results in an increase
of MOM permeability up to the level of isolated mitochondria
[32]. These surprising observations led them to suggest the
existence of the so-called ‘Factor X’—an intracellular cyto-
plasmic component controlling the permeability of MOM
for ADP in cardiac muscle cells in vivo. They proposed that
this factor was linked to the cytoskeleton as it was still present
in tissue homogenate where it seemed to be connected to
mitochondria and other structures but was absent after cen-
trifugation in isolated mitochondria [31]. More than 10 years
later this factorwas identified as free dimeric tubulin—a build-
ing block of microtubules—and was confirmed to regulate
ATP fluxes through VDAC in vitro [33,34]. The importance of
this interaction is that VDAC transiently blocked by tubulin
is impermeable for ATP or ADP. This phenomenon arises
owing to the highly negatively charged tubulin C-terminal
tail (either α- or β-tubulin) [35] entering the net positive pore
of VDAC, which reverses the net charge of the pore interior,
creating electrostatic and steric barriers for ATP and other
negatively charged mitochondrial metabolites. Experiments
using isolated cardiac mitochondria demonstrated that
dimeric tubulin restricts the availability of ADP for OXPHOS
and reduces mitochondrial respiration [33,36], further con-
firming that cytoskeletal proteins can regulate mitochondrial
respiration by interacting directly with VDAC. According
to their model, VDAC-cytoskeleton interaction selectively
restricts channel permeability for ATP and ADP, but not for
creatine or phosphocreatine, thus shifting the energy transfer
to the PCr/CK pathway. Interestingly, in cancerous non-beat-
ing HL-1 cells of cardiac phenotype, where both β2 tubulin
isoform and mtCK are absent, the apparent Km for exogenous
ADP is low [37]. Some cancer cells show increased β3 tubulin
expression [38] which may play a role in regulating VDAC
activity, but more studies are needed to confirm its over-
expression in HL-1. A hypothetical model has been proposed
which suggests that hexokinase-II replaces β2 tubulin in bind-
ing to VDAC and switch the energy transfer to the Warburg–
Pedersen pathway [39–41]. However, more studies are needed
to confirm the Warburg–Pederson pathway.

Many cardiomyopathies exhibit alterations in cytoskeletal
proteins, as well as disturbances in mitochondrial oxygen
consumption and electron transport. In hypertrophic cardio-
myopathy (HCM), a highly disorganized cytoskeleton arises
owing to mutations in sarcomeric proteins [42] (figure 2a).
This cytoskeletal disarray is linked to alterations in energy
metabolism,which occur prior to the onset of pathological fea-
tures, such as altered cardiac contractility, left-ventricular
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Figure 2. Mitochondria and the cytoskeletal network in health and disease. Cytoskeletal and mitochondrial abnormalities are predominant features in many disease
states including neurodegeneration, cardiomyopathy, cancer and immunodeficiencies. (a) In cardiomyopathies, myocyte disorganization and cytoskeletal disarray are
key features, along with disordered mitochondrial distribution, increased metabolic activity and Ψm (scale bars in haematoxylin and eosin stained sections (left) and
transmission electron microscopic images (right) represent 100 µM and 0.5 µM, respectively) [29,43]. (b) Epithelial to mesenchymal transition (EMT) in cancer cells is
driven by cytoskeletal remodelling with tumour growth and metastasis being associated with aberrant mitochondrial morphology, increased ATP production through
metabolic reprogramming to glycolysis and decreased apoptotic signalling (scale bars in haematoxylin–phloxine–saffron stained sections (left), and uranyl acetate/
lead citrate stained sections (right) represent 25 µM, and 0.33 µM, respectively) [44,45]. (c) In neurodegeneration, disruption to F-actin, microtubules and neurofila-
ments are associated with impaired axonal transport, decreased branching and increased neurite degeneration (scale bars in electron micrographs represent 2 µM
(left) and 0.5 µM (right), respectively) [46]. Aberrant mitochondrial transport, docking and morphology is also linked to increased apoptotic signalling and ROS
production as well as decreased ATP production and Ψm in neurons [47]. (d ) F-actin disorganization in lymphocytes is associated with impaired immune synapse
(IS) formation in immunodeficiencies, in which impaired mitochondrial biogenesis and metabolic dysfunction are also prominent (transmission electron microscopic
images obtained at ×18 400 (left) ×25 000 (right) magnification—scale bar units were not reported [48,49].
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hypertrophy and interstitial fibrosis [42]. In mitochondria that
have been isolated from HCM hearts, normal respiration and
complex activity are observed although mitochondrial gene
expression, morphology and number are altered [42], empha-
sizing the role of cytoskeletal proteins (and the intracellular
environment) in regulating mitochondrial function. In
murine models of Duchenne muscular dystrophy (DMD),
the absence of cytoskeletal protein dystrophin in the heart
leads to alterations in Ψm, mitochondrial electron transport
and contractile dysfunction [29]. Owing to the physical associ-
ation of the ICaL and mitochondria through the cytoskeletal
network, we can see how in the case of DMD, the disrupted
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cytoskeletal architecture owing to the absence of dystrophin,
leads to depressed mitochondrial metabolic activity, indicat-
ing a regulatory role of the cytoskeleton in mitochondrial
function. Studies have also suggested the role of themitochon-
drial channel VDAC in these processes, as the interaction of
the hexokinase N-terminal peptide with VDAC mimics the
effects of ICaL agonist BayK(-) on Ψm [29,42]. Mitochondrial
abnormalities are also observed inmany desmin-related cardi-
omyopathies. Knock-out murine models exhibit impairments
in mitochondrial structure as early pathological features,
occurring prior to any other cardiac dysfunction [50]. Mito-
chondrial structural abnormalities such as damaged cristae
lead to oxidative stress, altered metabolic activity, cardiac
myocyte death and heart failure [51] (figure 2a). Desmin is
primarily found at the mitochondria-associated membrane
between the SR and mitochondria, where it associates with
VDAC [51], further suggesting a role for the cytoskeleton in
regulating Ca2+ and metabolite trafficking through VDAC
in mitochondria.

(b) Cytoskeletal regulation of mitochondria in cancer
cells

The Warburg effect, initially described in the 1920s, suggests
that cancer cells have a modified cellular metabolism, in
which they favour aerobic glycolysis to mitochondrial
OXHPOS for energy production [10,52]. Mammalian cell
growth is controlled by systems that prevent aberrant prolifer-
ation and only uptake and metabolize nutrients from their
environment when stimulated by specific growth factors
[53]. While aerobic glycolysis is inefficient for ATP generation,
it is proposed that cancer cells and other proliferating cells use
this mode of metabolism to promote nutrient uptake, and fuel
cell growth [53]. Although it was previously believed that this
shift in metabolism was owing to defective mitochondria
and subsequent impaired respiration, it is now known that
mitochondrial function is not impaired in most cancer cells,
as demonstrated by mitochondria isolated from tumours
that maintain effective Ψm formation and activity of electron
transport chain components [53,54]. By contrast to therapeutic
targeting of mitochondria in neurodegenerative and cardiac
diseases where the primary goal is to prevent cell death, thera-
peutic targeting of mitochondria in cancer has the specific goal
of inducing apoptosis to cause death to malignant cells.

Epithelial to mesenchymal transition (EMT), a crucial cel-
lular process for embryonic development and wound tissue
healing, is also implicated in the progression of diseases,
such as cancer metastasis [55]. F-actin, microtubules and
intermediate filaments all play essential roles in activating
EMT and promoting cancer metastasis [56]. Epithelial cells
have apical membranes that contact the environment and
basal membranes that are anchored to the ECM [56].
Dynamic remodelling of actin into F-actin stress fibres
during EMT is associated with alterations in cell polarity
from apical–basal to front-rear polarity, which triggers a tran-
sition in these cells [56] (figure 2b). The shift in polarity
involves morphological changes and restructuring of the
cell’s attachment to the ECM, to form spindle-like mesenchy-
mal phenotypes with various leading-edge protrusions that
drive migration and invasion [56].

In cancer, growth factors including transforming growth
factor β and epithelial growth factor induce signalling path-
ways such as Wnt and Notch that induce transcription
programme switching in EMT [57]. EMT can also be induced
by the under-expression of proteins associated with cell–cell
adhesion and ECM, as well as tumour microenvironment fac-
tors such as oxidative stress, alterations in metabolic activity
and ECM stiffness [58]. Many studies suggest that ECM stiff-
ness is important in cancer cells as they have mechanosensing
properties and mechanotransduction feedback loops that are
implicated in cytoskeletal rearrangement and cell differen-
tiation processes [58]. Integrins are transmembrane proteins
that link the ECM to the cell’s cytoskeleton. The effects of
integrin-mediated cues on mitochondrial migration and
metabolism have been well established in cancer cells [59].
Furthermore, detachment of the ECM by integrins is associa-
ted with the disruption of focal adhesions and cytoskeleton,
leading to downstream activation of pro-apoptotic signalling
pathways [60].

Free dimeric tubulin is also increased in proliferative cancer
cells as it is required for spindle formation during cell division
[61]. Studies have demonstrated that dimeric tubulin can alter
mitochondrial function throughVDACby transiently blocking
VDAC, as shown in in vitro experiments aswell as knock-down
VDAC cell models [33,34], and subsequently inhibits transport
of respiratory substrates through the channel, leading to the
maintenance of lower ATP/ADP ratios, stimulation of glyco-
lytic metabolism and decreased Ψm [54,62]. As VDAC is
the only means of metabolite flux through the MOM, it is
conceivable that its conductance mediates mitochondrial
metabolism [54]. VDAC-tubulin interaction is suggested to
play a role in the suppression of mitochondrial metabolism,
thereby triggering the switch to glycolytic metabolism that is
associated with the Warburg effect and cell proliferation in
cancer cells [54] (figure 2b). Over-expression of tubulin iso-
forms appears to facilitate cancer progression and chemo-
resistance [63] through enabling the glycolytic switch, cancer
cell proliferation and downregulation of apoptotic pathways,
thereby providing further support for the regulation of
mitochondrial energetics by cytoskeletal proteins.
(c) Cytoskeletal regulation of neuronal mitochondria
Although the brain only accounts for 2% of body mass,
it has an incredibly high metabolic demand and uses approxi-
mately 20–25%oxygen consumption at rest [64].Mitochondria
provide the energy to meet demanding processes including
maintaining resting membrane potentials, regulating axonal
and dendritic development, peripheral axonal regeneration,
synaptic function and nerve signalling [64]. As with other
cell types, neurons rely onmitochondria for Ca2+ homeostasis,
steroid synthesis, apoptosis and ROS generation [65]. Many
neurodegenerative diseases that are characterized by gradual
neuronal loss and synaptic dysfunction are also associated
with abnormal energy metabolism and mitochondrial
impairments [65,66].

During embryonic development, neurons are dependent
on the cytoskeleton for processes such as cell proliferation,
differentiation, migration, axonal guidance and dendrite
arborization [67]. These processes are heavily reliant on the
microtubule network for establishing cell polarity and
aiding neural migration to ensure appropriate connections
and synapses are established and maintained throughout
development [67].

The cytoskeletal network is just as important during adult-
hood, with evidence indicating cytoskeletal disruption to be a
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prominent feature of many neurodegenerative diseases [68]
(figure 2c). In particular, alterations in microtubule stability
and dysregulation of microtubule- or actin-associated proteins
(MAPs or AAPs) appear to be key players, leading to down-
stream impacts on microtubule and F-actin dynamics, axonal
transport, neurite outgrowth, intracellular trafficking and
synaptic plasticity [68]. For example, in Alzheimer’s disease
(AD), hyperphosphorylated tau leads to microtubule disor-
ganization and generation of bundles of abnormal filaments
(neurofibrillary tangles) that ultimately result in dystrophic
neurites, synaptic loss and neuronal cell death [69]. Hunting-
ton’s disease and Parkinson’s disease (PD) are also
associated with abnormal processing of tau, leading to
microtubule instability, which is associated with both axonal
impairment and neurite degeneration in vitro [70].

Mitochondrial localization and distribution throughout
neurons are heavily reliant on an intact cytoskeleton as ATP
has a slow diffusion rate [71]. Therefore, efficient mitochon-
drial trafficking and docking are crucial for ATP production
at energy-demanding sites [65]. It is now evident that abnorm-
alities in mitochondrial localization lead to impairments in
their dynamics and functioning [72].

In neurons, specifically within the axonal growth cone and
at pre-synaptic terminals, microtubules, F-actin and neurofila-
ments are involved in moving mitochondria along and
anchoring them throughout the axon and at synapses [73].
Microtubules serve as tracks along which mitochondria
move in an anterograde or retrograde manner towards
the pre-synaptic terminal or the nucleus, respectively [74].
Neuronal axonal transport also involves interactions between
ATP-dependent motor proteins (such as kinesins and dyneins)
and motor adaptor proteins (such as TRAK 1/2, milton, KIF5,
syntabulin and dynactin) [74]. Motor adaptor proteins interact
closely with the cytoskeleton and disruptions to these proteins
result in alterations to mitochondrial transport in dendrites
and axons, as well as subsequent disruption to synaptic trans-
mission and mitochondrial dynamics [75,76], implicated in
neurological conditions such as AD, amyotrophic lateral
sclerosis, PD and Charcot–Marie–Tooth disease [73].

F-actin also plays a crucial role in the docking of neuronal
mitochondria along axons and at pre-synaptic terminals
where it is densely localized [77]. In vitro studies where neur-
onal F-actin is disrupted, demonstrate increased velocity of
motile mitochondria leading to reduced or aberrant docking
[78]. Loss of actin-related proteins (ARPs), a class of proteins
similar to the conventional actin, also lead to improper mito-
chondrial accumulation in axon terminals [74]. As transport
and localization of other cargo such as lysosomes and peroxi-
somes remain unaffected in these instances, it emphasizes
an important role of F-actin and ARPs in regulating proper
mitochondrial anchoring at specific subcellular sites [74].

Disruption to cytoskeletal components and subsequent
impairments to fission/fusion dynamics alters mitochondrial
morphology and downstream functions such as neurotrans-
mitter release, vesicle recycling and synaptic plasticity [65]
(figure 2c). In vitro models of AD over-expressing MAP
tau, results in a shift towards excessive fission, reduction of
dynamin-related protein 1 (DRP1) recruitment, mitochon-
drial fragmentation and clustering abnormalities [79].
Animal models of AD exhibit neuronal mitochondria with
highly heterologous morphology, in particular fragmented
or elongated mitochondria, as well as a significant reduction
in fission-associated proteins such as OPA1 [76]. Fragmented
mitochondria are similarly observed in models of PD [80]. AD
patients also demonstrate a high number ofmitochondriawith
broken cristae compared to age-matched controls, [81], mirror-
ing in vitro studies where fragmented mitochondria are also
observed in neurons over-expressing APP [82]. Mitochondrial
fragmentation and disruption of mitochondrial morphology
have been linked to impaired mitochondrial motility and
bioenergetics in the literature, and can trigger apoptotic
pathways, thereby facilitating neurodegeneration [83]. Fur-
thermore, abnormalities in mitochondrial fusion can lead to
swelling and aggregation of mitochondria resulting in larger
diameters that prevent their entry into smaller distal neurites,
impacting mitochondrial localization in energy-demanding
sites and giving rise to neuronal deficits [84].

(d) Cytoskeletal regulation of mitochondria in
lymphocytes

The innate immune response is a general system that mediates
rapid inflammatory responses through non-specific physical/
chemical defences, whereas the adaptive immune response is
a specialized system that emerges over time after initial infec-
tion, through antigen-specific responses [85]. Lymphocytes
make up a large subpopulation of immune cells including
T cells, B cells and natural killer cells, with the adaptive
immune response being directed largely by T and B cells [85].

Naive immune cells are metabolically quiescent, with
minimal nutrient uptake, and as such primarily use the
efficient OXPHOS system to generate ATP [86]. Antigen-
activated T cells, however, undergo rapid proliferation,
requiring a considerable amount of energy and cellular
resources [86]. Similar to cancer cells, activated T cells exhibit
the Warburg effect, shifting from the tricarboxylic acid cycle
and OXPHOS to aerobic glycolysis for ATP generation, a pro-
cess that is stimulated by growth factor cytokines [86].
Metabolic dysfunction can impact immune cell fate, leading
to a lack of specific immune cells or impairments in immune
cell differentiation, which is implicated in immune deficiency
disorders [87].

The cytoskeleton plays an important role in normal
immunological function, with dynamic rearrangement of the
cytoskeleton an essential process for appropriate adhesion,
migration, activation and proliferation of lymphocytes [88].
External environmental cues can activate signalling pathways
that trigger T-cell recruitment to sites of damage and provoke
changes in T-cell morphology and motility via cytoskeletal
rearrangement [88]. These cues include interactions between
chemokines with chemokine receptors on T cells, adhesion
molecules and their ligands on other lymphocytes, as well
as mechanical forces via the ECM [88]. Alterations in
the ability of cytoskeletal components to undergo remodell-
ing during differentiation and activation have resulted in
immune deficiency, auto-immunity and auto-inflammatory
disease [88].

In lymphocytes, fission/fusion dynamics and motility are
vital in maintaining a healthy mitochondrial network. The
cytoskeleton and the endoplasmic reticulum interact with
the mitochondrial network to regulate these processes.
GTPases are also involved in morphological changes and fis-
sion/fusion processes, including mitofusins, OPA1 and
DRP1 [89]. Impairments in mitochondrial fission and fusion
leads to poor mixing of mitochondrial DNA (mtDNA) and
an accumulation of high levels of pathogenic mtDNA which
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can impact respiratory functioning in T cells [89]. Furthermore,
improper fission/fusion dynamics can also affect mito-
chondrial morphology and subsequent localization [89]
(figure 2d ). Specifically, smaller mitochondria can move
more easily, whereas larger mitochondrial networks are
more difficult to move along cytoskeletal structures. It has
recently been shown in T cells that DRP1 silencing inhibits
mitochondrial motility and localization at the immune
synapse (IS) [90]. Localization of mitochondria at the IS is cru-
cial as it facilitates Ca2+ influx and ATP production to be
appropriately maintained across the plasma membrane
needed for downstream activations such as T-cell protrusion,
polarization and migration [91]. IS assemblage is closely
partneredwith cytoskeletal-dependentmitochondrial redistri-
bution towards the T-cell/antigen-presenting cell interface
and appropriate localization of mitochondria is fundamental
in regulating metabolic adaptations in processes of T-cell
differentiation, migration and activation [92].
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4. Conclusion
Mitochondrial dysfunction and poor energy production are
characteristic features of many end-stage diseases. Similarly,
cytoskeletal disruption and disorganization are characteristic
features of many pathological conditions. It is now well-
recognized that cytoskeletal proteins are important for the
localization and physical tethering of mitochondria to areas
of metabolic demand including the A band of sarcomeres
in cardiac myocytes, the growth cone of neuronal axons,
the leading edge of migrating cancer cells and uropods in
migrating lymphocytes. Therefore, it is critical to expand
our understanding of the role of the cytoskeleton in the pro-
gression of chronic pathology and how cytoskeletal proteins
alter mitochondrial function. Here, we focus on cytoskeletal
abnormalities and how they affect mitochondrial mor-
phology, fission/fusion dynamics, motility and distribution
in a variety of cell types. Cytoskeletal regulation of mito-
chondrial morphology, organization and distribution in
cells is inextricably linked to their main function of energy
production and transfer—the OXPHOS. The cytoskeletal
abnormalities can subsequently lead to impairments in mito-
chondrial respiration and activation of apoptotic pathways,
thereby accelerating disease progression. To this end, the
multiple complexes of mitochondria with cytoskeleton pro-
teins may represent a potential therapeutic target in the
management of various human diseases.
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