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Abstract 

A deep understanding of the neuronal connectivity and networks with detailed cell typing across brain regions is 
necessary to unravel the mechanisms behind the emotional and memorial functions as well as to find the treatment 
of brain impairment. Brain-wide imaging with single-cell resolution provides unique advantages to access morpho-
logical features of a neuron and to investigate the connectivity of neuron networks, which has led to exciting dis-
coveries over the past years based on animal models, such as rodents. Nonetheless, high-throughput systems are in 
urgent demand to support studies of neural morphologies at larger scale and more detailed level, as well as to enable 
research on non-human primates (NHP) and human brains. The advances in artificial intelligence (AI) and computa-
tional resources bring great opportunity to ‘smart’ imaging systems, i.e., to automate, speed up, optimize and upgrade 
the imaging systems with AI and computational strategies. In this light, we review the important computational 
techniques that can support smart systems in brain-wide imaging at single-cell resolution.
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1  Introduction
To understand the brain structures is one of the primary 
targets of modern science. Among those the shapes of 
neurons play a fundamental role. The function of a neu-
ron both dictates and is constrained by its morphology 
and connection with other neurons. The neuron circuits 
and connectivity provide scientific evidence and basis to 
understand the emotional and memorial activities and 
the brain diseases [1–4]. It is of uttermost importance to 
accurately locate and identify the neural morphologies at 
the scale of the entire brain. Under this light, brain ini-
tiatives have been announced to build brain-wide atlases 
to unravel the neuronal connectivity and neural cir-
cuits, including the U.S. BRAIN Initiative [5, 6], Europe’s 
Human Brain Project [7], and China’s Brain Project [8]. 

These projects are expected to facilitate the treatment of 
neurological and psychiatric disorders and to promote 
new breakthroughs in neuromorphic computing and arti-
ficial intelligence. To this end, brain-wide imaging with 
single-cell resolution is desired to simultaneously access 
morphological features of a neuron as well as to delineate 
the connectivity patterns of the neuron networks.

With the remarkable advances in sparse labeling [9–
11], tissue clearing [12–14], light microscopes [15–18] 
and computational methods [19, 20], brain-wide map-
ping with single-cell resolution has become possible for 
small mammals, such as rodents. This has brought inval-
uable opportunities to understand the brain structures 
and the underlying mechanisms of brain diseases. None-
theless, studies at larger scale and more detailed level are 
needed to explore a large variety of neuron types as well 
as to get more comprehensive understanding of neuron 
connectivity and projection patterns. More importantly, 
non-human primates (NHP) are getting more attentions 
as better experimental models of human cognitive func-
tions and brain diseases considering the fundamentally 
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different brain structures and behaviors between dif-
ferent species [21–23]. To investigate NHP and human 
brains in a similar way as rodents has become one of the 
most important tasks to date in neuroscience. Unfor-
tunately, the approaches for rodents are not directly 
applicable to NHPs due to the much larger brain sizes, 
stringent limitations on the numbers, and the substan-
tially increased individual variability of the brains [24]. 
Challenges remain from all aspects, i.e., sample prepa-
ration, imaging, and massive data processing. Tissue 
clearing in combination with light-sheet microscopy is 
particularly applicable for large-volume imaging, yet with 
compromised spatial resolution [14, 25, 26]. Clearing of 
human brain tissues is also notoriously challenging as the 
penetration depth of chemicals is strongly limited by the 
dense and opaque molecules accumulated over decades-
age [27]. The block-face imaging methods, e.g., the serial 
two-photon tomography (STPT) [15, 28] and micro-opti-
cal sectioning tomography [16, 29, 30], do not rely on tis-
sue clearing yet normally take several days to image an 
entire mouse brain with cellular resolution, which make 
them hardly scalable for much larger NHP or human 
brains. In addition, the processing and analyzing of peta-
bytes (PB) of volumetric image data from primate brains 
is another critical challenge. High-throughput systems 
are in urgent need, not only for imaging itself, but also for 
sample preparation and data analysis that facilitate the 
brain-wide neuroscience at single-cell resolution.

Smart imaging systems emerge in this context (Fig. 1), 
in which the data acquisition and analysis are inten-
sively supported by the artificial intelligence, software 
platforms, and computational facilities. All the three 
aspects are indispensable in a smart imaging system and 
strongly rely on each other. The data acquisition can be 
improved via automation to minimize error-prone man-
ual operations and human interruptions. The informa-
tion extracted from the images can be used to guide the 
data acquisition to reach better image quality at lower 
cost. The qualified data simplifies and very likely speeds 
up the subsequent data analysis and guarantees valid and 
meaningful biological information to be extracted. In 
addition, tools and platforms that support massive data 
management and analysis lower the barrier of carrying 
out analysis and developing new methods. Moreover, 
sophisticated manners of data sharing boost the world-
wide cooperation; large-scale data annotation produces 
critical resource for method development and valida-
tion in artificial intelligence; data visualization provides 
a human–machine interaction for annotation, quality 
control, proofreading, etc. All such tools and platforms 
together can substantially speed up the advances of smart 
systems.

With all the considerations mentioned above, we 
investigate here the topics and techniques, ranging from 
sample preparation to data mining, that are considered 
critical to build up the smart imaging systems. We will 
start from the topic of data acquisition, including the 
sample preparation and optical imaging. This is followed 
with the discussion on data processing techniques, rang-
ing from image preprocessing to data mining. The tools, 
platforms and database relevant to the above tasks will 
be summarized afterward. We will briefly touch on the 
growing waves of deep learning and cloud computing in 
neuroscience before conclusion. Note that we do not spe-
cifically limit the discussion on the field of neuroscience 
in this review, rather will include as well the techniques 
being used in other biological studies, with a hope to pro-
vide a broader view of smart imaging for neuroscience.

2 � Sample preparation
Sample preparation is perhaps the first major challenge 
to the imaging of large brains. It covers a variety of topics 
including sparse labeling, tissue clearing, tissue expan-
sion. Sparse labeling plays an essential role to make the 
morphology of individual neurons well visible under an 
optical microscope. A different variety labeling methods 
and tracers are available and applied in combination with 
tissue clearing and expansion in brain imaging [11, 31]. 
Among those the genetic engineering and virus transfec-
tion provide rich information for the neuron labeling on 
animal models [9, 11, 32–34]. Simultaneous multi-color 
labeling and tracing of neurons is enabled by the brain-
bow AAVs [35].

Nonetheless, the labeling approaches mentioned so 
far are not applicable to human-brain analysis due to the 
ethical limitations. Labeling neurons by injecting dye, 
plasmid, or other markers into neurons is considered a 
powerful method in this regard. Despite the limitations 
to access long-range projections, dye injection in combi-
nation with surgery biopsies enables the investigation of 
human neurons of various cell types and from different 
brain regions based on local morphologies. To do so, the 
markers need to be injected into the cell body and trans-
ported to the axon terminals, for example, by alternative 
injection method, pressure injection or iontophoretic 
injection [36]. This provides a good way to target neu-
rons of interest with sparsity, flexibility and specificity. 
Yet the procedure is very tedious, time consuming, and 
requires well-trained personnel. ‘Smart’ systems have 
been reported to automate and speed up the procedure. 
For instance, the ‘SmartACT’ was able to automatically 
guide the pipette to target the cell [37]; the automation 
was achieved for steps of pipette calibration, the target 
cell body targeting and the control of pipette movement 
in ‘Autopatcher IG’ [38]; A robotic system was applied to 
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fill and move the pipette, and to break in the neuron cells 
[39]. Lately, a deep-learning based system was built up 
to detect and guide the pipette to approach, attach and 
break-in the neuron cells in vitro [40].

Following the sparse labeling, tissue clearing aims to 
change the optical properties of tissues to increase the 
penetration depth of optical imaging [12–14]. This can 
be achieved typically by replacing the lipid and water 
content of the tissue with a medium that has a refrac-
tive index matching the cellular content [12, 13]. In 
combination with light sheet microscopy, tissue clear-
ing is playing a growing role in brain-wide imaging. 

Tissue expansion adopts the swellable polyelectrolytes 
to separate closely locating biological components [13, 
41–43]. It is compatible with many labeling and clear-
ing approaches and allows for nanoscale imaging with 
conventional microscopes. The spatial resolution of 
optical imaging can be substantially improved in this 
way. While tissue clearing and tissue expansion both 
are demonstrated successful in neuroscience, their 
performance is a mixture effect of the properties of 
samples and the imaging setups. To design and opti-
mize the protocols for a specific study is pretty diffi-
cult and no smart systems, to our best knowledge, are 
adopted so far for these procedures. Yet we kindly refer 

Fig. 1  Key components to build up a smart imaging system in brain-wide neuroscience at single-cell level
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to literatures [42, 44] in which critical guidance is pre-
sented with the pitfalls and approaches to optimal tis-
sue clearing and expansion.

3 � Optical microscopy
In combination with the labeling approaches, optical 
imaging makes up one of the most important toolsets 
in neuroscience, with unique advantages of spatial reso-
lution to other imaging modalities (Fig.  2) [45]. Optical 
imaging has witnessed multiple technical innovations 
(see Table  1) [45–47] and is continuously empowered 
by structured light illumination [48], digital scanned 
LSFM [49], Lattice LSFM [50, 51], 2P-LSFM [52], etc. 
Many other techniques are reported as well, for instance, 
to speed up via the extended depth of field microscopy 
(EDOF) [53–55] or the customized chips [56–58], to 
improve the spatial resolution via the acousto-optic 

modulators or spatial light modulators [59, 60], to 
improve the axial accuracy via the depth sensors [61], to 
compensate the brain movements with the acousto-optic 
lens (AOL) 3D random-access pointing and scanning 
[62]. Aside from these hardware adaptions, AI techniques 
are vastly adopted to automate and speed up the imaging 
procedure as well as to improve the imaging quality [63–
68]. For instance, to automatically adjust the illumination 
at real-time and minimize the need of imaging param-
eters tuning [64], to correct the aberrations using wave-
front sensing method [65], to tackle the defocusing of the 
light sheet microscope with adaptive refocusing method 
[68]. In addition, content-aware imaging [63, 69, 70] and 
stitching [71, 72] are developed to suppress sample deg-
radation, speed up the imaging, and enlarge the sample 
coverage. These advances have laid solid foundation for 
optical microscopy to be applied and adapted for brain-
wide imaging with single-cell resolution, as is summa-
rized in the following.

To be applied in neuroscience, many efforts were 
made for a good balance between resolution, large vol-
ume and speed. In combination with sparse labeling 
and physical sectioning, the block-face systems ena-
bled the 3D mapping of individual neurons across brain 
areas [83]. In particular, the micro-optical sectioning 
tomography (MOST) achieves sub-micro imaging of an 
entire mouse brain [29]. Serial two-photon tomography 
(STPT) achieves high-throughput fluorescence imaging 
of entire-brain in combination with an optical section in 
50-micron-thickness tissue layers [28]. The fluorescence 
micro-optical sectioning tomography (fMOST) achieves 
micron imaging of entire mouse brain after fluores-
cent labeling and enables continuous tracing of neu-
ronal circuits [84]. In combination with two-photon 
fluorescence and an acoustical optical deflector (AOD), 
moreover, the high-throughput two-photon MOST 
(2p-MOST) system obtained entire-brain imaging of  
~ 0.32  µm × 0.32  µm × 1  µm resolution within 1  week Fig. 2  Different imaging modalities with respective to the spatial 

resolution

Table 1  Milestone innovations of imaging techniques

CLSM confocal laser scanning microscope, SDCM spinning disk confocal microscopy, 2P two-photon, LSFM light-sheet fluorescence microscopy, LFM light-field 
microscopy

Techniques Features Achievements

CLSM [73] Pin-hole structure to reject out-of-focus light Improved axial resolution for optical sectioning

SDCM [74, 75] Hundreds of pinholes arranged in spirals on an opaque disk 
that rotates at high speeds

Vastly speeds up image acquisition and reduce photon 
damage

2P microscopes [76] Intense excitation by pulsed lasers, leading to absorption of 
two or three photons at once

Improved light collection efficiency, intrinsic confocal effect, 
and penetration depth

LSFM [77, 78] Sheet-shaped excitation beam to selectively excite only the 
plane of interest

Faster imaging procedure, reduced photon damage

Multi-view LSFM [79, 80] Simultaneously record multiple views of the specimen Maximizes the sample coverage

LFM [81, 82] A micro-lens array in place of the camera Capture all voxels in a volumetric image instantaneously
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[30]. The brain-wide positioning system (BPS) adopted 
multi-channel wide-field large-volume tomography 
(WVT) and acquired both labelled neural structures and 
cytoarchitecture reference in the same brain simultane-
ously [16]. The BPS system allows for precise localization 
of individual neurons and it takes 3  days for the entire 
brain imaging with ~ 0.32  µm × 0.32  µm × 2  µm resolu-
tion. Lately, a significant improvement in the penetration 
depth and background suppression was achieved in the 
HD-fMOST system via a line-illumination modulation 
(LiMo) technique [85]. In addition to the block-face sys-
tems, light sheet illumination shows unique advantage 
of high imaging throughput. Based on the light sheet 
microscopy, the entire-brain imaging at cellular reso-
lution is achieved within a few hours for mouse brains 
[86, 87] and 100 h for monkey brains [17]. In combina-
tion with online image analysis, the sparsity property of 
neuron structures is highly implemented to speed up the 
imaging procedure [70, 71, 88]. As a new trend, the min-
iaturized imaging setups are being developed to bring 
new chances for in vivo brain science [89].

4 � Image preprocessing
Optical imaging is a mixture result of the optical prop-
erties of the sample and the setup. The influence of illu-
mination, detector, lenses, etc. can introduce unavoidable 
yet significant contaminants into the raw images. Remov-
ing such destructing sources is one of the major tasks for 
image preprocessing. To this end, many image enhance-
ment methods were developed, varying from filtering 
and rescaling to image transform, to achieve the aims of 
denoising [90–92], uneven illumination correction [93–
96], deconvolution [97–99], etc. Many of the approaches, 
however, are not directly applicable to brain and neuron 
images, which contain rich tubular structures. In this 
regard, different approaches were proposed using the 
features of tubular structures characterized either by the 
eigenvalues of the local gradients or by the response of 
multi-directional filters [100–103]. The content-aware 
neuron image enhancement (CaNE) method [104], in 
particular, employed the properties of tubular structure 
in combination with the gradient sparsity of the neuron 
images. In addition, based on the sparsity of the neu-
rites signals, the image enhancement was achieved by 
removing the background signal resulting from auto-
fluorophores and substantially improved the subsequent 
neuron tracing [105].

Stitching is another task of image preprocessing 
encountered in brain imaging. Considering the large 
volume of brains and typically long-range projection of 
a neuron, imaging of multiple tiles and mostly also mul-
tiple tissue stacks is needed to get complete features of 
interest. This produces terabyte- and even petabyte-sized 

data sets comprised of many unaligned volumetric image 
tiles. Stitching is desired to reconstruct a complete volu-
metric image for further analysis. Therein, the globally 
optimal placement of image tiles is determined according 
to pre-defined quantities, such as the normalized cross-
correlation and mutual information. For brain-wide 
imaging, approaches have been proposed particularly 
to deal with the massive data volume, including TeraS-
titcher [106] and BigStitcher [107] for overlapping tiles, 
and the custom software for non-overlapping tiles [17, 
108]. Specifically, instead of stitching the image tiles, the 
NeuroStitcher proposed a way to assemble the neuron 
fragments after the neuron tracing from individual image 
tiles [109].

Another issue for image preprocessing comes to the 
re-slicing/reformatting to support the processing of large 
data volume. Herein the complete data volume is refor-
matted as blocks and mostly with hierarchical resolu-
tions. The three typical data structures developed for 
this aim are depicted in Fig.  3 [110]. Therein the Tera-
Fly [111] combined the pyramid image organization 
with the ‘mean and shift’ strategy to create smooth 3D 
exploration similar to ‘Google-earth’. The BigDataViewer 
[112] adopted caching mechanism for faster image read-
ing. The TDat [110] read only cuboid data to control the 
memory consumption and sped up the data reformatting 
via distributed computation.

Last but not the least, registration is desired to align 
the entire-brain images from their respective coordi-
nates to a standard brain space. This enables cross-brain 
and cross-modality analysis, as well as the analysis rela-
tive to brain regions and projection patterns. A common 
coordinate framework (CCF) for the mouse brain, in this 
regard, was built by co-aligning 1675 individual whole-
brain data sets from STP tomography [113]. There 43 
cortical areas, 330 subcortical gray matter areas, 82 fiber 
tracts, and 8 ventricle and associated structure volumes 
were all delineated natively in 3D. Registration meth-
ods were vastly investigated to map different brain data 
onto the reference atlas, including aMAP [114], Clear-
Map [115], qBrain [116], WholeBrain [117], SyN [118], 
etc. The procedure typically involves features/landmarks 
detection and image transformation [119]. As simple as it 
sounds, however, challenges exist, especially for the land-
mark detection, considering the variations in brain anat-
omy and intensity diversity caused by different sample 
preparation and imaging procedures. For this reason, a 
coherent landmark mapping (CLM) method was adopted 
to coherently deform the landmark points in the target 
image to find their best matches in the reference image 
[120]. The robustness of the registration is enhanced tak-
ing into consideration the brain regions segmented by a 
deep neural network. Nonetheless, the registration still 
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requires semiautomatic refinement. Automatic registra-
tion, especially for TB- and PB-scale data is still an issue 
to conquer.

5 � Data mining
The aim of data mining is to extract information of inter-
est from the image data and to finally draw biologically 
meaningful conclusions. In the field of neuroscience, and 
for the investigations of neuron circuits and connectivity 
in particular, major tasks of data mining include the neu-
ron tracing and morphology analysis.

The shape of a neuron both determines and is con-
strained by its function and connection with other 
neurons. To understand and analyze the neuron mor-
phologies hence plays a fundamental role in neurosci-
ence. Neuron tracing is a critical step in this perspective 
[121–123]. It aims to create a digital reconstruction of 
the soma, dendrites, axon, and other sub-cellular compo-
nents (e.g., spines, boutons, etc. [124, 125]) of a neuron. 
The traced neuron morphology are typically represented 
as a connected tree with the soma as the root and saved 
as SWC files, where each row gives the type, coordinates, 
radius/diameter, and parent of a node. Promoted by the 
DIADEM challenge [126], considerable efforts were made 
over the past years for automate neuron tracing with the 
aims to improve the speed, accuracy and reproducibility. 
Existent algorithms are normally composed of the ele-
mental procedures including skeletonization [127, 128], 
seed generation [129], graph algorithms [130], deform-
able curves [131], image transforms, such as gradient 
vector field [127, 130], or learning-based approaches with 
annotated training data [129, 132]. Specifically, the trac-
ing can be either obtained according to the information 
of the whole image [127, 133], or by exploring the image 
within the neighborhood of relevant structures [134, 

135], categorized as global and local methods, respec-
tively. On top of the basic algorithms, mechanisms are 
also introduced for the large-scale neuron tracing, such 
as the TReMap [136], UltraTracer [137], G-Tree [138], 
etc. A comprehensive summary of existent algorithms 
is available from ref. [123]. With the goal to “define and 
advance the state of the art of single neuron reconstruc-
tion, develop a tool-kit of standardized reconstruction 
protocols, analyze neuron morphologies, and establish a 
data resource for neuroscience”, the BigNeuron project 
[20] was jointly launched by several well-known brain 
research institutions. Therein numerous algorithms 
[130–132, 136, 139–142] were collected and evaluated 
with the ultimate goal to reach standard and unambigu-
ous neuron tracings. Nonetheless, the automatic neuron 
tracing is still far from sophistication. It is hardly possi-
ble to trace single neurons without any human interven-
tion at current stage. Manual inspection and correctness 
are always necessary post automatic tracing to remove 
errors, such as missing arbors, loops, trifurcations, etc. 
Last but not the least, the correctness of a neuron recon-
struction is hard to justify considering the varying signal-
to-noise ratio or the inadequate spatial resolution of the 
imaging.

Following the neuron tracing, to comprehensively ana-
lyze the traced morphometry data is critical to unravel 
the spatial properties of neurons and networks at mul-
tiple scales and to understand the mechanisms behind 
the nervous systems [143–145]. Many techniques have 
been developed for this aim [146, 147]. Among those 
the morphological grouping has been vastly applied, 
with the support of many similarity analysis [148–150] 
and clustering methods, such as UMAP [151], K-Means 
[152], and HCA [153]. In particular, morphological fea-
tures such as L-measure were defined to quantify the 

Fig. 3  Principles of different data reformatting. BigDataViewer: the green blocks in the original space represent the data to be loaded into memory. 
One slice is read into memory once and cached. TDat: after recursively down-sampling the original data, only a CUBOID is read into memory and 
split into 3D blocks. Vaa3D-TeraFly: the data is read once and transformed in to multi-resolution (adapted from Ref. [110])
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morphological properties of neurons [154]. This in com-
bination with machine learning and statistical analysis 
has been applied in cell typing, cross-brain-areal cor-
relation analysis, etc. [3, 155–157]. With the help of a 
standard brain space, moreover, neurons were also clas-
sified according to the projection patterns [158]. Fur-
thermore, a sequence representation was proposed to 
characterize the topologies of a neuron and successfully 
used for neuron classification [159, 160]. As a growing 
trend, the morphological analysis is being combined with 
other data modalities such as genomics to achieve better 
understanding in brain functions, such as cross-species 
comparison [161]. Nonetheless, the morphological analy-
sis is still in its infancy. How to characterize the morphol-
ogy remains to be a key bottleneck. There is a long way 
to adopt more techniques from statistics and machine 
learning.

6 � Tools, platforms, and database
The advances of smart systems largely benefited from the 
open-source tools and platforms, which have enabled 
researchers to reuse existing techniques and easily scale 
up or develop custom analysis strategies. This is not lim-
ited to the many programing libraries such as VTK, ITK, 
and OpenCV for general image analysis and Caffe, Keras, 
Tensorflow, PyTorch, and Theano for deep learning [162, 
163]. Integrated platforms are also being developed [164–
169] to lower the barrier of data analysis. Their featured 
functions and URLs are listed in Table 2. Along with the 

commercial software including Amira [170], Imaris (Bit-
plane Scientific Software), Neurolucida [171], and Image 
Pro (MediaCybernetics), these platforms have enabled 
the biologists and neuroscientists to conduct data analy-
sis in an easier and more friendly way. In particular, the 
trees toolbox [172] provides a great platform for mor-
phological analysis of individual neurons in isolation. The 
Natverse [173] was reported as a suite of R-packages for 
large-scale neuronal data processing, including the func-
tions from local/remote data import, visualization, data 
transformation across template spaces, clustering and 
graph-theoretic analysis of neuronal branching. Vaa3D as 
a platform of big biological data analysis and computation 
has involved the many functions of data annotation, visu-
alization, registration, neuron reconstruction and mor-
phological analysis, etc. [111, 174, 175]. Tools for massive 
data storage, visualization, annotation, and indexing 
are being constructed worldwide as well. Additional to 
the hierarchical data structures of BigDataViewer [112], 
TeraFly [111] and TDat [110], for example, the Open 
Microscopy Environment’s Remote Objects (OMERO) 
and the Bio-Image Semantic Query User Environment 
(BISQUE) [176, 177] are constructed to facilitate the data 
annotation and content based data searching. Tools such 
as VirtualFinger [178], TeraVR [175], etc. boost the man-
ual neuron tracing, data annotation and proofreading by 
creating an intuitive and immersive environment. Addi-
tional to these software platforms, public data reposi-
tories are being released with collective efforts over the 

Table 2  Typical open-source platforms for data processing

Software Featured functions URL

ImageJ [180] Multi-purposed tool for image visualization and analysis; rich user-developed 
plugins

https://​imagej.​nih.​gov/​ij/

BioImageXD [181] 2D and 3D analysis; immersive visualization of multidimensional data http://​www.​bioim​agexd.​net/

Icy [182] Visualize, annotate, and quantify 2D and 3D bioimaging data http://​icy.​bioim​agean​alysis.​org/

FarSight Display results derived from segmentation, tracking, feature extraction; build 
connections between these results and the raw data

http://​farsi​ght-​toolk​it.​org/

FluoRender [183] Data visualization and analysis; support multi-channel volume data and poly-
gon mesh data rendering

https://​github.​com/​SCIIn​stitu​te/​fluor​ender/​relea​ses

BisQue [177] Server-based platform for image sharing, analysis, visualization, and organiza-
tion

https://​bioim​age.​ucsb.​edu/​bisque

Trees toolbox [172] Edit, visualize and analyze neuronal trees; neuron reconstruction; generation 
of synthetic neuron morphologies

http://​www.​trees​toolb​ox.​org

GTree [138] System for brain-wide neuron tracing and error-screening https://​github.​com/​GTree​Softw​are/​GTree

Lychnis [17] 3D neuron tracing, interactive visualization and annotation https://​doi.​org/​10.​1038/​S41587-​021-​00986-5

Vaa3D [174] Registration; real-time visualization and analysis of large-scale multidimen-
sional data; (brain-wide) neuron reconstruction; content extraction and 
annotation directly in 3D; rich user-developed plugins;

http://​www.​vaa3d.​org/

Natverse [173] Local/remote data import, visualization, data transformation/registration, 
clustering and graph-theoretic analysis of neuronal branching

https://​natve​rse.​org/

SNT [184] Neuron tracing, proof-editing, and visualization; Morphological quantifica-
tion and modeling

https://​github.​com/​morph​onets/​SNT

https://imagej.nih.gov/ij/
http://www.bioimagexd.net/
http://icy.bioimageanalysis.org/
http://farsight-toolkit.org/
https://github.com/SCIInstitute/fluorender/releases
https://bioimage.ucsb.edu/bisque
http://www.treestoolbox.org
https://github.com/GTreeSoftware/GTree
https://doi.org/10.1038/S41587-021-00986-5
http://www.vaa3d.org/
https://natverse.org/
https://github.com/morphonets/SNT


Page 8 of 14Guo et al. Brain Informatics            (2022) 9:10 

world. The recently released database Morphohub [179], 
for example, enables the petabyte-scale multi-modal 
morphometry data storage, sharing, and analysis [179]. 
Image databases in the field of brain and neuroscience are 
summarized in Table 3, covering the various species from 
mouse to human and non-human primates. With the 
growing awareness to share and document data, public 
database starts to play a critical role for the development 
and validation of a new method as well as the comparison 
between different analysis methods.

7 � Growing trends
The last two decades witnessed the prosperity of deep 
learning in biological data analysis and neuroscience, 
under the support of the variety of network architectures. 
Among those the convolutional neural network (CNN) 
and recurrent neural network (RNN) are the most com-
monly used. In general, CNNs are mostly employed for 
image analysis and computer vision, while RNNs are 
more applied in time-series problems. Many networks of 
these two kinds were developed in the past several years: 
the AlexNet [191], ResNet [192], Inception [193, 194], 
DenseNet [195], VGG [196], DCGAN [197], GoogleNet 
[198] for CNN and LSTM [199], Bi-RNN [200], and GRU 
[201] for RNN. Typically, CNN is composed of a series 
layers including convolution (followed by activation and 
normalization), pooling (for sub-sampling), and fully 
connected layers (Fig. 4a). The flatten and fully connected 
layers are removed in full convolution networks (FCN), 
which is particularly useful if the size of input data var-
ies from time to time. ResNet as a typical CNN is made 
up of residual blocks (Fig.  4b), where a skip connection 
is adopted to deal with the gradient vanish problem and 
hence enables to train deeper networks. The LSTM as a 
typical example of RNN consist of the blocks of memory 
cell state (Fig.  4c) that are regulated by the input, for-
get and output gates. This helps to retain knowledge of 

earlier states and partly addresses the problem of vanish-
ing gradients.

Deep learning brings vast opportunities. Image pre-
processing is more and more achieved via deep learning 
[202]. For example, the CARE [203] for super-resolution 
wide-field images [204, 205] and the VCD on a light-field 
microscopy for artifact-free volumetric imaging with 
uniform spatial resolution at video-rate [206]. Unsu-
pervised networks such as N2V [207], PN2V [208], 
Noise2noise [209, 210], Noise2Self [211] and Cyclegan 
[212] have shown to compete the supervised networks 
in denoising tasks. Promising results of deep learning 
are demonstrated for registration [120, 213, 214]. 3D 
segmentation is well achieved via 3D neural networks, 
such as CDEEP3M [215] and Cellpose [216]. Rapid 3D 
neuron tracing was achieved via the circulating neu-
ral network based on flood algorithm for the 3D image 
segmentation [217]. The networks of DeepNeuron [218] 
and SmartTracing [132] were proven promising in neu-
ron reconstruction. The advances in natural language 
processing and the networks such as transformer [219, 
220] along with the sequence representation [159, 160] of 
neuron morphologies has provided promising approach 
to cell typing particularly for full-neuron-morphology 
classification.

Cloud computing is another product of the fast advanc-
ing computational resources and internet [215, 221]. It 
allows a user to access and share data, applications, and 
infrastructures from a remote location. The most popular 
cloud services are Software as a Service (SaaS), Platform 
as a Service (PaaS), and Infrastructure/Hardware as a 
Service (IaaS/HaaS), with varying need of user manage-
ment (see Table 4) [222]. With SaaS, the users are able to 
access software via a browser from the third-party pro-
vider without complex installation or hardware manage-
ment. The PaaS provides platforms on the server so that a 
user can develop web applications without installing any 

Table 3  Open database in neuroscience, which contains multiple species as highlighted in bold

Database Description Data type

Allen Brain Atlas [185] Atlas, stained sections from mouse and human brains indicating development and gene expression Images

BrainMaps [186] Atlas, high resolution stained sections from brains of 14 species including human and NHP Images

Brain Biodiversity Bank 
(brains.anatomy.msu.edu/
museum/brain)

Atlas, stained sections and MRI images from brains of human and 62 other species Images

Cerebellar Development 
Transcriptome Database 
[187]

Atlas, stained sections from mouse brains indicating cerebellar development and gene expression Images

Whole Brain Atlas [188] Atlas, structural MRI images and PET images of human brains Images

Mouse Brain Library [189] Atlas, stained sections from mouse brains Images

Neuromorpho [190] 3D models of neurons from human, rat, mouse, monkey, and others Images and 3D data



Page 9 of 14Guo et al. Brain Informatics            (2022) 9:10 	

tools. The IaaS means the provider shares the IT Infra-
structure to users, which releases the need to purchase 
and maintain the infrastructure.

The cloud-computing has made life much easier for 
data sharing, annotation and analysis, with smoother 
multi-user interaction and cooperation in remote and 
worldwide [222]. Moreover, server-based platforms have 
lowered the barriers of model construction, distribution 
and re-training. For example, cloud-based deep neural 
networks are being developed to release the users from 
the tedious configurations of deep learning environment 
[215]. The interactive machine learning platform ‘ilastik’ 
efficiently combines the annotation and model training; 
it thus allows to begin the model training with a small 
amount of annotated data and add more annotations 
interactively over the training steps [223]. A server-less 
web application ‘imJoy’ works across different systems 
and on both desktop and mobile devices [224]. It pro-
vides an easy-to-use data analysis tool that allows visuali-
zation, classification, deep learning, etc. All functions are 

Fig. 4  Building blocks of a CNNs, b ResNet, and c LSTM

Table 4  Need of user management in different models of cloud 
computing

SaaS PaaS IaaS

Applications No Yes Yes

Data No Yes Yes

Runtime No No Yes

Middleware No No Yes

O/S No No Yes

Virtualization No No No

Servers No No No

Storage No No No

Networking No No No
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provided as independent plugins that can be built using 
different programming languages. The ‘NeuroCAAS’ is 
constructed as a cloud-based platform for the data analy-
sis in neuroscience [221]. Through the drag-and-drop 
interface, users can simply choose and configure the 
algorithms available from the platform. The requested 
analysis is then automatically deployed as a ‘blueprint’ 
and performed by the platform. Taking advantages of all 
these techniques, a ‘laboratory as a server’ could not be 
far away, in which researchers can control and share the 
imaging equipment from remote. All such cloud-based 
platforms together will bring vast opportunities to facili-
tate artificial intelligence and smart systems, and further 
promote our exploration of brain-wide neuroscience at 
single cell level.

Last but not the least, the technologies discussed so 
far are being increasingly combined into integrated sys-
tems to play a larger role than they can do individually. 
Therein, the computational technologies, resources and 
internet are considered the muscles and blood vessels on 
top of the hardware skeletons to smoothly combine data 
acquisition, management and analysis [17]. With minimal 
human interruption, such integrated systems can intrin-
sically minimize human errors and improve the through-
put. In addition, the closed loop from data acquisition 
to analysis helps largely to improve the performance of 
a system. More importantly, an integrated system shows 
collective wisdom from experts of multiple disciplines 
(e.g., neuroscientists, physicists, computer scientists, 
etc.) and worldwide to ensure ‘optimal and correct’ out-
put of the system. With carefully designed pipelines, 
therefore, integrated systems are to become another 
trend in the current era of big science and play an essen-
tial role in brain research. With modules such as optical 
sectioning, image acquisition, data reconstruction and 
analysis, etc. all combined together, the past years have 
witnessed several integrated systems being developed 
for brain research [16, 17, 87, 88]. This has led to many 
exciting discoveries and particularly leveraged the studies 
on NHP and human brains [1, 2, 17]. With continuously 
advancing AI technologies, we expect more smart inte-
grated systems being established to push brain research 
towards a new milestone.

8 � Conclusions
To conduct brain-wide imaging at single-cell resolution 
for non-human primates and humans has become an 
important task in neuroscience. This is expected to pro-
duce similar discoveries as it was for rodents and finally 
lead to deeper understanding of the structures and con-
nectivity of human brains. High-throughput imaging sys-
tems are in urgent demand considering the large brain 
sizes. Smart systems empowered by AI techniques and 

computational resources show huge potential to this end. 
In this review, we investigated the AI techniques that 
have been or can be applied in neuroscience, ranging 
from the tasks of sample preparation, image acquisition 
and analysis. We also discussed the software tools and 
database that can facilitate the development of AI tech-
niques and smart systems. By absorbing more AI tech-
niques and taking advantages of the super computational 
resources, such as deep learning and cloud computing, 
apparently, the smart systems supporting ‘super’ high-
throughput imaging and scalable massive data processing 
will certainly play an invaluable role for neuroscience to 
reach deeper and broader knowledge on brain structures 
and connectivity.
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