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Hemorrhagic fevers (HF) resulting from pathogenic arenaviral infections have traditionally

been neglected as tropical diseases primarily affecting African and South American

regions. There are currently no FDA-approved vaccines for arenaviruses, and treatments

have been limited to supportive therapy and use of non-specific nucleoside analogs,

such as Ribavirin. Outbreaks of arenaviral infections have been limited to certain

geographic areas that are endemic but known cases of exportation of arenaviruses from

endemic regions and socioeconomic challenges for local control of rodent reservoirs

raise serious concerns about the potential for larger outbreaks in the future. This

review synthesizes current knowledge about arenaviral evolution, ecology, transmission

patterns, life cycle, modulation of host immunity, disease pathogenesis, as well as

discusses recent development of preventative and therapeutic pursuits against this group

of deadly viral pathogens.

Keywords: arenaviruses, Lassa fever, host-virus interactions, innate and adaptive immunity, viral immunology,

viral pathogenesis, host defense

INTRODUCTION

Significant progress has been made in recent years to understand the role of modern means of
travel in inadvertently exporting deadly arenaviruses from endemic regions, the basic biology of
these viruses, their genomic evolution and modes of transmission and immune suppression, and
the disease pathogenesis for which they are responsible. A detailed level of understanding of the
viral life cycle, evolution, and interactions with the host’s immune signaling pathways is necessary
in order to design effective therapeutic and preventative measures against this group of deadly
human pathogens.

ARENAVIRAL CLASSIFICATION, EVOLUTION, AND ECOLOGY

The familyArenaviridae is divided into 3 genera based on their natural hosts—Mammarenaviridae,
Reptarenaviridae, and Hartmaniviridae that include viruses infecting mammals, reptiles, and fish,
respectively (1, 2). Mammarenaviridae are further classified into the regions of their origins, such
as the Old World (OW) viruses found in West Africa (3–9) and the New World (NW) viruses
found in South America (5, 10–17), which are believed to have originated <23,000 and 41,000
years ago in those continents, respectively (18) (Figure 1). Additionally, several NW arenaviral
strains have been discovered in the United States, which are suspected to potentially cause human
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FIGURE 1 | Taxonomy and location of arenaviruses. The phylogenetic tree for OW and NW arenaviral strains and their geographic locations. Tree was generated from

full-length genomic sequences for the L polymerase protein aligned by Clustalw analysis. Asterisks designate strains that cause natural human diseases, whereas

hashtags designate strains that can cause laboratory-acquired diseases in animals.

disease (19, 20). The OW and NW subgroups are polyphyletic
and contain both human-pathogenic and non-pathogenic viral
strains, with 10 strains in total known to cause human diseases
(21). Unlike other hemorrhagic fever viruses, such as the Ebola
virus (EBOV), arenaviral transmissions to humans have been
found primarily as a result of human interactions with the
rodents as the natural reservoirs of these viruses, as has been
directly observed as recently as the 2017–2018 Lassa virus
outbreak in Nigeria (9). However, human to human transmission
may play a larger role in certain viral outbreaks, such as a 2014
outbreak where strains across larger geographical areas were
found to cluster closely together (22).

This transmission model presents an interesting challenge for
determining the evolutionary history of arenaviruses. As with
many zoonotic viruses that follow a co-speciation pattern to allow
for infection of new hosts, arenaviruses have been previously
thought to have originated in Asia along with the earliest rodents
and later spread to Europe, Africa, and the Americas alongside
the spread of the rodents (23, 24). However, arenaviral and
rodent host phylogenetic trees almost never perfectly match
(25) and some models result in rodent hosts that are randomly
integrated into the arenaviral phylogeny (26). Additionally,
only the Lymphocytic Choriomeningitis Virus (LCMV) has
been found to circulate among European rodents (18, 27–30),
but titers against LCMV have been found in human subjects
worldwide (31, 32), suggesting that rodents and potentially other

hosts for LCMV are more widespread than previously thought.
Recent studies have revealed that LCMV can be isolated from
ticks in the Ukraine (33) and in China (34) (though the low
numbers of positively infected sample specimens and unknown
capacity of LCMV to infect insect cells raise some doubts about
ticks being a true reservoir rather than an intermittent viral
carrier). Arenaviral evolution, therefore, may be more reflective
of their adaptation to the available hosts based on geographic
constraints (9, 18).

Local host adaption of arenaviruses is further evidenced by
recent insights into diversity of arenaviruses in reptilian and
marine hosts. The full genomic sequences have been determined
for three reptarenaviruses isolated from boa constrictors and
annulated tree boas: the CAS virus (35), Golden Gate virus
(35) and University of Helsinki virus (36), necessitating the
addition of the genus Reptarenaviridae into the Arenaviridae
family in 2015 (1). These three reptarenaviruses have been
found to be causative agents of Inclusion Body Disease (IBD),
a fatal condition in snakes characterized by neurological
abnormalities (37, 38), large eosinophilic aggregations inside
infected cells (37–40) consisting of a 68 kDa protein (39)
thought to be reptarenaviral nucleoproteins (NPs) (36, 41) and
the primary source of lethality being secondary infections (38–
40). Preliminary evidence has indicated that reptarenaviruses
might have specifically adapted to boa constrictors, with viral
replication being optimal at the reptilian 30◦C and attenuated
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when grown at the mammalian 37◦C condition (41), and infected
boa constrictors having decreased rates of IBD and increased
chances of becoming asymptomatic viral carriers than other
snake species despite a high viral load (37, 38, 42). Like rodent
reservoirs, reptarenaviruses have also been found to transmit
vertically (43). Whereas, the genome of mammarenaviruses are
bi-segmented with a small (S) segment and a large (L) segment,
those of the reptarenaviruses are potentially more complicated,
with some infected snakes carrying up to 4 different S segments
and 11 different L segments per individual (44). Further
adding to arenaviral genome diversity is the recent discovery
of two new arenaviruses infecting ray-finned fish (2) with tri-
segmented genomes, making them a potential intermediate
between arenaviruses and their close “cousin” virus, the tri-
segmented Bunyaviridae family found widely in arthropods (2,
45) that can also cause severe and lethal hemorrhagic infections
in humans.

The focus of this article is on the OW and NW
mammarenaviruses. Phylogenetically, changes in the viral
polymerase of the mammarenaviruses may be more associated
with older adaptive events dating to the speciation of NW
arenaviruses (18), while more current adaptation, at least with the
OW Lassa virus (LASV), appears to more prominently associate
with the viral surface glycoproteins (46). This observation is
recapitulated when comparing the genetic similarity of the
four arenaviral proteins (Figure 2). The arenaviral polymerases
have less homology between OW and NW viruses as well as
among OW and NW strains compared to the other 3 arenaviral
proteins, suggesting an earlier genetic divergence. A recent report
further supports this observation by noting that a reassorted
virus containing the S genomic segment that encodes the viral
glycoprotein (GP) and nucleoprotein (NP) from the known
virulent LASV Josiah and the L genomic segment that encodes
the viral polymerase (L) and matrix protein (Z) from the known
less virulent 2015/Liberia LASV strain retained the disease
pathogenicity in guinea pigs (Figure 3). In contrast, another
reassorted virus carrying the viral GP and NP from the 2015
Liberian strain was severely attenuated (47). Taken together, this
suggests that earlier adaption to a geographically available host
required fundamental changes to the internal viral proteins, such
as the L polymerase, while more recent evolution is driven by
optimizing viral entry efficiency and immune evasion mediated
by viral GP and NP, respectively. The concept of viral proteins
mediating host immune evasion will be discussed further below.

DISEASE TRANSMISSION AND SOCIAL
IMPLICATIONS

Mammarenaviruses enter their hosts by inhalation of air-
borne viral particles or by eating and/or drinking virus
contaminated food or water, respectively. The social structures
of arenavirus endemic regions present a particular challenge
for viral containment with this transmission model. Homes
are often open-air spaces and contain small spaces for rats
to cohabitate with humans when built from locally available
materials. As a result, rodent reservoirs move easily from home

to home (48) and previous surveys have found significant
numbers of homes containing rodent reservoirs and instances
of contact with rodent or rodent waste products, particularly at
night when the activity of rodents is at its highest level (49).
Rice is often the stable crop in endemic areas (particularly in
western Africa), which is typically grown in fields or low-lying
swamps that encourage rodent habitation (50). The challenges
presented by the educational and communication infrastructure
in endemic regions also prevent optimal disease control, with
a recent survey finding that 76% of residents in a Nigerian
urban town had inadequate knowledge of Lassa fever and 51%
had poor control practices (51). Practices such as hunting
rodents for food and for use in sacrificial ceremonies have also
been documented to increase risks for infection (50). Future
measures of disease prevention will not only need to focus
on enforcing individual habits of rodent control, but also on
encouraging larger political and incentive policies conducive to
foster sensible habits (52, 53) and infrastructural building, as
diagnostic laboratory capable of carrying out viral genomic PCR
to detect arenaviral infections is often not available in endemic
regions (54–56). Computational modeling of regions at risk
of arenaviral pandemics will also continue to be necessary as
predictive/preventive measures (53, 57–60).

Several modeling studies have indicated that several African
regions in close proximity to current endemic regions are at
serious risk for arenavirus spread (53, 57, 58), and new reservoirs
for human pathogenic arenaviruses are continuing to be found,
adding to the potential for interregional spread (61). However,
the biggest factor in restricting arenaviral pandemics appears
to be a strong inter-species host transmission barrier (62).
Current models suggest about 10% of rodents in endemic areas
are seropositive for local arenaviruses, and that rodents clear
the virus in a time period significantly shorter than their life
span to produce antibodies (63, 64) with some preliminary
evidence suggesting that anti-arenaviral antibodies may have a
small correlation with decreased survival and increased rodent
capture (65).

There is increasing concern about the potential for
arenaviruses to spread across regions and initiate worldwide
pandemics. LASV remains the only documented arenavirus to
be imported by travelers who have visited endemic regions
for a variety of reasons (Supplemental Table 1). While
most documented cases occurred prior to 2000 (66), more
recent cases of Lassa fever importation have been reported
in the United States [Pennsylvania (67), Minnesota (68),
and Georgia (69)], Ghana (70), Sweden (71), and Germany
(72, 73). A common theme among these cases is that, while
no secondary infections as of yet have been documented, an
intermittent period of remission between initial treatment
and reemergence of symptoms presents a potential risk for
protracted disease and transmission (74). A salient fact that
arenaviruses also have the potential to be used as biological
weapons (75, 76) is of particular concern for endemic regions
that are engaged in constant political and military conflicts
(77). Human-to-human transmissions, although are rare
occurrences, have been documented through the use of
contaminated medical instruments in standard and specialized
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FIGURE 2 | The L RdRp polymerase exhibits the least conservation among the arenaviral proteins. Full-length protein coding sequences from arenaviral strains were

aligned by Clustlw analysis, and the matrix for pair-wise score similarity (# of shared amino acid residues/alignment length*100) was converted into a heatmap by the

pheatmap module for R. The GenBank accession ID’s used for alignments in Figures 1, 2 are as follows: NC_010249 (Allpahuayo L), NC_010253 (Allpahuayo S),

NC_010251.1 (Amapari L), NC_010247 (Amapari S), NC_010255 (Bear Canyon L), NC_010256 (Bear Canyon S), JQ717261 (CAS L), JQ717262 (CAS S),

NC_010563 (Chapare L), NC_010562 (Chapare S), NC_010252 (Cupixi L), NC_010254 (Cupixi S), NC_010759 (Flexal L), NC_010757 (Flexal S), JQ717263 (Golden

Gate L), JQ717264 (Golden Gate S), NC_005082 (Guanarito L), NC_005077 (Guanarito S), NC_007906 (Ippy L), NC_007905 (Ippy S), NC_005080 (Junin L),

NC_005081 (Junin S), HQ688674 (Lassa Josiah L), HQ688672 (Lassa Josiah S), MH888008 (Lassa 2018 pandemic L), MH887896, (Lassa 2018 pandemic S),

FR832710 (Lassa AV L), FR832711 (Lassa AV S), KF478762 (Lassa Soromba L), KF478765 (Lassa Soromba S), NC_010760 (Latino L), NC_010758 (Latino S),

AY847351 (LCMV L), AY847350 (LCMV S), NC_012777 (Lujo L), NC_012776 (Lujo S), NC_005079 (Machupo L), NC_005078 (Machupo S), NC_007904 (Mobala L),

NC_007903 (Mobala S), NC_006574 (Mopeia L), NC_006575 (Mopeia S), NC_010250 (Olivero L), NC_010248 (Olivero S), NC_010761 (Parana L), NC_010756

(Parana S), NC_006439 (Pichinde L), NC_006447 (Pichinde S), NC_005897 (Pirital L), NC_005894 (Pirital S), NC_006313 (Sabia L), NC_006317 (Sabia S),

NC_004292 (Tacaribe L), NC_004293 (Tacaribe S), NC_010702 (Tamiami L), NC_010701 (Tamiami S), KF297880 (University of Helsinki S), KF297881 (University of

Helsinki L), MG599863 (Wenling frogfish 1 L), MG599864 (Wenling frogfish 1S), MG59986 (Wenling frogfish 1M), MG599866 (Wenling frogfish 2 L), MG599867

(Wenling frogfish 2S), MG599868 (Wenling frogfish 2M), NC_010703 (Whitewater Arroyo L), NC_010700 (Whitewater Arroyo S).
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FIGURE 3 | The S segment of the Lassa virus genome is sufficient to maintain pathogenicity. (A) Using reverse genetics strategy to produce recombinant wildtype

(WT) and reassorted Lassa viruses carrying different large (L) and small (S) segments from different strains of the virus (Josiah vs. NJ2015). Viral genes: matrix Z, L

RdRp, glycoprotein (GP), and nucleoprotein (NP); IGR, intergenic region. (B) Growth kinetics of viruses listed in 2A in A549 cells and the survival curve of strain 13/N

guinea pigs subcutaneously infected with these viruses. Figure redrawn from Welch et al. (47). (C) Illustration of the genomic content of the ML29 LASV candidate

vaccine carrying the L segment from the Mopeia virus (MOPV) and the S segment from LASV.

medical procedures, such as organ transplantations (78).
As a whole, the threat of arenaviral spread and exportation
from endemic regions should be of concern for public health
considerations despite natural barriers that currently help curb
major outbreaks.

ARENAVIRAL LIFE CYCLE

Entry Mechanisms by NW and OW
Arenaviruses
Arenaviruses are enveloped, ambisense single-stranded RNA
viruses. Their structure consists of a membrane envelope
containing the surface glycoprotein (GP) subunits surrounding
a capsid, which consists of the Z matrix protein (Figure 4A).
Inside the capsid are the L RNA-dependent RNA polymerase
(L RdRp) and the viral bi-segmented genome encapsulated by
the nucleoprotein (NP). Cell entry is mediated by GP, which
is first expressed as the glycoprotein precursor complex (GPC).
The host subtilase SK1-S1P proteolytically cleaves GPC into its
three final subunits (79–81): GP1, GP2, and SSP (Stable Signal
Peptide), which form heterotrimers on the cell membrane surface
(82–84). GP1 forms spikes protruding from the viral envelope
and is responsible for interacting with entry receptors, while
GP2 is a class 1 fusion transmembrane protein by virtue of

its 6 helix domain (85, 86). SSP (87) is an unusually small,
hydrophobic and long-lived (88) signaling protein implicated
in viral fusion (89, 90), transport of the GPC complex through
the SK1-S1P containing Golgi (91) and as a GPC folding
chaperone (92, 93). While recombinant arenaviruses expressing
a SSP from a different strain are viable, recombinant viruses
expressing a non-arenaviral signal peptide are not (94), indicating
the specific adaptation of SSP for arenaviral proteins. This
observation is strengthened by work from our laboratory,
which shows that certain SSP residues attenuate viral growth
independently of cell entry efficiency, illustrating the multiple
roles of SSP in the viral life cycle that remain to be fully elucidated
(95). GP1 and GP2 also contain N-glycosylation residues at
multiple sites (96), while SSP is myristoylated (89). While the
purpose of these post-translational modifications has yet to
be described in detail, GP1/2 glycosylation has been linked to
viral protein transport (96) and SSP myristoylation has been
found to be vital for directing membrane anchor and viral
fusion (89, 90).

LASV and LCMV were first discovered to utilize α-
dystroglycan as their cellular entry receptor (97), which was
later confirmed to be the case for all OW and clade C NW
arenaviruses (98) (Figure 4B). Glycosylation of α-dystroglycan
by the glycosyltransferase LARGE is necessary for recognition
by arenaviruses (99–101), which mimics the interaction between
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FIGURE 4 | (A) Structure of arenaviral particles. (B) Comparison of the entry mechanism for OW and NW arenaviruses. (C) Timing of protein expression and RNA

replication during the arenavirus lifecycle as determined by the genomic structure.

α-dystroglycan and its natural ligand laminin (102). Regulation
of α-dystroglycan appears to be a driving genetic force in
arenaviral endemic regions, as wide-scale genomic studies have
found evidence of positive selection of polymorphisms of
LARGE and other α-dystroglycan regulatory proteins in Nigerian
populations (103–105). The C-terminal GP1 subunit directly
interacts with α-dystroglycan (97, 106–108), while the C-terminal
GP2 subunit has been found to be critical for stabilizing the α-
dystroglycan-GP complex (109, 110). Residue 260 on GP1 was
the first residue found to be important for interaction with α-
dystroglycan (98, 111–113). X-ray crystallography analysis later
identified the loop 1 structure, and specifically residues 153,
155, and 190 of GP1, to be responsible for directly interacting
with α-dystroglycan (107). Residues 260 and 136 were also
found to be critical for cell entry, but these residues were
both located up to 25 Angstroms away from loop 1. Given
that full-length GP is required for cellular entry, it is theorized
that these extra residues may facilitate cell entry by complex
and unknown mechanisms involving the full length protein
(107). Supporting this idea, residues at the trimeric interface
of the GP were recently found to also be critical for cell entry
(108), highlighting the importance of the full GP for efficient
cell entry.

The endosomal cellular protein LAMP1 has been identified
as a critical host factor for mediating a “pH-switch” mechanism
of virus-cellular membranes fusion and endocytosis of the
virion particle, which can partly explain previous observations

that chicken cell lines are among the few not able to be
infected by LASV as they lack LAMP1 expression (106, 114).
Conserved histidine residues on the GP1 subunit among
OW arenaviruses have been found to mediate recognition
by LAMP1 (108), and structural analysis has found a shift
in GP1 conformation following its interaction with LAMP1,
possibly serving as an immune cloaking mechanism (115).
Another interesting mechanism has also been proposed for
LAMP1-mediated LASV endocytosis, where LAMP1 raises the
pH threshold for acidic endocytosis, thereby increasing virus
yield by preventing deactivation of the viruses by the acidic
environment inside the endosomes (116). Additional host factors
and possible alternative entry receptors have also been identified
for entry of arenaviruses that might involve the sodium hydrogen
exchangers (117) and the phosphatidylserine receptors Axl (118)
and TIM-1 (119), which need further analyses (120). A recent
study has also found that the cellular NRP2 factor and CD63
appear to serve as substitutes for α-dystroglycan and LAMP1
to mediate entry of the Lujo virus (LUJV) (121), implicating
the conservation of similar mechanisms in other viruses as
well as the importance of conserving these mechanisms during
viral evolution.

NW arenaviruses use different cellular entry receptors
depending on their clade. Clade B NW arenaviruses that are
pathogenic in humans have been found to use human transferrin
receptor 1 (hTrf1) (122, 123) while non-pathogenic clade B
viruses use hTrf1 orthologs (124, 125). A number of other viral
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receptors and host factors have also been found to allow Junin
virus (JUNV) entry, with hTrf1 being themajor candidate cellular
receptor (123), and DC-SIGN/L-SIGN (126), voltage-gated
calcium channels (127), and proteins involved in the clathrin-
mediated pathways such as the dyn2/Eps15 endocytic pathway
(128) being possible co-factors. TRIM2 has recently been
identified in a siRNA screen as an inhibitor of NW arenaviral cell
entry by a yet undetermined mechanism (129). The receptors for
the other clades of NW arenaviruses are still unknown, though
it has been shown that the tentative clade D viruses do not use
hTrf1 (130).

Viral particles enter cells by clathrin-mediated pathways
for α-dystroglycan-independent NW arenaviruses (131), and a
clathrin-independent mechanism that involves PI3K-mediated
formation of multivesicular bodies during late endocytosis
and the ESCRT sorting pathway for α-dystroglycan-dependent
viruses (132) (Figure 4B). GP1 disassociates from the viral
particles upon exposure to acidic pH, exposing GP2 residues
prior to viral fusion (133, 134). Viral fusion then ensues,
of which the hydrophobic regions in GP2 (109, 135) as
well as the cytosolic tail (110) have been found to play a
critical role.

Viral Genome Replication, Gene
Expression, and Assembly
Replication of the viral genome occurs in the cytosol following
its release from the endosome. The viral NP and L proteins are
the minimum known components required for viral genome
replication and transcription (136–138), and the viral Z protein
is an inhibitor of the viral polymerase’s transcriptional initiation
function (137–140).

The viral genomic RNA structural elements play important
roles in the regulatory mechanisms of viral genome replication,
transcription, and gene expression. The 5′ and 3′ untranslated
regions (UTRs) of arenaviral genomes contain complementary
sequences that are predicted to form panhandle structures
and are required for effective viral RNA replication and
transcription (141, 142). Specifically, 19 nucleotides located at
the terminal 3′ UTR of the LCMV genome were found to
serve as a minimally required promoter element and that the
sequences located at the complementary 5′ UTR to form the
panhandle structure appear to be required for efficient genome
synthesis (142). Foscaldi and colleagues have reported that
the 5′ UTR of the Tacaribe virus (TCRV) appears to contain
translational stimulatory signal, whereas some sequences within
the 3′ UTR can down-regulate viral gene expression (142,
143). The intergenic regions (IGRs) fold into hairpin secondary
structures that are thought to help terminate transcription
(12, 144, 145) and to protect the unique non-polyadenylated
viral mRNA transcripts from degradation by the cellular
exoribonucleases (145). These sequences appear to have a large
tolerance for sequence variations that can be exploited for
the development of attenuated vaccine candidates (21, 146,
147). It is noteworthy that during viral genome replication,
genomic primers slip backwards from their initial binding
site, resulting in a non-templated 5′ ppGpp residue (148)

that is thought to act as a viral RNA decoy by competitively
inhibiting the viral RNA sensing by the cellular innate-immune
machinery (149). The molecular mechanisms of viral RNA
sensing and innate immune evasion strategies by arenaviruses
as well as on efforts to develop vaccines will be discussed in
detail below.

The localization of arenaviral RNAs has also been found
to be important for replication control, with both sense
and anti-sense RNAs associating with cytosolic compartments
containing viral NP and host factors involved in RNAmetabolism
(150). In this regard, recent advances in antibody-mediated
dsRNA visualization (151) as well as specific probing for
genomic and anti-genomic arenaviral RNA (152) show much
promise for elucidating the dynamics of arenaviral RNA during
the infectious life cycle. Preliminary evidence suggests that
the timing of viral RNA replication is under regimented
control mechanisms, as NP and L genes being transcribed
and translated first and directly from the negative-sense viral
genome, whereas GPC and Z are expressed several hours
later after the viral genomic RNA segments encoding these
genes have been replicated and then transcribed (152, 153)
(Figure 4C). Additionally, virally infected cells appear to amplify
viral genes in cyclical waves of expression and viral clearance,
the molecular mechanism of which is unclear (152). Future
studies in this area will include method development and
optimization in order to image RNA species at lower copy
numbers and to expand the RNA repertoire available for
targeted imaging.

After the viral RNAs are replicated, transcribed, and
translated, virion assembly ensues and is mediated by both viral
and host cellular proteins. The C-terminal domains of the viral Z
matrix protein is a central player for viral assembly, budding, and
release from the infected cells. Z-L interactions (140, 154), Z-NP
interactions (155), and Z-GP interactions (156, 157) have been
shown to ensure co-localization of viral proteins for assembly. Z
then interacts with the cellular Tsg-101 ESCRT pathway proteins
to allow viral budding process to begin (158, 159), which is aided
by a myristoylation residue at the N-terminus of Z to allow for
interaction with the cellular membrane (160, 161). Z proteins has
also been found to be capable of self-budding and the production
of the viral like particles (VLPs) in the absence of the viral RNA
or other proteins indicates that Z is both necessary and sufficient
for budding (162–165). A recent report suggests that the late
domains located in the C-terminal part of the Z protein may also
be required for the release of the so-called defective interfering
(DI) virion particles from the infected cells but not necessarily for
the release of infectious virions, a process that may be regulated
by phosphorylation of certain residues in the viral Z protein
(163). DI particles are produced by many viruses, including
arenaviruses, during infection and are similar to infectious virion
particles in appearance and protein contents but they cannot
produce productive infection (166) as their genomes contain
large and deleterious deletions (167). Such deletions have been
observed in the 3’UTR regions of the LCMV genome and
potentially elsewhere in the viral genome, but their specific
functions in inhibiting viral replication have yet to be studied in
detail (168). Arenaviruses have been found to produce high levels
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of DI particles in cell culture (169) and in animal infectionmodels
(170), and DI particles have been theorized to contribute to viral
persistence (166, 171, 172).

DISEASE PATHOGENESIS AND HOST
IMMUNE SUPPRESSION

Mammarenaviral disease profiles tend to be heterogenous (173–
176). Lassa fever, the most severe arenaviral disease, is estimated
to cause up to 300,000 cases and 5,000 deaths per year in
endemic regions of West Africa (5, 173). A recent outbreak
occurred in Nigeria has resulted in 431 laboratory confirmed
cases that include 37 health care workers and with a 25%
overall fatality rate (177–179). Previous outbreaks have recorded
lower mortality rate in hospitalized patients (180). However,
the fatality rate can be as high as 87% among infected women
during the third trimester of pregnancy (181), and maternal-
fetal transmission of arenaviruses has been demonstrated in
rodent models (64) as well as in one recent reported case in
humans (182). Many other complications arise from severe
arenaviral infections including liver (183–186) and vascular (185,
187, 188) damage, both of which have been recapitulated in
a guinea pig arenaviral animal model (189–191) as well as in
immunocompromised mice (192, 193) and a novel hamster
NW arenavirus model (194). While liver damage tends to be
highly prominent in infections by OW arenaviruses with platelet
factors and heme breakdown products as significant biomarkers
of LASV disease, hemorrhaging, and vascular damage occur

more frequently in NW arenavirus infections (195) (Figure 5).
Sensorineural hearing loss (SNHL) also occurs in 29% of the
survivors of Lassa fever (196–199) which may be attributed to
a pathogenic inflammatory response in the auditory nervous
system (200, 201). Other neurological complications have also
been reported for arenaviral infection (202, 203).

Monocytic cells such as alveolar macrophages and
dendritic cells are the earliest target for arenaviral cell
entry. However, these cells are not activated upon viral
entry, as evidenced by the lack of increase in the levels
of activating markers, such as CD80, CD86, CD40, CD54,
and HLAs as well as cytokines TNFα, IL1β, IL6, and IL12
(204, 205). For this reason, monocytic cells are thought to
act as a viral “reservoir” early in infection, where the virus
can easily enter, and virus later spreads when these cells enter
draining lymph nodes (206, 207). The failure of these cells
to become activated is consistent with the observation of the
generalized immunodepression in severely and fatally infected
individuals (208, 209). Virus replication has also been directly
observed in a number of cell types, including respiratory
epithelial cells following infection in human (210) and animal
models (211).

Studies on human and rodent survivors of mammarenaviral
infection have all indicated that proper functioning of the
immune responses (innate and T-cell mediated immunity)
are critical to minimizing viral growth rates, presentation of
symptoms, and mortality rates (209, 212). The innate immune
response is a compilation of non-specific defense mechanisms
against foreign antigens that is critical for early detection and

FIGURE 5 | Comparison of the disease phenotypes between OW and NW arenaviruses.
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inhibition of pathogen growth before the adaptive immune
response has time to produce proper cell-mediated immunity,
such as the development of antibodies and cytotoxic T-
lymphocyte responses (CTL) against the invading pathogen
and/or the pathogen-infected cells (212). Innate immunity is
enacted within a few hours of host recognition of a pathogen-
associated molecular pattern (PAMP). The most common viral
PAMPs recognized by immune cells are unique molecular
features of the viral genome, such as 5′ triphosphorylated
RNA and double stranded RNA (Figure 6). Pattern recognition
receptor proteins (PRRs), such as the RIG-I-like receptors
(RLRs) RIG-I and MDA5, are activated by PAMPs and result in
cytokine expression and the activation and recruitment of innate
immune cells such as macrophages, neutrophils, and dendritic
cells (213, 214).

RIG-I and MDA5, upon binding to PAMP dsRNAs in the
cytosol during the process of viral replication, change their
conformations from a closed to an open and activated state (215).
Activated RLRs (RIG-I and MDA5) initiate several complex
molecular cascades, including activation of the mitochondrial
anti-viral signaling protein (MAVS), which eventually results
in the translocation of transcription factors such as interferon-
regulatory factors (IRF) IRF3 and IRF7 as well as nuclear factor
kappa B (NF-kB) into the nucleus of the cells to activate the
expression of the type 1 interferons (IFN1) that include IFNα

and IFNβ, and a wide variety of interferon stimulated genes
(ISG) (216, 217). A recent study has suggested that IFNα may
be primarily involved in inhibiting viral growth in early stages
of viral infection, while IFNβ may control viral growth in the
later stages of infection (218). IFN1 is then secreted and bound
by their receptors (IFNAR) on the surface of either the same
cell or the neighboring cells, which activates the IFN signaling
cascade in a positive feedback loop to produce more of the
IFN1 and the antiviral gene products in order to confer virus
resistance (219, 220).

OW arenaviral infection (e.g., LASV) in patients with
moderate to severe symptoms is associated with inhibition of
the innate immune response with decreased levels of IFN1
and pro-inflammatory cytokines (184, 221, 222) (Figure 5).
The importance for IFN1 signaling for control of arenaviruses
appears to be conserved in mammals, as wildtype (WT) mice
do not exhibit symptoms during arenaviral infection but IFN
receptor (IFNAR) knockout (KO) mice have been found to
succumb to disease (223, 224). Additionally, in vivo infection of
non-human primates (NPHs) and guinea pigs with the LASV
Soromba strain isolated from local rodents in Mali, Africa, shows
a significant increase in cytokine signaling and decrease in
mortality compared to other LASV strains (8). Mice infected
with the OW LCMV, which is capable of maintaining persistent
infection with low levels of IFN1 signaling (225, 226), display

FIGURE 6 | Arenaviral proteins (NP and Z) inhibit the RIG-I/MDA5 and NF-κB pathways. RIG-I and MDA5 are activated by PAMP dsRNAs during virus replication and

are potentiated by PACT. Following the activation of MAVS (on the mitochondria) by RIG-I/MDA5, a molecular cascade involves the interaction of IKKε and DDX3,

which is followed by phosphorylation of the transcription factors IRF3 and IRF7 to translocate them into the nucleus, where they dimerize and bind to transcription

factor binding sites of the IFNα and IFNβ genes to activate their transcriptions. Expression and exportation of these gene products into the cellular milieu trigger the

IFN1 signaling cascade in an autocrine or paracrine fashion to induce expression of hundreds of interferon-stimulated genes (ISGs) and inflammatory genes to confer

virus resistance. The NF-κB pathway is activated by recognition of certain features of the virus particles by the membrane receptors TLR 2 or TLR 6. This initiates a

molecular cascade resulting in the translocation of the two functional NF-κB units (p50 and p65) into the nucleus, resulting in more production of NF-κB. Arenaviral

proteins (NP or Z shown in red) are known to inhibit different steps of the RIG-I/MDA5 and NF-κB pathways by either degrading the PAMP dsRNAs (through the NP

RNase function) or directly inhibiting the normal function of different cellular proteins (RIG-I, MDA5, PACT, IKKε, or p50/p65).
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an IFN1 burst 6–48 h after infection and 2–4 days before a peak
in viral titers, suggesting that IFN1 signaling is most important
for inhibiting viral proliferation in the earliest stages of infection
(209, 227). The difference between the immune responses
in rodents and humans is one of the key aspects of active
investigations. Rodent reservoirs generally do not experience
severe symptoms from OW arenaviral infections (65, 228, 229),
and mice must be immunodeficient to experience significant
symptoms. LASV infected mice also experience an early
upregulation of cell adhesion molecules in the peripheral blood
mononuclear cells (PBMCs) consistent with immune cells being
recruited to the site of infection (230). NW arenaviruses differ
from OW strains in that they tend to produce increased levels of
IFN1 and cytokines, and a pro-inflammatory response is favored
for inhibiting viral proliferation (222, 231–234) (Figure 5).
Virus-infected A549 cell cultures (235, 236) as well as fatally
infected patients (237–239) have been shown to have consistently
up-regulated levels of IFN1 and TNFα. However, macrophages
infected in vitro with NW arenaviruses fail to show this
upregulation (240).

The arenaviral NPs have been found to inhibit the RIG-
I/MDA5 pathway. The crystal structure of the LASV NP
and subsequent functional studies have revealed a 3′-5′

exoribonuclease domain located within its C-terminal domain
(241–243) that preferentially degrades dsRNA (242, 244). The
N-terminus of NP contains a unique domain that binds
ssRNA (245) and has been proposed to bind to the m7GpppN
mRNA cap structure (241). NP directly interacts with RIG-
I and MDA5 (246), and recent work from our lab has
demonstrated that NP prevents potentiation of RIG-I function
by the cellular protein PACT and that the exoribonuclease
domain of NP is required for this inhibition (247), the
molecular mechanism of which will be discussed in detail in
the next section. The exoribonuclease domain is also required
for NP inhibition of the cellular protein kinase IKKε (248)
and other cellular proteins in the IRF pathway (249, 250).
Abrogation of the exoribonuclease domain has allowed for
IFN1 expression in normally inactivated macrophages and
dendritic cells (251, 252) and subsequent activation of natural
killer (NK) cells resulting in antigen-presentation (253). The
exception to NP-mediated IFN1 inhibition appears to be Tacaribe
virus (TCRV) NP (254), which was initially thought to be
due to variance in 4 exoribonuclease residues found in this
viral protein (255). However, both structural and functional
studies have later demonstrated that TCRV NP can effectively
degrade dsRNA and inhibit the IFN1 pathway (244, 255).
These studies collectively indicate the importance of PAMP
dsRNA degradation by arenaviral NPs for inhibition of the
IFN1 pathway.

One important consideration in determining the larger role of
NP in arenaviral pathogenesis is the fact that IFN1 inhibition by
NPs is also present in strains that are not known to be pathogenic
to humans. For example, NP from the non-pathogenic Pichinde
virus (PICV) has been found to inhibit the IFN1 pathway
in human cells (254). Additionally, work from our laboratory
has demonstrated that each of the 5 exoribonuclease (RNase)
catalytic residues is necessary for IFN1 inhibition by Pichinde NP

as well as for optimal PICV growth in vitro (256). RNase domain-
mutant viruses have also been found to exhibit diminished viral
load and pathogenesis in vivo in guinea pigs (which normally
experience high lethality, develop human hemorrhagic fever-like
symptoms and support a high viral load when infected by the
P18 PICV strain), and even result in generation of WT revertant
viruses (256), implicating the important role of NP RNase
function for optimal viral replication. Altogether, the ability of
NP to inhibit IFN1 expression by degrading PAMP dsRNA is
likely conserved across known arenaviruses. As evidenced by
the tight control of gene expression and viral RNA localization
within cells, it is clear that regulation of viral RNA levels and
localization is a critical mechanism of the virus life cycle to
allow for maximum replication without being quenched early in
the cycle by the innate immune response, which may explain
the absolute conservation of IFN1 inhibition by arenaviral
NP proteins.

Recent studies have also been focused on the role of the
viral Z protein in inhibiting the IFN1 pathway. Originally,
the Z proteins from 4 tested NW arenaviral strains [JUNV,
Machupo virus (MACV), TCRV, and Sabia virus (SABV)] but
not from the OW LASV or LCMV strains were found to
directly interact with RIG-I and inhibit IFN1 expression (257).
More recently, our laboratory has demonstrated that the Z
proteins from both OW and NW arenaviral strains that are
known to be pathogenic in humans can directly interact with
RIG-I to inhibit IFN1 expression, but Z proteins from non-
pathogenic arenaviral viruses cannot (258). These results have
been recapitulated in primary human macrophages infected with
WT and chimeric PICVs to show that the N-terminus of LCMV
Z was sufficient to inhibit macrophage activation when expressed
as a chimeric Z protein with the non-pathogenic PICV (259).
As a whole, the Z protein is emerging as another key target in
investigating the mechanism of innate immune suppression by
arenaviruses, and an encouraging potential contributor to disease
pathogenesis (i.e., a potential virulence factor) that will need
further characterization (105, 260).

One area of study with increasing attention is the role of innate
immune cells and cytokines in initiating the adaptive immune
response against mammarenaviral infection. A key pattern that
has emerged from preliminary studies is that an arenavirus’s
ability to suppress the innate immune response appears to be
positively correlated with its ability to suppress any subsequent
adaptive immune response. The correlation of an inhibited innate
immune response with an attenuated and delayed T cell response
in those succumbing to fatal arenaviral infection has been
demonstrated in humans (210, 261, 262), non-human primates
(221), guinea pigs (47, 190, 211, 263–265), immunodeficient mice
(223, 224, 266) as well as in immunodeficient mice transplanted
with cells from WT mouse bone-marrow (193). Accordingly,
individuals that survive arenaviral infections manage to keep
viral loads low, peaking 10–20 days after infection for LASV,
while individuals that succumb have viral loads that continually
increase exponentially (205, 221, 261, 262, 267–269). In WT
mice, LCMV induces robust expression of key cytokines such
as the type I and II IFNs as well as IL-18, the production of
type II IFN being dependent on CD8T cells (270). This not
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only illustrates the close inter-connectedness of the innate and
adaptive immune responses, but also further illustrates how an
active immune response is key to the natural resistance against
arenaviral infection in mice. The importance of the innate-
adaptive interface was also recapitulated in a recent co-infection
model of LCMV and E. Coli, demonstrating that an LPS-induced
inhibitory mechanism of NK cells significantly attenuated the
LCMV specific CD8T cell response and the vitality of the infected
mice (271).

CD8T cells have been found to be indispensable for clearing
arenaviruses (221, 272–279), while CD4T cell (277, 280) and
antibody (184) responses have been found to be dispensable.
In fact, a potential contributing factor toward arenaviral
pathogenicity as well as the failure of most previous arenaviral
vaccine candidates in protecting against pathogenic strains may
be a skewed CD4+ T cell response. STAT1 KO mice were
only able to survive LCMV infection when CD4+ T cells were
depleted (266), suggesting that a lack of IFN signaling could
somehow overwhelmingly favor lethal CD4+ T cell proliferation.
The determination of the mechanism of CD4+ T cell lethality,
whether it is simply due to less CD8T cells being activated
or through some novel mechanism of CD4T cells, has yet to
be determined.

Myeloid dendritic cells (mDCs) are vital constituents in the
innate-adaptive immune response interface due in combination
to their large population sizes (281), their robust activation of
CD8 T-cells (282), and their production of IFN1 as a CD8 T-
cell activation enhancer under certain conditions, such as during
LCMV infection (283). Dendritic cells (DCs) are a key target of
infection by LASV (204, 205), but like macrophages, they are
not activated by the infection (204, 205). However, this feature
isn’t consistent among arenaviral strains, as demonstrated by
the well-documented comparative model of mammarenaviral
immunogenicity of LASV and the Mopeia virus (MOPV). Both
are OW arenaviruses and share 75% amino acid identity and
the Mastomys natalensis African rat as a viral reservoir (23).
However, MOPV is non-pathogenic in humans and has been
considered as a potential LASV vaccine candidate in non-human
primates (284), and no human cases of MOPV infection have
ever been recorded (285). Initial studies found that MOPV
infection of monocyte-derived dendritic cells (MoDCs) induced
moderate activation and significant CD8 T-cell proliferation in
the MoDC/T-cell co-culture system (286, 287), whereas LASV
infected MoDCs induced low activation and weak and delayed
T-cell responses (204, 287).

The same group of researchers have more recently
demonstrated that both LASV and MOPV could not
replicate well in myeloid dendritic cells (mDCs) isolated
directly from PBMCs, and as a result, induced very low
levels of IFN1 production, and that LASV-infected cells
could not activate T-cells in the mDC/T-cell co-culture
system (288). However, MOPV was able to induce higher
levels of IFN1 and secreted cytokines known for inducing
T-cell activation than in LASV-infected cells in the co-
culture system, though the involvement of monocytes and
potentially other cell types present in the co-culture system
as a result of impurity could not be completely ruled out.

Regardless, the observation seems to corroborate earlier findings
indicating that DCs are dispensable for T-cell activation
during LCMV infection (289). Like LASV, LCMV is known to
inhibit innate immune response as demonstrated in another
study (290).

Using chimeric viruses carrying different genes from either
LASV or MOPV on either the LASV reverse genetics (RG)
or MOPV RG backbone, the same group of investigators have
shown that LASV NP is the main determinant in suppressing
IFN1 production by mDCs (288), which is consistent with the
known ability of all known arenaviral NPs to degrade PAMP
RNA via their encoded RNase domain and thereby suppressing
IFN1 production (105, 241, 244, 247, 252–256, 291). Due to the
fact that mDCs did not appear to support productive replication
of LASV and MOPV, it was difficult to ascertain whether the
IFN1 suppressive effect was due to the expression of viral
proteins in the infected cells by the different chimeric viruses.
Moreover, the data could not explain the differentiation of mDC
phenotype in the mDC/T-cell co-culture system between LASV
and MOPV chimeric virus infections. In an attempt to provide
a potential explanation for this observation, the authors have
posited that various efficiencies of the NP RNase domains of
different arenaviruses to suppress IFN1 production may explain
differences among arenaviruses to induce DC-mediated T-cell
activation. However, this hypothesis needs to be formally tested.

A chimeric LASV with a substitution of its GP with that
of MOPV has been found to significantly increase IFN1
production (288), which may reflect different mechanisms of
viral detection based on the different innate immune receptors
(106). As an example, the Toll-like Receptor TLR2/TLR6
heterocomplex has been found to be responsible for innate
immune activation by recognizing the GP of the NW JUNV
upon virus infection for robust induction of the innate
(292) and adaptive (293) immune responses (Figure 6), while
only TLR2 has been implicated in the anti-viral activity
of OW arenaviruses (294, 295). JUNV and other NW
arenaviruses have also been found to initiate caspase-dependent
apoptosis (233, 296–298), while OW arenaviruses fail to induce
apoptosis (204, 298) or induce significantly delayed apoptosis
(299) (Figure 5). The relative contributions of pathways
directly mediated by the specific cellular receptor and other
viral signaling mechanisms needs to be further characterized
in future studies.

Contrary to earlier findings (258, 259), the Z protein was not
found in the LASV/MOPV chimeric virus model to exhibit a
significant effect on immune suppression (288), which might be
attributed to different infectious models being utilized. It is worth
noting that the experiments with the chimeric viruses did not
take into consideration the potential differential gene expression
levels of the viral proteins in virus-infected cells under the context
of the chimeric virus backbones. Additionally, as mDCs did
not appear to support productive viral replication, it raised a
question of whether any of the viral proteins were synthesized
in the virus-infected mDC model (288). It is therefore difficult
to definitively discern the roles of the individual viral protein
in modulating antiviral immunity in this unique in vitro viral
infection model (288).
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MODULATION OF INNATE-IMMUNE
PROTEIN FUNCTIONS BY ARENAVIRUSES
AND OTHER VIRUSES

Another mammarenaviral-host interaction that has an impact
on IFN1 production is that with the cellular protein PACT
(Figure 6). PACT is a 313-aa protein that contains 3 conserved
dsRNA binding motifs (dsRBMs) with dsRBM1 and 2 binding
to dsRNA and dsRBM3 mediating activation of the dsRNA-
dependent kinase PKR (300). PACT has been shown to activate
RIG-I via interaction with the C-terminal repression domain
of RIG-I and activates its ATPase function to potently enhance
IFN1 production upon viral infection (301, 302). Even though
PACT has initially been identified as a cellular binding partner
and protein activator of PKR (303), activation of RIG-I by PACT
does not require PKR (302). Likewise, while PACT has also been
shown to interact with and stimulate the cellular Dicer protein
(303, 304), Dicer does not appear to play an important role in
PACT-mediated regulation of antiviral response (302).

While PACT and RIG-I pull down together in co-
immunoprecipitation assays, it is less clear whether this
interaction occurs strictly through protein-protein interactions
or by both proteins associating with viral and/or cellular RNAs
or some combination of both. The potential role of RNAs in
activation of the cellular innate immune proteins (RIG-I and
PACT) has been strongly implicated in recent findings that
arenaviral NPs require an intact dsRNA binding domain as well
as its 3′-5′ exoribonuclease activity to block PACT enhancement
of RIG-I function (189–191) (Figure 6). A number of other
viral nucleoproteins can block PACT enhancement of RIG-I
function, which also requires an intact dsRNA binding domain
(305–307), or in the case of herpes simplex virus 1 (HSV1), is
independent of the RNA binding capacity of the nucleoprotein
(308). Recently, our laboratory has shown that arenaviral NPs
block RIG-I potentiation by PACT, and that the exoribonuclease
domain is required (247). However, NP does not appear to
negatively impact PACT/RIG-I direct interaction, suggesting
that NP may inhibit PACT indirectly by degrading dsRNA that
may be associated with the complex and is essential for its proper
function. Taken together, it appears that most if not all known
viral protein partners of PACT (as well as PACT itself and its
cellular protein partner RIG-I) have RNA-binding properties, yet
it still isn’t entirely clear whether dsRNA binding is an absolute
requirement to inhibit PACT-induced RIG-I activation. These
studies illustrate the current lack of detail understanding of the
roles of the different viral proteins, including arenaviral NPs, to
inhibit PACT-mediated RIG-I activation, and the nature of the
dsRNAs (viral, cellular, or both) that may intimately be involved
in this process. Future studies into the exact role and molecular
mechanism (s) of virus-host interactions via the PACT/RIG-I
pathway can serve as an appealing pan-antiviral therapeutic
target for development. Additionally, antivirals targeting PACT
can influence PACT-PKR mediated NF-κB and p53 stress
signaling (300, 309–316) to impact not only antiviral control but
also other known cellular processes involved in cancer and other
physiological and metabolic conditions.

DEVELOPMENT OF VACCINES FOR AND
ANTIVIRALS AGAINST ARENAVIRUS
INFECTIONS

Currently, the only clinically successful anti-arenaviral vaccine
is the anti-JUNV Candid #1 strain, which is currently
manufactured by the Argentinian government but is not being
considered for large-scale use due to its limited target population
(222) as only Argentina is endemic for JUNV infection. To
generate Candid #1, a human viral isolate (317) was used to
passage twice in guinea pigs followed by additional passages in
suckling mice and cell cultures (318–323). A number of unique
mutations in Candid #1 were originally thought to attenuate
Candid #1 compared to its parentalWT strain (323, 324), and one
such mutation (F427I in the transmembrane domain of the GP2
subunit) was consistently found to be sufficient for attenuation
(325, 326).While themechanism for this attenuation has yet to be
elucidated, it is thought that the mutation may affect viral fusion
or maturation efficiency (325). The equivalent mutation (F438I)
in Machupo virus (MACV) was also found to be attenuated in
mice (327), suggesting that this attenuation mechanism may be
highly conserved. Additionally, the presence of a mutation in the
SSP subunit along with the F427I mutation in GP2 is thought to
prevent the virus from reverting to its wild type sequence (326).
It is tempting to assume that similar attenuation techniques can
be applied toward the development of other arenaviral vaccines.
However, they may be limited to the JUNV vaccine for several
reasons. While the IFN1 pathway (particularly IFNβ) pathway
and subsequent T-cell response have been found to be critical
in controlling arenaviral infection in mice (193, 209, 223, 224,
231, 266, 270, 328), arenaviral-associated immunosuppression
results in limited T-cell responses (184, 204, 221, 222, 279,
287). Furthermore, the JUNV GP has been found to contain
fewer glycans than the GPs from other mammarenaviruses
(320, 329), and glycan residues on the glycan-rich LASV GP
has been shown to promote neutralization antibody evasion
(330). This is strengthened by recent observations that anti-
JUNV antibodies from infected patients can neutralize other
JUNV strains but cannot offer neutralization against other NW
arenaviruses (331).

Partly due to the aforementioned reasons, the development of
effective vaccines against other pathogenic mammarenaviruses
(besides JUNV) has proven to be much more challenging. An
early attempt was to use gamma-irradiated LASV particles, which
produced considerable humoral responses in NHPs but failed to
protect against fatal LASV challenge (332). A similar theme has
been noted across subsequent studies where adaptive immunity
[and even cross-protective immunity (333)] has been induced in
vaccinated subjects, but has failed to protect against lethal viral
challenge. Novel reverse genetic strategies are being explored to
overcome some of these obstacles, such as codon optimization
to increase the expression of viral protein antigens (334), tri-
segmented arenaviral vectors on LCMV (335–339) or PICV (340,
341) backbones to increase viral attenuation, and single-cycle
arenaviral vectors (342, 343) to minimize immunosuppression
through exponential virus replication.
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Another method to produce candidate vaccine in
development is based on a reassorted virus known as ML29,
which contains the L genomic segment of MOPV and the
S genomic segment of LASV (269, 291, 344–346, 418–420)
(Figure 3C). It was determined that the LASV NP and GP
antigen expressions from this reassorted virus were essential
to provide strong protective immunity in rodents (e.g., guinea
pigs) and NHPs (e.g., marmosets and Rhesus macaques)
against lethal disease caused by LASV infection (344–347). DI
particles produced by persistently infected cells with ML29
have also been found to interfere with the replication of
LASV, MOPV and LCMV, and to induce strong cell-mediated
immunity in STAT1 KO mice (348), implicating the potential
for formulation of ML29 with its DIs toward the development
of a pan-arenaviral vaccine. Other LASV candidate vaccines
include those expressing LASV GP or NP antigens from the
genome of different recombinant viruses, such as Vesicular
Stomatitis Virus (VSV) (349, 350), vaccinia virus (351, 352),
MOPV (291), Yellow Fever Virus 17D (353, 354), alphavirus
replicons (355, 356), and inactivated rabies virus (357), all of
which have been shown to exhibit various protective efficacies
against LASV infection in different animal models. Other LASV
vaccine development efforts, which are being supported by
a non-profit international organization called Coalition for
Epidemic Preparedness Innovations (CEPI), include those that
are based on new vaccine platforms, such as a recombinant
measles-virus-based vaccine (358) and DNA-based vaccine
(359, 360). CEPI has also supported two other LASV vaccine
candidates that are based on recombinant rVSV-based vectors.
The first is a rVSV construct expressing the LASV GP antigen
based on the same platform applied to express the EBOV GP
as a vaccine antigen that was used in a ring vaccination trial in
Guinea, Africa (361, 362). The second is another rVSV-LASV
GP construct with a translocated VSV-N gene and a truncated
VSV-G cytoplasmic tail designed for increased vaccine safety.
Similar attenuated rVSV vectors expressing single or multiple
EBOV GPs have been shown to be immunogenic in NHPs (363)
and successfully protected NHPs against EBOV and Marburg
virus challenge (364–366), but there are currently no published
pre-clinical data to support the development of a Lassa vaccine
based on this platform. CEPI has also recently awarded a contract
for pre-clinical development of yet another LASV-GP construct
on the backbone of a non-replicating simian adenovirus, but
again no pre-clinical information is available about the suitability
of this viral platform for Lassa vaccine development (367). It
remains to be seen how well the CEPI-supported vaccines will
perform in the coming years. A formidable challenge of Lassa
fever vaccine development is the requirement for a development
of predominantly T-cell-mediated mechanism of protection,
as strong memory CD4+ T-cell responses to LASV NP and
GP2 of different strains of LASV have been demonstrated in
some survivors of LASV infection in Guinea (368, 369). This
is consistent with observations that, while CD4+ T-cells can
provide a partial protection of ML29-vaccinated animals against
lethal LASV challenge, depletion of CD8+ T-cells completely
abolishes protection (370). Additionally, NP-specific CD8+
T-cells play a major protective role in mice infected with
LCMV (279).

In addition to vaccine development as a preventative measure,
the discovery of anti-viral drugs is a burgeoning area of
arenaviral research. Currently, the only anti-viral treatment
clinically in use that is specific to mammarenaviruses is
convalescent plasma therapy against JUNV (175). Standard
anti-viral nucleoside analogs, such as Ribavirin and Favipiravir
(69, 371–374) have seen moderate clinical success, but are
only effective when given in the earliest stages of infection
when symptoms are primarily non-specific (173). Peptide-
conjugated morpholino oligomers have also been tested as
alternative nucleoside analogs, reducing the titers of several
arenaviruses in cell culture and LCMV-infected mice (375).
Nevertheless, recovery has been documented with symptom
management in place of nucleoside analogs due to a delay
in diagnosis being reached after the resolution of symptoms
(376), limiting the desire for using nucleoside analogs as
anti-viral compounds.

Recent advances in anti-arenaviral drug discovery have
focused on identifying compounds that specifically target viral
proteins or that modulate the activity of host proteins (377). The
bulk of arenaviral drug discovery has focused on small molecule
inhibitors of the mammarenaviral glycoprotein and cell entry,
which has seen some successes with several different approaches.
Amphipathic DNA polymers have been found to block LCMV
GP-α-dystroglycan interaction by the virtue of its hydrophobicity
rather than nucleotide sequence (378). Clotrimazole derivatives,
which traditionally target the calcium-activated potassium
channel KCa3.1, have also recently been found to inhibit
arenaviral membrane fusion (379). However, its mechanism
of action was found to be independent of KCa3.1, and thus
currently unclear.

Conversely, a number of other compounds have been found
to stabilize the GP-α-dystroglycan prefusion complex formation,
thereby blocking pH-mediated endocytosis (380–384). One of
these compounds (ST-193) has been found to reduce LASV
titers in a guinea pig infection model (385). Another small
molecule (LHF-535) has recently been found to inhibit a
wide variety of arenaviruses with the exception of strains
that contained a V434I mutation, which corresponds to the
mutation responsible for attenuation in Candid #1, suggesting
that it could also affect the prefusion stability complex (386).
Finally, it has also been shown that a small molecule inhibitor
of the cellular site 1 protease (PF-429292) can block GP
processing (387, 388) as well as can serve as a general antiviral
by inhibiting lipid and cholesterol synthesis needed for virus
replication (389–392).

Some pharmaceutical compounds have also been found to
disrupt the normal functions of mammarenaviral proteins.
Given that myristoylation is necessary for Z-mediated arenavirus
budding (160, 161), compounds that inhibit myristoylation
enzymes (161, 393) have been found to change the cellular
localization of Z and therefore inhibit virion budding from
the infected cells. Aromatic compounds targeting the zinc-
finger motifs of Z have also been found to inhibit arenaviral
proliferation (394, 395). A variety of mechanistic effects have
been characterized for one of these compounds. For example, the
NSC20625 compound has been found to induce Z to unfold and
accumulate in oligomeric structures (394) and thereby blocking
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the interaction of Z with the host PML protein and allowing
nuclear bodies to form (396). The arenaviral L polymerase and
NP have arguably experienced the least progress as drug targets.
For the former case, one appealing potential pharmaceutical
target is the cap-snatching mechanism of arenaviral polymerases.
A similar drug has already been demonstrated to reduce titers
of the West Nile virus (397). The specificity of viral cap
snatching mechanisms (398) and the suspicion that arenaviral
cap snatching mechanisms may be conserved across species (399,
400) make cap snatching a promising therapeutic target for anti-
viral drug development (401). Some metal chelators have indeed
been found to potently inhibit the LCMVL endonuclease domain
and its subsequent cap snatching activity, demonstrating the
potential for future antivirals targeting this virus feature (402).
Lethal viral mutagenesis has also been identified as a possible
mechanism for viral control (403, 404). While few studies have
found drugs that target arenaviral NPs, one recent paper has
identified a compound from a pyridine library that can reduce
LCMV titers post-cell entry and is thought to affect NP and Z by
unknown mechanisms (405).

Drugs that target host proteins are also being explored
as potential pharmaceutical therapeutics. The tyrosine kinase
inhibitor genistein is currently one of the most supported
compounds, as ATF-2 phosphorylation has been found to be
critical for viability of the NW PICV, which is susceptible to
genistein in vitro (406, 407) and in vivo (408). Larger scale
drug screens seem to implicate cellular kinase inhibition as a
promising anti-viral target in general, with compounds affecting
arenaviruses at multiple stages of the virus life cycle (409–411).
Inhibitors of nucleoside production have also been tested in a
variety of in vitro contexts (412–414) and may have additive
effects when used in conjunction with nucleoside analogs (412).
While these compounds didn’t appear to negatively affect the
vitality of cell cultures, they should be cautiously explored due
to possible adverse effects on some rapidly growing cells in vivo.
Finally, it may be possible to target immune signaling proteins as
anti-viral control, with one anti-TLR inhibitor showing limiting
LCMV-initiated cytokine responses in cells and viral replication
in mice (294). For all potential anti-viral drugs, severe side effects
(e.g., in neurological and embryonic development) due to known
cytotoxicity of these compounds can be a great impediment
to the widespread application of these compounds in treating
arenavirus infections. Future anti-arenaviral drug and vaccine

developments are still urgently needed to combat these deadly
human pathogens.

SUMMARY AND FUTURE DIRECTIONS

It is important to reiterate the important roles of the
IFN1 pathway and T-cell-mediated immunity in controlling
mammarenavirus infections (209). These pathways are also
known to be critical for both the innate and the adaptive
immune responses to other RNA virus infection models
(415, 416) as well as during vaccination (417), further
illustrating the importance for future studies of each of these
mechanisms separately and in concert. In addition, continuation
of ecological efforts to characterize the phylogeny and spread
of arenaviruses (2, 9, 18, 21, 46), socioeconomic efforts
to increase the public’s awareness and capacity to contain
disease (49–53), and vaccine and therapeutic developments are
needed in order to optimize preventative and control measures
for mammarenaviruses.
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