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Abstract

Prenatal nutrition may significantly impact brain aging. Results from the Dutch Famine Birth 

Cohort indicated that prenatal undernutrition is negatively associated with cognition, brain 

volumes, perfusion and structural brain aging in late life, predominantly in men. This study 

investigates the association between prenatal undernutrition and late-life functional brain network 

connectivity. In an exploratory resting-state functional magnetic resonance imaging study of 

112 participants from the Dutch Famine Birth Cohort, we investigated whether the within- and 

between-network functional connectivity of the default mode network, salience network and 

central executive network differ at age 68 in men (N = 49) and women (N = 63) either exposed 
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or unexposed to undernutrition in early gestation. Additionally, we explored sex-specific effects. 

Compared to unexposed participants, exposed participants revealed multiple clusters of different 

functional connectivity within and between the three networks studied. Sex-specific analyses 

suggested a pattern of network desegregation fitting with brain aging in men and a more diffuse 

pattern of group differences in women. This study demonstrates that associations between prenatal 

undernutrition and brain network functional connectivity extend late into life.
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1. Introduction

As humans age, many individuals experience gradual brain aging, whilst others display 

severe signs of pathological brain aging and clinical symptoms of cognitive decline. 

Increasing evidence supports the important contribution of environmental factors in these 

inter-individual differences, especially in early life. In particular, environmental factors 

during prenatal development may trigger a cascade of processes contributing to individual 

differences in brain aging. This cascade may involve epigenetic adaptations and prenatal 

programming of endocrine and metabolistic processes (Cao-Lei et al., 2020; Moreno-

Fernandez et al., 2020). Additionally, prenatal environmental factors can affect brain 

development through the available amount of nutrients as building blocks for the developing 

fetal brain, thereby impacting future brain functioning and reserve capacity.

Prenatal nutrition influences the structure and function of the brain and may also affect brain 

aging. Data from the Dutch Famine Birth Cohort (DFBC) study revealed that individuals 

who had been exposed to undernutrition in early gestation had poorer cognitive performance 

on a Stroop-like color-word incongruence task at age 58. This was not observed in 

individuals who had been exposed in mid and late gestation. Additionally, 68-year-old 

men in the DFBC exposed to famine in early gestation had smaller brain volumes and 

lower cerebral blood flow in regions related to neurodegeneration (anterior and posterior 

cingulate cortices) (de Rooij et al., 2016, de Rooij et al., 2019). The lower cerebral blood 

flow potentially reflected a reduction in blood flow demand due to reduced neuronal activity 

and/or a reduction in blood flow supply as a result of vascular disease in these regions (de 

Rooij et al., 2019). Using the Brain Age Gap Estimation (BrainAGE) biomarker of brain 

structure in the same individuals, it was demonstrated that men who had been exposed to 

undernutrition in early gestation had higher BrainAGE scores, insinuating premature brain 

aging (Franke et al., 2018). Overall, these results suggest that undernutrition during early 

gestation affects cognition, brain structure and perfusion in old age.

In the aging brain, before the appearance of structural changes, a rearrangement of 

functional brain networks can be observed (Balachandar et al., 2015; Joo et al., 2016). The 

connectivity within and between functional brain networks reflects the intrinsic functioning 

of the brain and can be studied with resting-state functional magnetic resonance imaging 

(fMRI). Age-related neural remodeling is likely to reflect both pathological processes and 
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also adaptations and compensatory mechanisms of the aging brain to mitigate cognitive 

decline (Damoiseaux, 2017). Studying these functional brain networks may provide an 

insight into early processes related to brain aging, and help us understand neural processes 

that underlie cognitive decline.

Alterations in multiple brain networks have been associated with brain aging. Often, these 

alterations are related to the default mode network (DMN), central executive network (CEN) 

and salience network (SN). In 2011, Menon et al. (Menon, 2011) introduced a triple network 

model of functional brain networks, including the DMN for intrinsic processing, the CEN 

for external processing, and the SN as a switch between these networks. Cognitive decline 

related to both normal and pathological brain aging has most frequently been associated with 

alterations in connectivity, metabolism, and perfusion within the DMN (Damoiseaux, 2017; 

de Vis et al., 2018; Pardo et al., 2007; Reiman et al., 1996; Silverman et al., 2001). Most 

resting-state functional connectivity (FC) studies describe age-related reductions in DMN 

connectivity, although both increases and decreases have been observed with increasing age 

(Bai et al., 2011; Damoiseaux et al., 2008; Geerligs et al., 2015; Ng et al., 2016). Besides 

alterations in the DMN, studies have reported age-related declines in FC within the SN and 

CEN, as well as differences in between-network FC (Allen et al., 2011; Archer et al., 2016; 

Geerligs et al., 2015; Ng et al., 2016; Onoda et al., 2012).

Overall, these available data suggest that altered within- and between-network connectivity 

of the DMN, CEN and SN may serve as a sensitive, non-invasive biomarker of age-

associated brain alterations and cognitive decline. As earlier studies in the DFBC suggest 

accelerated anatomical brain aging after exposure to prenatal undernutrition, alterations 

in the functional networks included in the triple network model may also be present in 

this cohort. Moreover, lower perfusion was observed in the anterior (SN) and posterior 

(DMN) cingulate cortex after prenatal famine exposure in men compared to unexposed men, 

increasing our interest in studying the FC of these regions as core regions of the triple 

network model (de Rooij et al., 2019). By examining the differences in brain network FC 

between those exposed and unexposed in the DFBC, we may be able to identify earlier and 

more subtle characteristics of premature brain aging after prenatal undernutrition.

In a study of FC in resting-state fMRI scans of 112 DFBC participants, we investigated the 

following research question: In men and women exposed or unexposed to undernutrition 

during early gestation, does the within- and between-network FC of the DMN, SN and 

CEN differ at age 68? Based on the previous indications of cognitive and brain aging in the 

DFBC and the abovementioned literature on age-related changes in FC, we hypothesized 

that undernutrition during early gestation would be associated with lower within-network FC 

and higher between-network FC in these high-order cognitive networks (Damoiseaux, 2017; 

Farras-Permanyer et al., 2019; Geerligs et al., 2015; Grady et al., 2016; Huang et al., 2015). 

Furthermore, we explored sex-specific effects following previously reported sex-specific 

effects of prenatal undernutrition on the brain in the DFBC (de Rooij et al., 2016).
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2. Materials and methods

2.1. Subjects

2.1.1. The Dutch famine birth cohort—The DFBC is composed of 2414 men and 

women born as term singletons between November 1, 1943 and February 28, 1947 in the 

Wilhelmina Gasthuis in Amsterdam, the Netherlands. Inclusion criteria were a singleton 

birth, minimal pregnancy duration of 259 days and the presence of a medical birth record.

Between December 1944 and April 1945, official daily food rations during the Dutch famine 

varied between 400 and 800 calories. Rations rose above 1000 calories after May 12, 1945. 

In the DFBC, a participant was considered to be exposed to prenatal undernutrition when the 

average daily food ration contained <1000 calories during any 13-week period of gestation. 

Periods of 16 weeks were defined to group individuals exposed to undernutrition during 

late, mid and early gestation. Participants exposed to undernutrition during early gestation 

were born between August 19 and December 8, 1945 (Bleker et al., 2021). Individuals 

born before January 7, 1945 and conceived after December 8, 1945 were included to act as 

control groups unexposed to undernutrition during gestation. For the current study, only the 

control groups born before the famine or conceived after the famine, and those exposed to 

famine in early gestation were invited.

2.1.2. Study sample—Data for the current MRI study were collected between 2012 

and 2013, when participants were 68 years of age. Fifty-four percent of individuals (n 
= 1307) from the initial cohort were eligible (alive with a known current address in the 

Netherlands). There were no differences in birth characteristics between eligible and non-

eligible individuals (birth weight 3357 vs. 3333 g, p = 0.22; birth length 32.8 vs. 32.9 

cm, p = 0.22). See De Rooij et al. (de Rooij et al., 2015) for a detailed description of the 

selection procedure and inclusion of the current study sample. The study was approved by 

the local medical ethics committee and carried out according to the Declaration of Helsinki. 

All participants provided written informed consent.

We invited 151 participants from the DFBC to participate in the 2012 study, consisting of a 

home visit and an MRI session. Of these 151 participants, nine declined to visit the hospital, 

eight declined because of scanner anxiety, and 15 had contraindications for MRI scanning. 

Four participants had missing or incomplete fMRI resting-state data, resulting in a total of 

115 participants. See Supplementary Materials for measurement details of covariates.

2.2. Magnetic resonance imaging

2.2.1. Data acquisition—MRI scans were acquired using a standardized protocol on 

a 3.0T Philips Ingenia MRI scanner with a 16-channel dStream Head-Spine coil. We 

analysed data from T1-weighted 3D magnetization-prepared rapid acquisition gradient echo 

(MPRAGE: voxel size 1.0 × 1.0 × 1.0 mm, FoV 256 × 256 mm, TR 7.0 ms, TE 3.2 ms, 180 

slices, FA 9.0°) and resting-state (180 volumes, 37 slices, voxel size 3.0 × 3.0 × 3.3 mm, 

FoV 240 × 240 mm, TR 2000 ms, TE 27.0 ms, FA 76.1°, duration 6 minutes) scans. Before 

the resting-state scan, participants were instructed to remain still and relax without falling 

asleep. A black screen with a white cross in the center was displayed as a focus point.
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2.2.2. Data analysis

2.2.2.1. Seed regions of interest.: As seed regions of interest (ROI), we used the ROIs 

defined from CONN’s independent component analysis (ICA) of the human connectome 

project dataset of 497 subjects. Details about the seed ROIs are provided in the 

Supplementary Methods and in Supplementary Fig. 1.

2.2.2.2. Statistical analysis.: MRI data preprocessing steps are described in the 

Supplementary Methods. Individual connectivity maps were generated in the CONN 

toolbox seed-to-voxel analysis pipeline using Fisher’s Z-transformed Pearson’s r correlation 

coefficients of the BOLD (Blood-Oxygen-Level-Dependent) time course of each voxel 

throughout the brain with the mean BOLD time course from each seed. The ROI BOLD 

time series were extracted from unsmoothed data. Second-level analyses were performed 

by comparing individual maps of network connectivity between groups using two-sided 

two-sample t-tests. Individuals exposed to famine in early gestation were compared to 

individuals prenatally unexposed to famine, in line with approaches used in all previous 

publications arising from this cohort.

Correction for multiple comparisons was performed using cluster-level correction within 

binarized masks. We applied a small-volume family-wise error (FWE) corrected threshold 

of pFWE < 0.05 and cluster thresholds were estimated by computing the data’s spatial 

autocorrelation using the Analysis of Functional NeuroImages toolbox (AFNI, https://

afni.nimh.nih.gov) 3dFWHMx software with subsequent Monte Carlo simulations (10,000 

iterations) using 3dClustSim. For within-network connectivity, the resulting whole brain 

connectivity maps for each seed were masked by a combined map of the other ROIs within 

the network. For between-network connectivity, all ROIs of a network were combined as a 

single seed and masked with a map of another network of interest (e.g. DMN seed masked 

with binarized CEN map). Cluster thresholds and sizes are reported at voxel-level primary 

thresholds of p < 0.01 and p < 0.05 (pFWE < 0.05) to provide a complete overview of 

our results. In addition, the total numbers of significant voxels within the masked areas at 

uncorrected primary thresholds of p < 0.01 and p < 0.05 are reported (Supplementary Fig. 

2). This uncorrected total number of voxels was not used to determine significant results, but 

is reported to provide more information and present a summary overview of results.

These analyses were performed for all subjects combined, and for men and women 

separately to determine potential sex-specific effects. Post-hoc testing was performed for 

between-network connectivity to determine the network subregion(s) that contributed most 

significantly to observed effects. In these analyses, cluster level correction for multiple 

comparisons was applied using the network subregions as ROIs instead of a combined ROI 

of the total network.

To determine the effect of extracting the ROI BOLD time series from smoothed versus 

unsmoothed data, a sensitivity analysis was performed on the significant within-network 

effects. The same analysis pipeline was executed, now using smooth data for extracting 

the ROI BOLD time series. These results are presented in Supplementary Tables 1 and 

2. Lastly, to determine the size and direction of the connectivity values, we extracted the 

mean connectivity values between the seed regions and significant clusters by creating 
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binarized masks of significant clusters and performing an eigenvariate analysis in SPM12. 

An overview of these connectivity values is reported in Supplementary Figs. 3–8.

2.3. Data availability

The data that support the findings of this study are available on request from the 

corresponding author by submitting a formal project outline. The data are not publicly 

available due to participant privacy restrictions. Code is available upon request from the 

corresponding author.

3. Results

3.1. Study group characteristics

Of the 115 included participants, three were excluded based on movement (mean absolute 

displacement > 2.3 mm). There were no differences in mean absolute displacement between 

exposed and unexposed participants. Maternal, birth and adult characteristics were similar 

in exposed and unexposed (born before and conceived after) study groups in the current 

cohort subsample (Table 1). In sex-specific comparisons, exposed men had a significantly 

smaller total brain volume (p = 0.006) than unexposed men, whereas no group differences 

were observed in women. Within the unexposed group, we found that the born before 

and conceived after groups showed differences in age (by definition) and body mass index 

(BMI), with those being born before the famine having lower BMI than those conceived 

after the famine.

3.2. Functional connectivity outcomes

For within-network FC across all participants, we observed a cluster of significantly higher 

positive within-CEN FC between the left PPC and left LPFC for those exposed compared 

to unexposed participants. Lower positive FC was observed in exposed participants in the 

DMN (MPFC-right LP) and SN (right SMG-right RPFC). None of these clusters passed 

the pFWE level corrected cluster threshold of pFWE < 0.05 at a primary threshold of p 
< 0.01, but did pass the cluster threshold at p < 0.05 (Table 2, Fig. 1). In the sensitivity 

analysis extracting the ROI BOLD time series from smoothed data, the majority of observed 

effects was similar, although not all observed effects were statistically significant using this 

approach.

Regarding group differences in between-network FC across all participants, controls had a 

positive FC, whereas a negative correlation was observed in exposed participants between 

the DMN and CEN. This cluster was significant at a primary threshold of p < 0.01 (pFWE < 

0.05, Table 3, Fig. 1).

3.2.1. Functional connectivity outcomes in men—For within-network FC, exposed 

men had higher positive FC within the DMN (left LP-PCC), SN (left RPFC-ACC, left 

AI-ACC, left AI-left RPFC) and CEN (right PPC-left PPC) compared to unexposed men. 

These effects were significant only at a primary threshold of p < 0.05, with the exception of 

the effect between the left RPFC and ACC, which was significant at a primary threshold of 

p < 0.01 and not at p < 0.05, and the effect between the left LP and the PCC, which was 
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significant at both primary thresholds (pFWE < 0.05). In addition, exposed men had lower 

positive FC within the DMN (left LP-MPFC, significant at a primary threshold of p < 0.05, 

pFWE < 0.05) and SN (left AI-left SMG, significant at a primary threshold of p < 0.01 and p 
< 0.05, pFWE < 0.05) (Table 4, Fig. 2).

For between-network FC, compared to unexposed men, we observed clusters of significantly 

higher FC in exposed men between the CEN and DMN, and between the CEN and SN. 

Two clusters between the CEN and SN had higher positive FC in exposed men. One 

cluster between the CEN and DMN and one cluster between the CEN and SN had an 

anti-correlation in unexposed men, whereas exposed men had a positive FC. All of these 

clusters were significant at a primary threshold of p < 0.05, and one cluster between the SN 

and CEN was significant at primary threshold p < 0.01 (pFWE < 0.05, Table 5, Fig. 3).

3.2.2. Functional connectivity outcomes in women—Five different clusters of 

higher positive FC in exposed women were observed within the CEN (left LPFC-right 

LPFC, left LPFC-right PPC, left PPC-left LPFC, left PPC-right LPFC) (Fig. 2). Two of 

these clusters were significant at a primary threshold of p < 0.01, and all were significant 

at p < 0.05 (pFWE < 0.05). Exposed women had lower positive FC within the DMN (right 

LP-MPFC), SN (left AI-right RPFC, left SMG-right RPFC) and CEN (left PPC-right LPFC, 

left PPC-right PPC) than unexposed women.

We observed a cluster of significantly higher positive FC in exposed women between the 

SN and DMN (significant at a primary threshold of p < 0.05, pFWE < 0.05), and clusters of 

significantly lower positive FC between the SN and CEN (two clusters, one significant at a 

primary threshold of p < 0.05, and one at both p < 0.01 and p < 0.05, pFWE < 0.05) (Fig. 

3). One cluster between the DMN and CEN was positively correlated in unexposed women 

and anti-correlated in exposed women (significant at a primary threshold of p < 0.01, pFWE 
< 0.05).

3.2.3. Total number of voxels—To present a summary overview of results, 

Supplementary Fig. 2 shows the total number of voxels that passed a voxel-level p-threshold 

of p < 0.01 or p < 0.05 for each ROI masked with the combined map of the other ROIs in the 

network, in the total study group and in men and women separately.

4. Discussion

This study aimed to explore intrinsic brain functioning in late life among men and 

women who had or had not been exposed to famine prenatally. We identified statistically 

significant differences between exposed and unexposed individuals in both within- and 

between-network FC at age 68 years. These between-group differences were sex-specific 

and reflected a mixture of higher and lower FC across brain regions comprising the CEN, 

DMN and SN.

4.1. Interpretation of associations across all participants

Overall, we observed lower FC in the DMN and SN in individuals who had been exposed to 

famine in early gestation compared to those who had not been exposed. In the aging brain, 
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functional networks are continuously changing in response to neurodegenerative processes 

to minimize the effects of brain aging on cognitive performance. These adaptations can be 

in the form of both increases and decreases in FC, believed to reflect neuronal loss and 

compensatory mechanisms in response to neuronal loss. Reductions in FC within the DMN 

and SN have previously been reported in relation to (pathological) brain aging (Agosta et 

al., 2012; Bai et al., 2011; Balachandar et al., 2015; Damoiseaux, 2017; Damoiseaux et al., 

2012; Ng et al., 2016; Onoda et al., 2012). Our observation of lower FC in the DMN and 

SN in exposed individuals compared to unexposed individuals is thus in line with previous 

studies in our cohort suggesting accelerated cognitive and brain aging (de Rooij et al., 2010; 

Franke et al., 2018).

In contrast with our hypothesis, we observed higher FC in the CEN in exposed individuals 

compared to unexposed individuals. Studies have predominantly reported decreased within-

CEN FC in relation to brain aging (Allen et al., 2011; Geerligs et al., 2015; Ng et al., 

2016), however, both increased and decreased within-CEN FC have been reported in aging 

populations, with increased FC potentially representing a compensatory mechanism (Agosta 

et al., 2012; Balachandar et al., 2015; Jockwitz et al., 2017). Without identifying what may 

be compensated for and establishing an association between increased FC and behavioral 

outcomes, we can only speculate on whether our results potentially reflect a compensatory 

mechanism (Cabeza et al., 2018).

Lastly, we observed a negative correlation between regions of the DMN and CEN in 

individuals who had been exposed to famine in early gestation, in contrast to the positive 

correlation observed in those who had not been exposed. This observation contradicts our 

hypothesis of higher between-network FC befitting accelerated brain aging, but does point 

at alterations in between-network connectivity associated with exposure to famine in early 

gestation.

4.2. Developmental framework

The development of functional brain networks begins in utero. A FC component of 

the DMN with evident coordinated activity between regions of the DMN can already 

be observed prenatally. At birth, most of the systems eventually developing into adult 

brain functional networks have manifested (Thomason, 2020; Thomason et al., 2015). 

Given the rapid development of the brain and its connectivity in utero, the brain is 

especially vulnerable to harmful exposures during this period (Thomason et al., 2015). 

Recent studies have shown that an exposure during prenatal development can significantly 

impact developing brain networks in utero. For example, Thomason and colleagues (2019) 

studied FC in the human fetal brain after prenatal lead exposure. They observed diminished 

age-related increases in cross-hemispheric FC and stronger age-related increases in anterior-

posterior FC in exposed fetuses compared to unexposed fetuses (Thomason et al., 2019). 

Similarly, De Asis-Cruz et al. (De Asis-Cruz et al., 2020) observed both higher and lower 

fetal brain FC after prenatal maternal anxiety.

Furthermore, numerous studies have investigated the impact of a prenatal exposure on 

FC of the early postnatal brain. For instance, studies associated prenatal exposure to 

maternal stress, alcohol, drugs, opioids, and manganese with disruptions of functional 
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network organization in neonates, infants and children (de Water et al., 2018; Donald et 

al., 2016; Donnici et al., 2021; Fan et al., 2017; Radhakrishnan et al., 2021; Roos et al., 

2020; Salzwedel et al., 2015; Scheinost et al., 2016; Wozniak et al., 2011), underlining that 

exposures during prenatal development affect brain FC in early life.

Such reductions in fetal and infant FC related to prenatal adverse exposures may be at the 

start of long-term declines in network structure integrity and thereby contribute to cognitive 

problems later in life (Thomason et al., 2019). Likewise, prenatal undernutrition may be 

associated with altered FC in utero, eventually resulting in altered network connectivity 

in later life. Other stressful exposures in the prenatal environment may display similar 

associations, which should be explored.

Although functional brain network organization starts developing after the first trimester, 

adaptations in the earliest phases of brain development as a result of famine exposure may 

have been associated with alterations of this developmental trajectory and may have thereby 

modified the arrangement of functional brain networks in utero and thereafter. Whether 

the group differences in FC observed in the current study have been present since prenatal 

development or are related to accelerated brain aging associated with prenatal exposure to 

undernutrition is unclear. Follow-up FC measurements in the cohort at an older age may 

help answer this question. Of note, many factors throughout life may have additionally 

impacted the FC of these networks and, thus, direct causality cannot be implied.

4.3. Interpretation of effects in sex-specific analysis

In exposed men, we observed clusters of both higher and lower within-network FC, 

and consistently higher between-network connectivity compared to unexposed men. The 

observations of lower within-network FC and higher between-network FC fit with our 

hypothesized pattern of accelerated brain aging in exposed individuals based on network 

desegregation. In women, the observed group differences reflect both higher and lower 

within- and between-network connectivity in exposed women compared to unexposed 

women.

The observed sex-specific outcomes are in line with previous findings in the DFBC which 

have repeatedly pointed at sex-specific associations of prenatal undernutrition with health 

outcomes of men and women over time. Associations between prenatal undernutrition 

and brain size, BrainAGE and brain perfusion at age 68 were primarily observed in men 

(Bleker et al., 2021). From existing literature, we know that prenatal exposures impact 

male neurodevelopment significantly more than female neurodevelopment (Bale, 2016). 

Presumably, this is due to the faster growth rate of male fetuses in utero and the protective 

effects of the female placenta against maternal perturbations during pregnancy (Bale, 2016). 

Therefore, the male overrepresentation in these DFBC observations associated with brain 

development may not be surprising. Nevertheless, in the current study, we do observe a 

convincing list of alterations of within- and between-network FC in exposed women as 

well. Possibly, exposure to undernutrition during early gestation is more strongly associated 

with aging-related outcomes in men, resulting in a phenotype befitting an aging population, 

whereas this association is different in women, showing adaptations in FC that are not 

necessarily related to aging. Of note, in aging, FC between the DMN and CEN was 
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reported to follow a u-shape, with an initial decrease and thereafter increase (Ng et al., 

2016). We observed higher FC between the DMN and CEN in men and lower FC in 

women after prenatal undernutrition. Speculatively, brain aging in exposed men may have 

progressed further compared to exposed women, explained by the increased vulnerability 

of male fetuses to prenatal exposures. Also, this would fit with the potential selection bias 

of presumably healthier exposed women in the current study as a result of the increased 

mortality in exposed women observed previously in the DFBC (Bleker et al., 2021). 

Longitudinal follow-up of FC in this cohort over time is likely to shed further light on 

these processes.

4.4. Strengths and limitations

Study design limitations warrant mention, especially regarding potential bias of the 

observational study design. Selective fertility should be considered since only the women 

with sufficient fat reserves did not cease to ovulate and were thus capable of conceiving 

during the famine. Selection bias may have occurred as a result of selective mortality 

in early and later life, especially since previous studies in our cohort have shown that 

exposed women had an increased risk of dying at a younger age. Nevertheless, these 

forms of bias have most likely contributed to smaller differences between the exposed and 

unexposed groups and therefore cannot explain the observed group differences. These forms 

of selection bias cannot be overcome in human cohort studies. Replication in other human 

cohorts will contribute to a stronger evidence base and should ideally be supplemented 

with experimental evidence in animal models to address causality. Moreover, many factors 

between birth and data collection at age 68 may have had an impact on the observed 

outcomes, limiting the potential of any inferences regarding causality. Nonetheless, our 

quasi-experimental study design offers the possibility of studying the long-term effects of 

prenatal undernutrition in an otherwise impossible manner (Bleker et al., 2021). Lastly, 

increasing the scan duration time might have resulted in more reliable estimates of FC, 

although increasing scan duration in older participants may also increase motion artefacts. 

Studies have shown that 5–10 minutes of resting-state data is sufficient for group-level 

patterns of functional brain organization and group-level differences (Laumann et al., 2015).

Finally, our analysis approach had some implications for the interpretation of the results. 

First, our sensitivity analysis extracting the ROI BOLD time series data from smoothed 

versus unsmoothed data underlines the impact of subjective choices in the analysis approach 

on the outcome of neuroimaging analysis pipelines. The fact that most reported significant 

clusters were still clearly visible using this different approach strengthens our confidence 

in the robustness of our results. Further, cluster-extent-based thresholding provides low 

spatial specificity, especially at higher p-value cluster-defining primary thresholds (Woo 

et al., 2014). Therefore, we can only interpret the significant findings as a general effect 

within the cluster, and not make any assumptions about the specific location of the effect. 

Nevertheless, we believe that this was not hindering given that it was not the aim of 

our study to find prenatal famine related differences in FC at specific locations. As this 

study was designed as an exploratory study, we did not perform a correction for multiple 

testing for the independent tests on top of the FDR correction performed in the cluster-wise 

correction. To prevent overinterpretation of potential false-positive effects, we intentionally 
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did not provide an in-depth discussion of all individual effects, but instead discussed overall 

within- and between-network effects. Lastly, we did not include a sex-by-group interaction 

analysis given the small study sample resulting in little power to identify an interaction 

effect and the large body of evidence of sex-specific associations in our cohort. As a result, 

we can only report sex-specific associations and cannot make any inferences on potential 

sex-differences.

Further, a larger sample size would have been preferable. Unfortunately, we were not able to 

recruit new participants since all eligible cohort members were invited.

4.5. Conclusions

We found sex-specific alterations in FC within and between three high-order cognitive 

functional networks in 68-year-old men and women who had been exposed to famine in 

early gestation compared to unexposed individuals. This suggests that prenatal nutrition is 

associated with widespread modifications of intrinsic brain activity in late life. Thereby, 

this study demonstrates that associations between prenatal undernutrition and brain network 

functional connectivity extend late into human life. The observed sex-specific effects are in 

line with previous findings, which have pointed at differential associations between prenatal 

undernutrition and health outcomes in men and women over time.

Based on the current results, we can only speculate whether these differences have been 

present since early life, reflect an ongoing process of accelerated brain aging associated 

with prenatal undernutrition or a combination of early life adaptations and accelerated brain 

aging. A longitudinal follow-up brain MRI study will enable us to map changes over time, 

thereby providing further insight on the progression of brain aging in this cohort.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Significant within- and between-network clusters across all participants.
Abbreviations: CEN, central executive network; DMN, default mode network; L, left; LP, 

lateral parietal; MPFC, medial prefrontal cortex; PPC, posterior parietal cortex; R, right; 

SMG, supramarginal gyrus; SN, salience network. Magenta clusters: exposed > controls, 

blue clusters: controls > exposed. Light magenta/blue: primary threshold p < 0.05, dark 

magenta/blue: primary threshold p < 0.01. Masks are shown in yellow (DMN), orange (SN) 

and teal (CEN).
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Fig. 2. Sex-specific significant within-network clusters.
Abbreviations: AI, anterior insula; CEN, central executive network; DMN, default mode 

network; L, left; LP, lateral parietal; LPFC, lateral prefrontal cortex; PPC, posterior parietal 

cortex; R, right; RPFC, rostral prefrontal cortex; SMG, supramarginal gyrus; SN, salience 

network. Magenta clusters: exposed > ceontrols, blue clusters: controls > exposed. Light 

magenta/blue: primary threshold p < 0.05, dark magenta/blue: primary threshold p < 0.01. 

Masks are shown in yellow (DMN), orange (SN) and teal (CEN).
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Fig. 3. Sex-specific significant between-network clusters.
Abbreviations: CEN, central executive network; DMN, default mode network; SN, salience 

network. Magenta clusters: exposed > controls, blue clusters: controls > exposed. Light 

magenta/blue: primary threshold p < 0.05, dark magenta/blue: primary threshold p < 0.01. 

Masks are shown in yellow (DMN), orange (SN) and teal (CEN).

Boots et al. Page 17

Neurobiol Aging. Author manuscript; available in PMC 2022 September 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Boots et al. Page 18

Ta
b

le
 1

M
at

er
na

l, 
bi

rt
h 

an
d 

ad
ul

t c
ha

ra
ct

er
is

tic
s

N
B

or
n 

be
fo

re
E

xp
os

ed
 in

 e
ar

ly
 g

es
ta

ti
on

C
on

ce
iv

ed
 a

ft
er

To
ta

l
p

G
en

er
al

 c
ha

ra
ct

er
is

tic
s

N
34

40
38

11
2

A
ge

 (
ye

ar
s)

11
2

68
.7

 (
0.

5)
b

67
.4

 (
0.

2)
66

.7
 (

0.
4)

67
.6

 (
0.

9)
0.

22

W
om

en
 (

%
)

11
2

21
 (

61
.8

)
22

 (
55

.0
)

20
 (

52
.6

)
63

 (
56

.3
)

0.
84

M
at

er
na

l a
nd

 b
ir

th
 c

ha
ra

ct
er

is
tic

s

M
an

ua
l o

cc
up

at
io

n 
he

ad
 o

f 
fa

m
ily

 (
%

)
91

18
 (

75
.0

)
23

 (
63

.9
)

19
 (

61
.3

)
60

 (
65

.9
)

0.
74

B
ir

th
 w

ei
gh

t (
g)

11
2

33
63

 (
49

5)
34

50
 (

47
0)

33
84

 (
50

1)
34

01
 (

48
5)

0.
43

H
ea

d 
ci

rc
um

fe
re

nc
e 

at
 b

ir
th

 (
cm

)
11

1
32

.4
 (

1.
3)

32
.8

 (
1.

5)
33

.0
 (

1.
6)

32
.7

 (
1.

5)
0.

91

Pr
eg

na
nc

y 
du

ra
tio

n 
(d

ay
s)

98
28

5 
(1

1)
28

7 
(1

1)
28

6 
(1

4)
28

6 
(1

2)
0.

44

M
at

er
na

l a
ge

 a
t b

ir
th

 (
ye

ar
s)

11
2

28
.0

 (
5.

3)
26

.3
 (

6.
4)

27
.6

 (
6.

4)
27

.3
 (

6.
1)

0.
19

A
du

lt 
ch

ar
ac

te
ri

st
ic

s

E
du

ca
tio

n 
(1

0-
po

in
t s

ca
le

)
11

2
4.

8 
(2

.5
)

4.
6 

(1
.8

)
4.

6 
(2

.1
)

4.
6 

(2
.1

)
0.

87

So
ci

oe
co

no
m

ic
 s

ta
tu

s
11

2
51

 (
13

)
48

 (
13

)
51

 (
15

)
50

 (
14

)
0.

35

E
ve

r 
sm

ok
ed

 (
%

)
11

2
20

 (
58

.8
)

26
 (

65
.0

)
22

 (
57

.9
)

68
 (

60
.7

)
0.

49

B
M

I 
(k

g/
m

2 )
11

2
27

.4
 (

3.
4)

a
28

.4
 (

5.
0)

29
.9

 (
5.

7)
28

.6
 (

4.
9)

0.
72

H
yp

er
te

ns
io

n 
(%

)
11

2
18

 (
52

.9
)

18
 (

45
.0

)
22

 (
57

.9
)

58
 (

51
.8

)
0.

29

H
yp

er
ch

ol
es

te
ro

le
m

ia
 (

%
)

11
1

16
 (

47
.1

)
20

 (
51

.3
)

15
 (

39
.5

)
51

 (
45

.9
)

0.
41

D
ia

be
te

s 
(%

)
11

2
6 

(1
7.

6)
9 

(2
2.

5)
5 

(1
3.

2)
20

 (
17

.9
)

0.
34

St
ro

ke
 o

r 
T

IA
 (

%
)

11
0

1 
(2

.9
)

1 
(2

.6
)

3 
(8

.1
)

5 
(4

.5
)

0.
47

H
A

D
S 

an
xi

et
y 

(s
co

re
)

11
2

3.
6 

(2
.4

)
4.

8 
(2

.9
)

4.
7 

(3
.0

)
4.

4 
(2

.8
)

0.
26

H
A

D
S 

de
pr

es
si

on
 (

sc
or

e)
11

2
1.

8 
(2

.0
)

2.
6 

(2
.7

)
3.

1 
(4

.4
)

2.
5 

(3
.2

)
0.

92

To
ta

l b
ra

in
 v

ol
um

e 
(m

m
3 )

11
2

10
16

83
3 

(1
05

44
9)

10
17

93
3 

(8
29

10
)

10
43

44
5 

(1
13

05
2)

10
26

25
5 

(1
00

67
1)

0.
52

B
ra

in
A

G
E

 (
sc

or
e)

11
2

−
0.

8 
(4

.1
)

1.
5 

(4
.6

)
0.

4 
(5

.1
)

0.
4 

(4
.7

)
0.

07

D
at

a 
ar

e 
di

sp
la

ye
d 

as
 m

ea
n 

(S
D

) 
or

 a
s 

fr
eq

ue
nc

ie
s 

(%
).

 p
-v

al
ue

s 
fo

r 
di

ff
er

en
ce

s 
be

tw
ee

n 
th

e 
ex

po
se

d 
an

d 
co

m
bi

ne
d 

un
ex

po
se

d 
(b

or
n 

be
fo

re
 a

nd
 c

on
ce

iv
ed

 a
ft

er
) 

gr
ou

ps
 a

re
 b

as
ed

 o
n 

re
gr

es
si

on
 a

na
ly

se
s.

 
Su

pe
rs

cr
ip

t r
ep

re
se

nt
 p

-v
al

ue
s 

of
 li

ne
ar

 a
nd

 lo
gi

st
ic

 r
eg

re
ss

io
n 

an
al

ys
es

 f
or

 in
di

vi
du

al
s 

bo
rn

 b
ef

or
e 

th
e 

fa
m

in
e 

co
m

pa
re

d 
to

 in
di

vi
du

al
s 

co
nc

ei
ve

d 
af

te
r 

th
e 

fa
m

in
e.

 K
ey

: B
M

I,
 B

od
y 

M
as

s 
In

de
x;

 H
A

D
S,

 
H

os
pi

ta
l A

nx
ie

ty
 a

nd
 D

ep
re

ss
io

n 
Sc

al
e;

 T
IA

, T
ra

ns
ie

nt
 I

sc
he

m
ic

 A
tta

ck
.

a p 
<

 0
.0

5.

Neurobiol Aging. Author manuscript; available in PMC 2022 September 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Boots et al. Page 19
b p 

<
 0

.0
01

.

Neurobiol Aging. Author manuscript; available in PMC 2022 September 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Boots et al. Page 20

Ta
b

le
 2

Si
gn

if
ic

an
t w

ith
in

-n
et

w
or

k 
gr

ou
p 

ef
fe

ct
s 

ac
ro

ss
 a

ll 
pa

rt
ic

ip
an

ts

N
et

w
or

k
Se

ed
 r

eg
io

n
Su

br
eg

io
n 

ef
fe

ct
D

ir
ec

ti
on

 o
f 

ef
fe

ct
F

W
E

 c
lu

st
er

 t
hr

es
ho

ld
 a

t 
p 

< 
0.

01
C

lu
st

er
 s

iz
e 

at
 p

 <
 0

.0
1

F
W

E
 c

lu
st

er
 t

hr
es

ho
ld

 a
t 

p 
< 

0.
05

C
lu

st
er

 s
iz

e 
at

 p
 <

 0
.0

5

C
E

N
PP

C
 L

L
PF

C
 L

E
E

 >
 H

C
44

31
13

4
13

9

D
M

N
M

PF
C

L
P 

R
H

C
 >

 E
E

88
31

24
5

26
0

D
M

N
L

P 
L

M
PF

C
H

C
 >

 E
E

10
5

29
29

6
42

1

SN
SM

G
 R

R
PF

C
 R

H
C

 >
 E

E
84

50
22

0
22

7

K
ey

: C
E

N
, c

en
tr

al
 e

xe
cu

tiv
e 

ne
tw

or
k;

 D
M

N
, d

ef
au

lt 
m

od
e 

ne
tw

or
k;

 E
E

, e
ar

ly
 e

xp
os

ed
; F

W
E

, F
am

ily
-W

is
e 

E
rr

or
; H

C
, h

ea
lth

y 
co

nt
ro

ls
; L

, l
ef

t; 
L

P,
 la

te
ra

l p
ar

ie
ta

l; 
L

PF
C

, l
at

er
al

 p
re

fr
on

ta
l c

or
te

x;
 M

PF
C

, 
m

ed
ia

l p
re

fr
on

ta
l c

or
te

x;
 P

PC
, p

os
te

ri
or

 p
ar

ie
ta

l c
or

te
x;

 R
, r

ig
ht

; R
PF

C
, r

os
tr

al
 p

re
fr

on
ta

l c
or

te
x;

 S
M

G
, s

up
ra

m
ar

gi
na

l g
yr

us
; S

N
, s

al
ie

nc
e 

ne
tw

or
k.

Neurobiol Aging. Author manuscript; available in PMC 2022 September 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Boots et al. Page 21

Ta
b

le
 3

Si
gn

if
ic

an
t b

et
w

ee
n-

ne
tw

or
k 

gr
ou

p 
ef

fe
ct

s 
ac

ro
ss

 a
ll 

pa
rt

ic
ip

an
ts

.

Se
ed

 
ne

tw
or

k
M

as
k 

ne
tw

or
k

D
ir

ec
ti

on
 o

f 
ef

fe
ct

F
W

E
 c

lu
st

er
 t

hr
es

ho
ld

 
at

 p
 <

 0
.0

1
C

lu
st

er
 s

iz
e 

at
 p

 <
 

0.
01

F
W

E
 c

lu
st

er
 t

hr
es

ho
ld

 
at

 p
 <

 0
.0

5
C

lu
st

er
 s

iz
e 

at
 p

 <
 

0.
05

Se
ed

 s
ub

re
gi

on
a

M
as

k 
su

br
eg

io
n

D
M

N
C

E
N

H
C

 >
 E

E
82

15
5

22
3

21
2

M
PF

C
L

PF
C

 R

L
P 

R
L

PF
C

 R

PC
C

L
PF

C
 R

K
ey

: C
E

N
, c

en
tr

al
 e

xe
cu

tiv
e 

ne
tw

or
k;

 D
M

N
, d

ef
au

lt 
m

od
e 

ne
tw

or
k;

 E
E

, e
ar

ly
 e

xp
os

ed
; F

W
E

, F
am

ily
-W

is
e 

E
rr

or
; H

C
, h

ea
lth

y 
co

nt
ro

ls
; L

, l
ef

t; 
L

P,
 la

te
ra

l p
ar

ie
ta

l; 
L

PF
C

, l
at

er
al

 p
re

fr
on

ta
l c

or
te

x;
 M

PF
C

, 
m

ed
ia

l p
re

fr
on

ta
l c

or
te

x;
 P

C
C

, p
re

cu
ne

us
 c

or
te

x;
 R

, r
ig

ht
.

a Se
ed

 s
ub

re
gi

on
s 

w
er

e 
de

te
rm

in
ed

 in
 p

os
t-

ho
c 

an
al

ys
es

 u
si

ng
 th

e 
‘s

ee
d 

ne
tw

or
k’

 s
ub

re
gi

on
s 

as
 s

ee
ds

 m
as

ke
d 

w
ith

 th
e 

‘m
as

k 
ne

tw
or

k’
.

Neurobiol Aging. Author manuscript; available in PMC 2022 September 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Boots et al. Page 22

Ta
b

le
 4

Se
x-

sp
ec

if
ic

 s
ig

ni
fi

ca
nt

 w
ith

in
-n

et
w

or
k 

gr
ou

p 
ef

fe
ct

s.

N
et

w
or

k
Se

ed
 r

eg
io

n
Su

br
eg

io
n 

ef
fe

ct
D

ir
ec

ti
on

 o
f 

ef
fe

ct
F

W
E

 c
lu

st
er

 t
hr

es
ho

ld
 a

t 
p 

< 
0.

01
C

lu
st

er
 s

iz
e 

at
 p

 <
 0

.0
1

F
W

E
 c

lu
st

er
 t

hr
es

ho
ld

 a
t 

p 
< 

0.
05

C
lu

st
er

 s
iz

e 
at

 p
 <

 0
.0

5

M
en

D
M

N
L

P 
L

PC
C

E
E

 >
 H

C
87

13
1

24
5

89
5

SN
R

PF
C

 L
A

C
C

E
E

 >
 H

C
64

71
19

7
16

0

SN
A

I 
L

A
C

C
E

E
 >

 H
C

38
31

96
13

2

SN
A

I 
L

R
PF

C
 L

E
E

 >
 H

C
38

1
96

10
2

C
E

N
PP

C
 R

PP
C

 L
E

E
 >

 H
C

47
2

11
2

13
8

D
M

N
L

P 
L

M
PF

C
H

C
 >

 E
E

87
67

24
5

59
5

SN
A

I 
L

SM
G

 L
H

C
 >

 E
E

38
49

96
11

0

W
om

en

C
E

N
L

PF
C

 L
L

PF
C

 R
E

E
 >

 H
C

56
20

18
6

23
5

C
E

N
L

PF
C

 L
PP

C
 R

E
E

 >
 H

C
56

22
18

6
18

8

C
E

N
PP

C
 L

a
L

PF
C

 L
E

E
 >

 H
C

35
60

, 7
3

88
34

7

C
E

N
PP

C
 L

L
PF

C
 R

E
E

 >
 H

C
35

7
88

88

C
E

N
L

PF
C

 R
L

PF
C

 L
E

E
 >

 H
C

60
91

15
9

25
1

D
M

N
L

P 
R

M
PF

C
H

C
 >

 E
E

89
12

8
28

9
47

7

SN
A

I 
L

R
PF

C
 R

H
C

 >
 E

E
56

12
16

1
16

5

SN
R

PF
C

 R
A

I 
L

H
C

 >
 E

E
75

10
0

22
2

20
0

SN
SM

G
 L

R
PF

C
 R

H
C

 >
 E

E
63

55
15

5
31

5

C
E

N
PP

C
 L

L
PF

C
 R

H
C

 >
 E

E
35

13
88

91

C
E

N
PP

C
 L

PP
C

 R
H

C
 >

 E
E

35
1

88
10

0

K
ey

: A
C

C
, a

nt
er

io
r 

ci
ng

ul
at

e 
co

rt
ex

; A
I,

 a
nt

er
io

r 
in

su
la

; C
E

N
, c

en
tr

al
 e

xe
cu

tiv
e 

ne
tw

or
k;

 D
M

N
, d

ef
au

lt 
m

od
e 

ne
tw

or
k;

 E
E

, e
ar

ly
 e

xp
os

ed
; F

W
E

, F
am

ily
-W

is
e 

E
rr

or
; H

C
, h

ea
lth

y 
co

nt
ro

ls
; L

, l
ef

t; 
L

P,
 

la
te

ra
l p

ar
ie

ta
l; 

M
PF

C
, m

ed
ia

l p
re

fr
on

ta
l c

or
te

x;
 P

C
C

, p
re

cu
ne

us
 c

or
te

x;
 P

PC
, p

os
te

ri
or

 p
ar

ie
ta

l c
or

te
x;

 R
, r

ig
ht

; R
PF

C
, r

os
tr

al
 p

re
fr

on
ta

l c
or

te
x;

 S
M

G
, s

up
ra

m
ar

gi
na

l g
yr

us
; S

N
, s

al
ie

nc
e 

ne
tw

or
k.

a Tw
o 

si
gn

if
ic

an
t c

lu
st

er
s 

w
er

e 
id

en
tif

ie
d 

be
tw

ee
n 

th
es

e 
re

gi
on

s.

Neurobiol Aging. Author manuscript; available in PMC 2022 September 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Boots et al. Page 23

Ta
b

le
 5

Se
x-

sp
ec

if
ic

 s
ig

ni
fi

ca
nt

 b
et

w
ee

n-
ne

tw
or

k 
gr

ou
p 

ef
fe

ct
s

Se
ed

 n
et

w
or

k
M

as
k 

ne
tw

or
k

D
ir

ec
ti

on
 o

f 
ef

fe
ct

F
W

E
 c

lu
st

er
 

th
re

sh
ol

d 
at

 p
 <

 0
.0

1
C

lu
st

er
 s

iz
e 

at
 p

 <
 

0.
01

F
W

E
 c

lu
st

er
 

th
re

sh
ol

d 
at

 p
 <

 0
.0

5
C

lu
st

er
 s

iz
e 

at
 p

 <
 

0.
05

Se
ed

 s
ub

re
gi

on
a

M
as

k 
su

br
eg

io
n

M
en

C
E

N
D

M
N

E
E

 >
 H

C
86

21
24

5
31

2
L

PF
C

 L
PC

C

C
E

N
SN

E
E

 >
 H

C
92

83
23

2
29

1
L

PF
C

 L
A

I 
L

L
PF

C
 R

A
I 

L

SN
C

E
N

E
E

 >
 H

C
39

44
99

16
9

A
C

C
L

PF
C

 R

A
I 

L
L

PF
C

 R

A
I 

R
L

PF
C

 R

R
PF

C
 L

L
PF

C
 R

39
25

, 1
1

99
12

6,
 1

19
A

I 
L

b
L

PF
C

 L

39
11

99
11

9
A

I 
R

L
PF

C
 L

W
om

en

SN
D

M
N

E
E

 >
 H

C
10

3
16

28
9

33
4

R
PF

C
 R

PC
C

D
M

N
C

E
N

H
C

 >
 E

E
80

12
7

20
7

20
2

M
PF

C
L

PF
C

 R

L
P 

L
L

PF
C

 R

L
P 

R
L

PF
C

 R

PC
C

L
PF

C
 R

SN
C

E
N

H
C

 >
 E

E
50

56
13

5
18

3
A

I 
R

PP
C

 R

SM
G

 L
PP

C
 R

50
30

13
5

19
6

A
C

C
L

PF
C

 L

SM
G

 L
L

PF
C

 L

SM
G

 R
L

PF
C

 L

K
ey

: A
C

C
, a

nt
er

io
r 

ci
ng

ul
at

e 
co

rt
ex

; A
I,

 a
nt

er
io

r 
in

su
la

; C
E

N
, c

en
tr

al
 e

xe
cu

tiv
e 

ne
tw

or
k;

 D
M

N
, d

ef
au

lt 
m

od
e 

ne
tw

or
k;

 E
E

, e
ar

ly
 e

xp
os

ed
; F

W
E

, F
am

ily
-W

is
e 

E
rr

or
; H

C
, h

ea
lth

y 
co

nt
ro

ls
; L

, l
ef

t; 
L

P,
 

la
te

ra
l p

ar
ie

ta
l; 

L
PF

C
, l

at
er

al
 p

re
fr

on
ta

l c
or

te
x;

 M
PF

C
, m

ed
ia

l p
re

fr
on

ta
l c

or
te

x;
 P

C
C

, p
re

cu
ne

us
 c

or
te

x;
 P

PC
, p

os
te

ri
or

 p
ar

ie
ta

l c
or

te
x;

 R
, r

ig
ht

; R
PF

C
, r

os
tr

al
 p

re
fr

on
ta

l c
or

te
x;

 S
M

G
, s

up
ra

m
ar

gi
na

l g
yr

us
; 

SN
, s

al
ie

nc
e 

ne
tw

or
k.

a Se
ed

 s
ub

re
gi

on
s 

w
er

e 
de

te
rm

in
ed

 in
 p

os
t-

ho
c 

an
al

ys
es

 u
si

ng
 th

e 
‘s

ee
d 

ne
tw

or
k’

 s
ub

re
gi

on
s 

as
 s

ee
ds

 m
as

ke
d 

w
ith

 th
e 

‘m
as

k 
ne

tw
or

k’
.

b Tw
o 

si
gn

if
ic

an
t c

lu
st

er
s 

w
er

e 
id

en
tif

ie
d 

be
tw

ee
n 

th
es

e 
re

gi
on

s.

Neurobiol Aging. Author manuscript; available in PMC 2022 September 09.


	Abstract
	Introduction
	Materials and methods
	Subjects
	The Dutch famine birth cohort
	Study sample

	Magnetic resonance imaging
	Data acquisition
	Data analysis
	Seed regions of interest.
	Statistical analysis.


	Data availability

	Results
	Study group characteristics
	Functional connectivity outcomes
	Functional connectivity outcomes in men
	Functional connectivity outcomes in women
	Total number of voxels


	Discussion
	Interpretation of associations across all participants
	Developmental framework
	Interpretation of effects in sex-specific analysis
	Strengths and limitations
	Conclusions

	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5

