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Abstract

Background: Numerous types of clustering like single linkage and K-means have been widely studied and applied
to a variety of scientific problems. However, the existing methods are not readily applicable for the problems that
demand high stringency.

Methods: Our method, self consistency grouping, i.e. SCG, yields clusters whose members are closer in rank to
each other than to any member outside the cluster. We do not define a distance metric; we use the best known
distance metric and presume that it measures the correct distance. SCG does not impose any restriction on the
size or the number of the clusters that it finds. The boundaries of clusters are determined by the inconsistencies in
the ranks. In addition to the direct implementation that finds the complete structure of the (sub)clusters we
implemented two faster versions. The fastest version is guaranteed to find only the clusters that are not subclusters
of any other clusters and the other version yields the same output as the direct implementation but does so more
efficiently.

Results: Our tests have demonstrated that SCG yields very few false positives. This was accomplished by
introducing errors in the distance measurement. Clustering of protein domain representatives by structural
similarity showed that SCG could recover homologous groups with high precision.

Conclusions: SCG has potential for finding biological relationships under stringent conditions.

Background
Grouping related objects into clusters has been one of
the most widely used tools in many disciplines including
biological sciences [1]. Typically, clustering methods
endeavor to form clusters of objects where the objects
within the cluster are more similar than the objects out-
side the cluster. They either partition the data set into
groups or agglomerate the single objects into groups.
Most methods require some knowledge; e.g. the number
of clusters K in K-means or some kind of similarity mea-
sure cut-off (distance cut-offs in single linkage) [2,3]. In
general, for biological applications the number of (sub)
clusters to be formed (e.g. the number of homologous
groups in protein space), or the cluster size limit to

determine the boundaries is not known. Moreover, speci-
ficity is crucial, i.e. clustering biologically distant objects
is worse than not clustering them [4].
We developed a method that we call self-consistency

grouping i.e. SCG, that directly uses the natural definition
of clustering objects, i.e. the objects in the cluster are
more similar to each other than to the objects outside of
the cluster [1]. We define the asymmetric distance
between an object x and an object y as p if there are p-1
objects (including itself) that are more similar to x than y.
A set of k objects form a cluster if the rank of any object
within the cluster with respect to any other in the cluster
is at most k. SCG can be considered as an agglomerative
hierarchical clustering method since it starts to form clus-
ters with individual objects and forms larger clusters until
no more clusters can be formed. It can also be considered
as a generalized version of the method used in building
Clusters of Orthologous Groups (COG) database [5].
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In building the COG database, the authors used a list of
mutually most similar proteins pairs whereas we employ
X-mutually nearest neighbors, where X is not specified
and is solely dependent on the input data. Mutual nearest
neighbors idea was introduced in 1973 by Jarvis and
Patrick [6], then employed by others [7-9]. Nagendras-
wamy and Guru [8] suggested a similar consistency idea
which is more relaxed compared to SCG, in the K-mutual
nearest neighbors context.

Methods
Terminology
A set of k objects form a cluster if the rank of any object y
with respect to any other x in the cluster is at most k; i.e.
rank(x,y)≤k. This stringent criterion yields very low false
positives. The cluster definition is symmetric whereas the
distance metric (the rank of similarity) is asymmetric.
SCG partitions the dataset and generates a hierarchy
within each partition.
The total number of objects in the data set is n. We dis-

allow a cluster of size n. Cs is a subcluster of a cluster C if
objects of cluster Cs are a proper subset of objects of C. A
cluster can subsequently become a subcluster of another
cluster. An independent cluster is a cluster that is not a
subcluster of any other cluster. However, it may have sub-
clusters of its own. For example, consider the following
grouping produced by SCG on seven objects {a,b,c,d,e,f,g}:
(a, ((b,c) d)) (e,f,g,h). It has two independent clusters, (a,
((b,c) d)) and (e,f,g,h); (b,c) is a subcluster of ((b,c) d). Like-
wise, ((b,c) d)) is a subcluster of (a, ((b,c) d)). We call the
specification of subclusters within a cluster as structure.
An algorithm specifies the complete structure if it identifies
all subclusters.
We call an algorithm deterministic if the numbering of

the objects does not alter the output, otherwise it is non-
deterministic. The candidate index of a given a set S is
defined as the maximum value of rank(x,y) ∀ {x,y} Î S.
The input consists of a rank matrix, rmatrix, where

rmatrix[i,j] has rank(i,j). Hence, rmatrix consists of inte-
gers in (1,…,n) and each of its row is a permutation of
(1,2,…,n). Each object is most similar to itself. Thus, the
rmatrix[i,i]=1. The objective is to find the hierarchical
structure of clusters where each cluster’s members are
more similar to each other than to the members of the
other clusters. Likewise, the members of a subcluster are
more similar to each other than to the members of the
other subclusters within a given cluster. For ease of com-
putation, sorted rank matrix, smatrix is created from
rmatrix. The entity smatrix[i,j] = k if rank [i, k] =j. Every
object is most similar to itself, thus, smatrix[i,1] =i.

Algorithms
We present three algorithms: A1, A2, and A3. A1 and
A3 are equivalent, they are deterministic and specify

complete structure whereas A2 does not specify the
complete structure and it is non-deterministic. When
comparing to other methods we call A2 as SCG-fast,
SCG-fast is used because we compare the independent
clusters of SCG to that of other methods.
Each of A1, A2, and A3 determines if the first k objects

in row o (corresponding to object o) of smatrix form a
cluster. They differ in the way o and k are chosen, i.e.,
they differ in the order of examining the objects (i.e. how
o is chosen) and the manner in which the size of the next
feasible cluster including o is chosen.
A1 is the most straightforward realization of SCG. A2

and A3 use candidate indices to improve efficiency. We
make a key observation about the order in which objects
must be explored based on their respective candidate
indices. This observation yields A3.
Asymptotic worst case time complexity of all algo-

rithms is the same. In practice, the fastest to the slowest
algorithms in sequence are (A2, A3, A1). In practice, run-
ning A2 to find all independent clusters, followed by run-
ning A3 on each of the independent clusters was the
fastest. A2 quickly finds all the independent clusters and
in due process breaks down the original set of objects
into several subsets. A3 runs faster on all the subsets
combined compared to the original set.
Subcluster management
We use a tree data structure to manage subcluster struc-
ture. Initially every node representing an object is a root.
We call roots (either singletons or that have children) as
tree objects. When two or more tree objects O1…Oi form
a cluster C, a new root r is created and all the roots
denoting O1…Oi become children of r. From now on the
r represents C. When one is examining an object o, if the
first k elements in row o of rmatrix form a cluster C1 and
if the first k+p elements form a cluster C2 then the addi-
tional p elements in C2 (w.r.t. C1) may form a subcluster.
To determine this, we check to see if all of these elements
have a common root rc. If so then we link rc to the root
of C2. Hence, this method is efficient and does not
increase the overall time complexity.
A1 algorithm
At the start of an iteration, all the objects are marked as
valid for that iteration. For every valid object o, A1 checks
if the first f objects in row o of rmatrix form a cluster. The
variable f is initialized to two. It is incremented by one
after each iteration. If a cluster is formed, it is stored as a
root of the new tree that is formed from the individual
nodes (representing objects or trees in case there are sub-
clusters) as immediate children and all the objects in the
cluster are marked as invalid for the current iteration. If
larger clusters are formed in the subsequent iterations that
include the existing clusters, then the existing clusters
become subclusters of the newly formed cluster and the
trees are merged accordingly to reflect the structure.
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The algorithm examines all clusters from the smallest
to the largest size and hence finds all clusters and their
subclusters. Only clusters that contain invalid objects
(hence already examined) are not examined. In O(k2)
one can check if k objects form cluster. In the worst
case, each object consumes ∑k=2,n-1 O(k2) = O(n3), a
total of O(n4) for all the n objects.
A2 algorithm
For every object o, A2 checks if the first oi objects of oth

row of rmatrix form a cluster. The variable oi is the
index variable for object o. It is initialized to two. If the
set of first oi objects do not form a cluster then index
variable oi is set to the candidate index (defined earlier)
of the first oi objects. If a cluster is formed then it is
stored in a tree structure and oi is incremented by one.
We call the first candidate index number of objects of
the oth row as a candidate cluster for object o. When
larger clusters are formed in the subsequent iterations,
the structure is updated accordingly. This process is
repeated until an invalid item is encountered or the end
of the row is reached. At this time, the largest possible
cluster containing this object has formed and all its
members are marked as invalid. The same process is
repeated at the next valid object. The computation ter-
minates when no valid object remains. An object o is
marked as invalid if it belongs to an independent clus-
ter, which can be a singleton, i.e. {o}.
Let the first two objects in the jth row of rmatrix be {j,m}.

The first object will be j itself because it is most similar to
itself. Let the rank[m,j]= r (the score is asymmetric). There
are two cases, either r =2 or r>2. In the first case we have a
cluster of size two. Otherwise, the candidate index is r. If a
candidate cluster does not form a cluster then the mini-
mum size of the next candidate cluster is equal to the can-
didate index of the current candidate cluster. Similar to A1
the complexity is O(n4). However, in practice, the average
number of candidate clusters for A2 is much lower than
A1.
We note that when A2 examines an object o it considers

all candidate clusters of o which includes the independent
cluster that contains o. Due to the symmetry in the defini-
tion of SCG, a given object belongs to only one indepen-
dent cluster. If an object x belongs to two clusters C1 and
C2 then either C1⊂ C2 or C2⊂ C1. This is true because all
the members of the smaller cluster have smaller ranks
with respect to o and hence will be included in any larger
cluster. Consider a cluster C=(1(2,(3,4)5)). When the algo-
rithm examines object 1 it finds (1,2,3,4,5) where the
structure of C is not known. Whereas if C=((((1,2), 3),4)5)
then algorithm will find entire structure when it examines
object 1. Thus, the complete structure is not always identi-
fied and depends on the ids. assigned to the objects. Thus,
A2 is non deterministic.
Lemma 1. A2 finds all independent clusters.

Proof. We prove this by contradiction. Let C be an
independent cluster that is not identified by A2. Let the
object with the smallest id. in C be x. After A2 examines
all objects whose ids. are less than x, either x is valid or
it is invalid. If x was invalid then x must be a member
of a cluster C’ formed when an object with id. y (<x) is
examined. This contradicts that x has the smallest id.. If
x was valid then the algorithm will find the largest clus-
ter involving x (which can be a singleton, i.e. x by itself).
Note that A2 tries all candidate indices of x. This con-
tradicts that C is not identifed. Thus, A2 finds all inde-
pendent clusters.
A3 algorithm
A3 captures the computational advantage of not examin-
ing infeasible candidate clusters. For any given object o its
index oi is initialized to two. For every valid object o,
whose index is equal to the minimum value among all
indices, i.e. minimum index, we check if the first oi objects
of oth row of smatrix form a cluster. At the start of an
iteration if no valid object remains the computation termi-
nates. If a cluster is formed, it is stored in a tree structure.
The indices of all objects in the cluster are incremented by
one and these objects are marked as invalid for the current
iteration. Similar to A2, if the first oi objects of oth row do
not form a cluster then the index of o is set to the candi-
date index. If the index of any object equals n then that
object is marked as invalid for the rest of the computation.
When larger clusters are formed, they are handled as in
A1 and A2.
A3 identifies all independent clusters. The following

lemma proves that A3 also identifies all subclusters within
a given independent cluster. Thus, similar to A1, it finds
the entire subcluster structure.
Lemma 2. A3 finds all subclusters of an independent

cluster C.
Proof. We prove this by contradiction. Let S be a sub-

cluster of C that is not found by A3. Let |S| =s (< |C|) and
the object with the smallest id. in S be x. Consider the
execution of A3 when the minimum index equals s. When
algorithm examines object x, it identifies the cluster S. Let
the object with the smallest id. in C be y. Either x=y or
y<x. In the former case S is identified when examining
object x and in the latter case S should already have been
identified when y was examined. In either case, when C is
formed, S already exists; so, it is incorporated into C. This
is a contradiction. Thus, A3 finds all subclusters.
Execution Trace
Consider rmatrix and smatrix for seven objects (Fig 1.),
where rows represent an object. In rmatrix the columns
represent objects and the entry is the rank of the object
denoted by the column number with respect to the object
represented by the row, whereas, in the smatrix the col-
umn indicates the rank and the entry is the correspond-
ing object id.
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We trace all three algorithms on these matrices. A1
examines five potential clusters of size two, three clus-
ters of size three, four clusters of size four and seven
each of sizes five through seven and identifies: ( (1,2,
(3,4)) (5,(6,7)) )
A2 finds {1,2,3,4} and {5,6,7} but subclusters are not

known. A2 first examines {1,4} and rank(4,1)=4 so, the
index is set to four. This results in identifying the cluster
{1,2,3,4} and setting the index to five. The rank(6,4)=7;
thus, 1,2,3,and 4 are marked as invalid and the next object
i.e. 5 is considered. The first two objects, 5and 6 do not

form a cluster and the rank(6,5) = 3. Thus, index of 5 is set
to three and the first three objects 5,6, and 7 are checked.
They form a cluster; so, the index is incremented to four.
The fourth object is 1 and the rank(1,5) =7. The objects 5,6,
and 7 are set to invalid and the computation halts because
no valid objects remain. In total, A2 examines four potential
clusters, two of size two, one each of sizes three and four.
A3 examines five potential clusters of size two, two of

size three and one of size four. In A3, all indices are
initialized to two and objects are checked to determine
if they form clusters of size two. The objects 4 and 7

Figure 1 Execution traces for SCG algorithms. The two matrices rmatrix (upper matrix) and smatrix (lower matrix) are shown for a dataset of
seven objects. We trace A1, A2 and A3 on this input. Note that the ranks are asymmetric.
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form clusters of size two with 3 and 6 respectively. For
the objects that form a cluster the indices are incremen-
ted by one and for the rest the indices are set to their
corresponding candidate indices. Thus we have indices
of 1,2,3,4,5,6, and 7 as 4,3,3,3,3,3, and 3 respectively. In
the next iteration, only objects with minimum index, i.e.
with a value of 3 are considered. The first such object is
2 and it forms {2,3,4}, a cluster of size three. Thus, 2, 3,
and 4 are invalid for the current iteration. The next
object is 5 and it forms {5,6,7}, a cluster of size three.
The indices of objects 2-7 are set to four and index of
object 1 has a value of four from earlier iteration. In the
next iteration the minimum index is four (3+1). The
first object examined, 1, forms the cluster {1,2,3,4} of
size four. Thus, 1, 2, 3, and 4 are marked as invalid (for
the current iteration) and their indices are all set to five.
The remaining objects, 5-7, which also have an index of
four do not form any clusters, in particular, when we
examine the first four entries for these objects (i.e. 5-7) in
rmatrix we find that rank(1,5) = 7, rank(2,6) = 7, in and
rank(3,5) = 7. Thus, objects 5,6, and 7 are removed from
the valid list and will not be considered for the rest of the
computation. We have four valid objects 1-4 all with
indices of five. Examining the first five objects in the
rows 1-4 of rmatrix corresponding to objects 1-4 for
determining their candidate indices, we note the follow-
ing. In first row rank(1,2) =4 and rank(1,6) =5; however
rank(2,6) =7. In the second row rank(2,5)=5 but rank
(5,2)=7. In the third row rank(1,7) =6 but rank(7,1) =7.
In the fourth row rank(4,1) =4 and rank(4,7) =5, how-
ever, rank(7,1) =7. Thus, objects 1-4 all have the same
candidate index of n (i.e. seven). Thus, they are removed
from the valid list. The computation terminates because
there are no valid objects left.
Execution time comparisons of A1, A2, and A3
The three algorithms described above (A1, A2 and A3)
were implemented in python (ver. 2.3); the code will pro-
vided upon request. The implemented code along with
tools for clustering analysis and data files used for this
study can be found at http://prodata.swmed.edu/scg/. For
this implementation, we measured the execution time for
A1, A2 and A3 (Table 1 and Fig 2). The data set at each

size is created by generating random points in 2D. Eucli-
dian distance is the distance measure. As expected, A1
was the slowest followed by A3 and A2 respectively. A2,
which is not guaranteed to find the complete structure, is
the fastest. The execution time t(n) for the input size n is
θ(n2) for A1 and A3. For A1, t(n) = 6E-05n2 - 0.0077n +
0.250, R2 the coefficient of determination is 0.9999. How-
ever, for A2, t(n) = 0.0003n - 0.009, R² = 0.9929.

Results
We compare SCG to well-known agglomerative cluster-
ing algorithms: complete linkage (CL), single linkage
(SL), and average linkage (AL). We compared the meth-
ods with simulated data and with SCOP datasets.
Among these methods, CL is the most similar method
to SCG.
CL clusters a pair of objects if the distance between

them is less than a specified cut-off. CL merges a pair of
clusters if the maximum distance between any pair of
objects where the first object is from the first cluster
and the second object is from the second cluster is at
most the chosen cut-off. Thus, it is stringent akin to
SCG.
In contrast to CL, SL a popular method, groups the

objects aggressively. When forming hierarchies of clus-
ters SL uses the minimum distance between clusters. AL
is another popular method that balances the approaches
of CL (very conservative) and SL (very aggressive). Thus,
CL, AL and SL capture a wide gamut of behavior and
comparing SCG to them will yield a fair assessment of
SCG.
SCG uses the rank matrix (that is obtained from a dis-

tance metric) and inherent consistency in the ranks
whereas CL directly uses distance matrix along with an

Table 1 Execution time measurements of SCG algorithms

A1 A2 A3

8 0.0011 0.00055 0.0009

16 0.0061 0.0025 0.0042

32 0.025 0.0039 0.01

64 0.131 0.009 0.051

128 0.594 0.016 0.276

256 2.584 0.049 1.295

512 12.54 0.118 4.34

1024 58.429 0.27 25.47

Figure 2 Comparisons of execution times of SCG algorithms.
Comparison of execution times of SCG algorithms. A1 is the slowest
followed by A3 and A2. Note that A2 is guaranteed to identify the
independent clusters and might not identify the complete structure.
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explicit parameter (cut-off). Let the distance cut-off for
CL be δ. We note that SCG can yield a (sub)cluster in
which the maximum distance between a pair objects is
greater than δ. Let A be subcluster of cluster B in SCG.
The maximum distance between o1 and o2 can be
greater than δ where o1, o2 are objects of B where they
can both be members of A. Thus, CL appears to be
more stringent than SCG. It will not cluster a set of
objects if the maximum distance between any pair is
greater than δ. SCG has no such artificial restriction. In
contrast to the above scenario, consider a scenario
where two clusters A and B are to be grouped by CL
and SCG. If the distance between any pair a, b where a
Î A , b Î B is at most δ then CL groups them together.
However, SCG will not do so if the rank(a,b) (or rank(b,
a)) > |A|+|B| for any a, b. Thus, SCG and CL are strin-
gent in different ways. This renders their comparison
interesting.
After SCG produces the clusters, one can rank the

clusters by the ascending value of the maximum dis-
tance between any pair of objects within a cluster. This
will rank the natural clusters in the data from the best
(first) to the worst (last).
We perform a balanced comparison of clustering

methods by measuring the number of clusters and the

number of incorrect pairs. If the goal of clustering is to
find robust clusters, AL is the most suitable. However, if
the goal is to minimize false positives in the presence of
large number of random errors, SCG is a good candi-
date. This suits many problems in biological sciences;
e.g. genome-wide associations or detecting homologous
proteins. In such problems, biologists are keener on
eliminating the false positives (incorrect pairs) than
avoiding false negatives (missing pairs). This probably
stems from the fact that each linkage might form a new
hypothesis that needs to be tested. False positives can
waste time and resources. Moreover, a priori cut-off
score or cluster size are not known for many biological
problems. Thus, SCG is a good candidate for these
problems.

Comparison of methods on simulated data
We compare SCG to other popular agglomerative clus-
tering methods. We generated 100 random test datasets.
As shown in Fig 3. (a), each dataset contains 80 points
generated around 4 centers in 2D, 20 points around
each center. We employed the Euclidean distance as the
distance measure and computed it for all pairs to be
used by SCG-fast (A2), complete linkage (CL), average
linkage (AL), and single linkage (SL) clustering methods

Figure 3 Effect of random errors introduced in distance measurements. (a) Dataset: We randomly generated a dataset of 80 points around
four centers (0,8), (0, -8), (8,0) and (-8,0), 20 points for each center. Each point was offset from the center in both X and Y directions by a
random amount following normal distribution (µ=0 and SD= 1). (b) Effect of random error on average cluster sizes: For the given dataset of 80
points, the Euclidean distances were calculated. Then we perturbed each pairwise distances with random value following a Gaussian distribution
with µ=0 and SD shown on X axis. Note that SD = 0 implies that there are no perturbations. These distances are used to build clusters using
SCG (cyan line), complete linkage (CL, blue line), average linkage (AL, green line) and single linkage (SL, red line). Since CL, AL and SL requires
score cut-offs, we measured the clustering with distance cut-off values of 2 (conservative), and 4 (less conservative) denoted by the numbers
following “/” (solid lines and dotted lines respectively). Finally, the number of clusters was measured per method per cut-off (this includes
singletons). Thus, the maximum value can be 80 (all singletons) and the minimum possible value is 1. The ideal number is 4 by design (Fig 3. (a)
). The error bars shown at different points of the curves (each representing a method) are derived from 100 perturbations for a given SD. Note
that the SCG shows steepest rise in the number of clusters. (c) Effect of random error on cluster qualities: Legends and the unit of X-axis are
same as in (b). After each method identifies clusters, we enumerate all pairs within a cluster, e.g. the cluster {1,2,3} is decomposed into three
pairs 1-2, 1-3, and 2-3. If both objects of any pair do not belong to the same reference cluster then we increment the number of incorrect pairs
by one. Note that the number of incorrect pairs is intrinsically related to the number of clusters. If the number of clusters is 1, meaning all
objects are grouped into one cluster, the number of clusters is minimum and that is reflected in the big numbers of incorrect pairs (See SL/4). If
the number of clusters is 80, (similar to SCG at high errors) then no incorrect pairs exist.

Kim et al. BMC Bioinformatics 2012, 13(Suppl 13):S3
http://www.biomedcentral.com/1471-2105/13/S13/S3

Page 6 of 9



[10]. All methods except SCG used distance cut-offs of
2 (conservative) and 4 (less conservative) (Fig 3. (b) and
(c) ). To simulate the effect of measurement errors of
real world dataset, random Gaussian perturbations with
mean, μ=0 and standard deviations (SD) shown in X
axis (Fig 3. (b) and (c)) were introduced when the dis-
tances were computed. The larger SD is more likely to
introduce larger errors. The plot of cluster size versus
SD shows how sensitive a method is to errors.
Ideally the number of clusters should be 4, denoting 4

groups of points in the plane as shown in Fig 3. (a). If
more (less) than 4 clusters are found then the objects are
overly split (grouped). If no (all) objects are grouped, the
number of clusters will be 80 (1). As we postulated, SCG
is very sensitive to the errors. It correctly identifies 4
clusters when the errors are small (the cyan curve in
Fig 3. (b) and (c). However, as bigger errors are intro-
duced the number of clusters identified by SCG increase
rapidly due to the inconsistencies in ranks. CL, which is
also stringent like SCG, shows similar increase as errors
become larger, but it is less sensitive than SCG (Fig 3). ).
Note that the conservative CL/2 yields more number of
clusters than SCG for smaller values of error. However,
the growth rate of the clusters in CL/2 tapers off whereas
the same for SCG is exponential until it plummets when
the number of clusters is close to the maximum value
(corresponding to S.D. of the error ~ 1.5). Among all
methods, AL at cut-off 4 (dotted green line in Fig 3) is
the most robust. The number of clusters remains at 4 for
bigger errors with very low incorrect pairs. SL is also very
sensitive to the errors. When the error is larger, SL
quickly groups all objects into one cluster (SD>2, red
lines in Fig 3. (b)) and the number of incorrect pairs also
becomes very high, as shown in the Fig 3. (c). Notably,
apart from SCG, all other methods eventually made a few
incorrect pairs.

Comparison of methods in clustering protein structure
In general, protein structures were considered hard to
cluster with conventional clustering methods without
human intervention [4]. We classified protein structures
with SCG-fast, CL, AL, and SL (similar to the comparison
of the previous section). We selected 9528 representative
protein domain structures at 40% sequence identity hav-
ing all alpha, all beta, alpha/beta, and alpha+beta from
Structural Classifications Of Proteins (SCOP) ver. 1.75
[11]. Then Z-scores were measured for all pairs
(~50,000,000) of the structures among the selected SCOP
domain structures with DALI [12], one of most widely
used structural comparison program. The similarity
scores measured by DALI can be found at http://prodata.
swmed.edu/scg/dali/. SCG identified 4965 independent
clusters. In contrast to the test based on simulated data
of the previous section, we set the parameter that

determines the number of clusters for all other methods
to this value, 4965 (table 2), in order to compare different
clustering methods without a bias.
The SCG clustering of SCOP domains shows that many

of clusters are very small, ~1/3 of total protein domains
form singleton clusters (3039 domains) and only few
domains form relatively bigger clusters (see Fig 4). CL,
AL and SL showed similar distributions, although CL
shows the most similar cluster size distribution to SCG.
SL shows the largest number of singletons. Among the
three methods, CL is the most similar to SCG as shown
in table 3. Compared to SCG other methods produce
more singletons and lower numbers of clusters with sizes
ranging from two to four. Clusters of protein structures
constructed by these different methods were compared
to SCOP folds built by experts and the number of correct
and incorrect pairs were calculated same way as in Fig 3.
(c). Similar to the simulation results (Fig 3. (c)), SL and
AL show a larger percentage of incorrect pairs (3.7% and
3.5% respectively, see Table 2), whereas SCG and CL
show only 0.2% and 0.4% incorrect pairs respectively.
This reflects the fact that both SCG and CL are more
conservative than others are.
We would expect similar results to the clustering done

on simulated data if the scores were perfect and the
grouping was done objectively. Note that we used Eucli-
dian distance in simulation (Fig 3. (a)), which is consid-
ered as a perfect measure, and SCG yielded no incorrect
pairs. However, the DALI Z-score is a structural similar-
ity score as measured by an approximate algorithm and
the SCOP database is manually curated. Thus, one may
reasonably expect that these two phenomena are not in
perfect synchronization. We attribute the incorrect pairs
found by SCG to the differences between the metric used
for classification done by SCOP, i.e. human curation and
the DALI Z-scores.

SCG method in iteration
In some cases, for increasing the average cluster size, a
few false positives can be tolerated. Here, the stringency
of SCG becomes an issue. So, we designed iterative SCG

Table 2 Comparisons of clusters built by different
methods to the reference SCOP fold classification (Total #
of domains clustered:9528)

SCG CL AL SL

Total number of clusters* 4965 4965 4965 4965

Number of non-singleton clusters 1926 1561 1263 975

Number of incorrect pairs 102 214 2952 6440

Percentage of incorrect pairs (0.2) (0.4) (3.5) (3.7)

Number of correct pairs 46938 50948 81280 166386

Percentage of correct pairs (99.8) (99.6) (96.5) (96.3)

*Total number of clusters was fixed at the number of clusters determined by
SCG for a fair comparison of different methods.
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or iSCG. The iteration is similar to other agglomerative
methods. In the first iteration, SCG finds all independent
clusters, subsequently each independent cluster is consid-
ered as an object. Then the rank matrix is updated for
the next iteration, the new ranks can be determined
based on one of the following strategies: i. most similar
relationships, ii. average similarities between two groups,
or iii. the most distant relationships, roughly correspond-
ing to SL, AL, and CL, respectively. iSCG demonstrated
correlation between the number of false positives and the
number of iterations.

Concluding remarks
We studied a clustering method that has no restriction
on the size or the number of clusters. We designed two
improvements A2 and A3 over the direct algorithm A1,
and compared their execution times. A2 is guaranteed
to identify all independent clusters (but not the com-
plete structure); time wise, it is the most efficient. These
independent clusters might suffice for some applications.
If the complete structure is required, e.g. drawing den-
drograms, A3 can be used.

Comparing SCG to other clustering methods demon-
strated that SCG is very conservative. In simulation
results, SCG did not yield any false positives. Because of
its stringency, SCG can be used to validate the correct-
ness of a distance metric in addition to clustering objects
into groups. Moreover, SCG formed very accurate groups
of protein structures indicating its potential applicability
in exploring other biological data, such as microarray
expression data, genome wide association studies etc.

Appendix
Pseudocode

Algorithm A1 //    Direct implementation that checcks all sizes for all objects

for f to n

     

   1 2 :// For all possible cluster sizes  2 through 1n

fo


rr i n object i valid 1 1 //all objects are valid at the      . bbeginning of the iteration

for  1 to // For all objindex n eects

1 //If the object is still valif object index valid   . iid

 1 //Do first  objects of IsCluster index f f smatr, ...  iix index

i f object smatri

 
  

 form a cluster

Yes for 1: xx index i valid    . ;0

note the cluster and any subclusteers in it

No

 

 

 

 

 
 

: ;

.

end if

end for index

end for i

eend for f   .

Algorithm A2 //    Finds all independent clusters    

//All objects are initialy valid

using candidate indices

,,

;

 every candidate index is set to 2

  2  for i n f i ob     1 jject i valid end for

for i n

if object i valid

   
  

  

. ;

.

1  

  1

1 
   

    
while f i n

IsCluster i f i f i, ... 1  // Do first  objjects of  form a cluster

Yes  note the cluster a

smatrix i 
: nnd any subclusters in it 1

No Invalid obj

        ; ;

:

f i f i

eect seen in the first  objects

Yes  Mark all the obje

f i  ?

: ccts of the largest cluster formed so far as invalid; f i   nn

f i index

;

:

 

  
//Break out of while loop

No candidate  of ssmatrix index smatrix index f i

end while

end i

        1

 

 

;

ff

end for i   .

Algorithm A3 //       Produces same output as A in1 aa more efficient manner

minimum index

   

// Set the default    mmin f candidate index f i_ . and   for all objects  to 2  All      objects are initially valid

 1 2

.

;for i n f i object i       .. ; ; _ ;

_

valid min f

while min f n

  

 
1 2 

// Iterate while theI     is less than 

 1 //   

minimum index n

for i n Only the objec   tts with candidate index n are invalid

if f i n object i

     

     .vvalid else object i valid

end for

seq num

    



1   

 

; . ;

;

_ ;

0

0 _ _ ;next min min f // In a given iteration the seqquence number of a valid object  Initialize  of the ; _min f nnext iteration

  1

i 1 AND

II

III .

for i n

if object valid

  
      //Only valid objects with index minimum indf i min f    _ eex

1

//Do first  objects of 

seq num seq num

min f smatrix i

_ _ ;

_

 

 
 

 

 form a cluster

 1

Yes  1

IsCluster i min f

for k min f

, ... _

: , _      { . ;}  // Invalid for object smatrix i k valid 0 tthis iteration

note the cluster and any subclusters in it       ; ;f i f i 1 // next possible candidaate cluster size

  // First oif seq num next min f i_ _ ;     1 bbject

 //Found at eaelse if next min f i next min f i_ _         rrlier object

No  i 1: , ,f i candidate index smatrix smatr       iix f i

if seq num next min f i

else if next

i

 

     
     

;

_ _ ;

_

1

mmin f i next min f i

end if

end for i

min

        

 

_

_

III

II

 

 

    ff next min

end while min f



 
_ ;

_ .I  

// Do the first  objects of the row  form a clusterk r ?

IsCluuster r,1& k � 
     



for i k for j k

if i j rank

1 {

( ! & &

1

       ssmatrix r i smatrix r j k return false

end for j

, , , ) ;       


   

 

�

 }

( )

;

end for i

return true All ranks are OK

 

  //    
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Table 3 Similarities of clusters built by different methods

SCG CL AL SL

SCG 1.0 0.78 0.59 0.36

CL 1.0 0.74 0.44

AL 1.0 0.65

SL 1.0

F-measures are used for similarities between cluster similarities. F-measure is
formally defined as a harmonic mean of precision and recall [13].

Figure 4 SCG, CL, AL, and SL clustering results of SCOP
domains based on structural similarity score. The same color
scheme was used as in Fig 3. The graph represents the cluster sizes
(X axis) and the corresponding number of clusters (Y axis). This
figure shows that all clustering methods yielded many small clusters
or singletons and few big clusters. Note that the clusters with sizes
greater than 5 are all lumped together.
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