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ABSTRACT: A highly regio- and chemoselective Cu-catalyzed aryl
alkyne transfer hydrodeuteration to access a diverse scope of aryl
alkanes precisely deuterated at the benzylic position is described.
The reaction benefits from a high degree of regiocontrol in the
alkyne hydrocupration step, leading to the highest selectivities
reported to date for an alkyne transfer hydrodeuteration reaction.
Only trace isotopic impurities are formed under this protocol, and
analysis of an isolated product by molecular rotational resonance
spectroscopy confirms that high isotopic purity products can be
generated from readily accessible aryl alkyne substrates.
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Selectively deuterated small molecules are utilized across
many disciplines of science, especially chemistry. In

addition to studying the stereochemical course of micro-
biological or enzymatic reactions,1−4 they serve as probes to
study reaction mechanisms, perform kinetic isotope effect
studies, and elucidate biosynthetic pathways.5−8 They are also
used as internal standards for high-resolution mass spectrom-
etry.1,9,10 Selectively deuterated small molecules are becoming
increasingly important in the development of novel pharma-
ceuticals,11−14 and the FDA approval of deutetrabenazine in
2017 sparked a renewed interest in the development of
precisely deuterated small-molecule drugs.15 As of 2019, there
were 20 deuterated drugs in clinical development.11 Signifi-
cantly, deuterated bioisosteres that are designed to increase the
half-life of a drug or divert a specific metabolic pathway hold
significant potential as safer therapeutics.11−13,16,17 The high
frequency of metabolic oxidation occurring at a benzylic
position in drug molecules makes this an important site for
precise or targeted deuteration. However, unique synthetic
challenges exist for developing highly selective reactions for
benzylic deuteration.

Hydrogen isotope exchange (HIE) reactions efficiently
incorporate deuterium into aliphatic bonds of small
molecules,18−22 but selectivity challenges in these reactions
make it difficult to control the exact quantity and placement of
deuterium within the molecule, especially when targeting
benzylic deuteration.19,23−26 From a drug discovery perspec-
tive, deuterium-labeled drug candidates that are free of isotopic
impurities are desirable since misdeuterated or underdeuter-

ated isotopic impurities can lead to compromised pharmaco-
kinetics.27,28 However, due to the similar physical properties of
deuterium relative to hydrogen, isotopic mixtures are
inseparable using common purification techniques. As such,
it is critical to develop deuteration methods that perform with
higher precision than HIE reactions.

Traditionally, alkyl aromatics containing two deuterium
atoms at the benzylic position are accessed via de novo
syntheses. Direct access is commonly achieved via a
deoxygenative deuteration of aryl carbonyl compounds,
where relatively forcing conditions are sometimes required,
thereby limiting reaction scope.29−31 Even modern and more
mild protocols for deoxygenative deuteration can lead to
significant levels of inseparable isotopic impurities and remain
deficient for N-heterocycle or amine-containing substrates
(Scheme 1a).32 Alternatively, highly selective single-electron-
transfer carbonyl reductive deuterations exist for accessing
compounds deuterated at the benzylic position, but only for
the synthesis of α,α-dideuteriobenzyl alcohols (Scheme
1b).33−35 Recognizing the importance of complete deuteration
at only the target site for pharmaceutical applications, we
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sought to develop a mild and general reaction for the selective
synthesis of molecules precisely deuterated at the benzylic
position. Importantly, the reaction must be compatible with
functionality commonly found in small-molecule drugs such as
amines, O-, S-, or N-containing heterocycles, esters, and
halogens.36,37

Catalytic transfer hydrodeuteration has significant potential
for making selectively deuterated alkanes.38−43 Inspired by
highly selective processes for [Cu−H]-catalyzed alkene44−48

and alkyne49−60 hydrofunctionalizations, our group reported
an aryl alkyne transfer hydrogenation and deuteration reaction
catalyzed by Cu(OAc)2 and DTBM-SEGPHOS.61 In that
study, the protocol was modified to investigate an
unprecedented internal aryl alkyne transfer hydrodeuteration
process, albeit with moderate levels of deuterium incorporation
(Scheme 1c). Despite the efficiency of the reaction, several
underlying selectivity challenges surfaced. To prepare com-
pounds containing exactly two deuterium atoms at the benzylic
position with high levels of isotopic purity (i.e., the isolated
product composition consists of ≥90% of the desired
isotopomer), a high degree of regiocontrol is required for
both the alkyne and alkene hydrocupration steps. Since aryl
alkene hydrocupration occurs in a highly regioselective
manner,62,63 likely because of the thermodynamic favorability
of a benzylic copper intermediate, we turned our focus to
understanding the factors influencing regioselectivity for
internal aryl alkyne hydrocupration.

In the alkyne transfer hydrodeuteration reaction (Scheme
1c), we believe that there are at least three isotopic species that
contribute to the modest 79% benzylic deuterium incorpo-
ration. Despite this reaction outcome, only the α,α-d2
isotopomer is useful for studies aimed at modulating oxidative
processes at the benzylic carbon. Therefore, in an optimal
setting where alkene hydrocupration is completely regiose-
lective, a minimum 9:1 r.r. for alkyne hydrocupration must be
achieved for the reaction product to contain a synthetically
useful ≥90% composition of the α,α-d2 isotopomer.

A survey of previously reported [Cu−H]-catalyzed alkyne
hydrofunctionalization reactions reveals that aryl- or alkyl-
substituted terminal alkynes undergo hydrocupration with anti-
Markovnikov regioselectivity as a result of Cu insertion at the
less sterically hindered terminal position.49−53 However, the
increased steric hindrance of an internal aryl alkyne leads to a
modest preference for the product resulting from Cu insertion
α to the arene.57,64−66 Prior density functional theory (DFT)
calculations suggest that the demanding steric environment of
the aryl substituent is counterbalanced by energetic stabiliza-
tion provided by the overlap of the empty Cu d orbital with the
aryl π system when Cu inserts at the α-carbon.67 With the goal
of improving the regioselectivity of alkyne hydrocupration to
achieve a minimum 9:1 r.r. for internal aryl alkyne hydro-
cupration, we sought to exploit these interactions through
ligand choice.

We began by studying the outcome of the alkyne
hydrodeuteration at early time points using substrate 1. By
doing so, the α- and β-deuterated styrene products E/Z-2 and
E/Z-3 could be observed, resulting from semireduction of 1
(Scheme 2). Given the prevalence of NHC−Cu catalysts in

alkyne hydrofunctionalization reactions,57,64−66 the IPr−Cu
catalyst was evaluated first and found to be moderately
regioselective for alkyne hydrometalation (3.8:1 r.r.; entry 1).
Evaluating DTBM-SEGPHOS, the ligand that we previously
evaluated for alkene and alkyne transfer hydrodeuteration and
Buchwald and co-workers used for alkyne hydroamination,56,61

led to a near doubling of the hydrocupration regioselectivity
(7.8:1 r.r.; entry 2). However, switching to DTB-DPPBz, a
ligand previously demonstrated by our research group to
support a highly regioselective alkene transfer hydrodeutera-
tion reaction,62,68 led to the most significant increase in the
alkyne hydrocupration regioselectivity (11.2:1 r.r.; entry 3).

Having identified a ligand that induces high regioselectivity
for both alkyne and alkene hydrocupration, we next turned to
studying the full reduction of 4a to prepare high-purity α,α-
dideuterated aryl alkanes (Scheme 3). Gratifyingly, using DTB-
DPPBz, dimethoxy(methyl)silane, and isopropanol-d8 along
with performing the reaction in THF at 40 °C results in a high
yield and deuterium incorporation for desired product 5a (97%
yield, 95% D inc.; see the Supporting Information (SI) for
optimization studies).

The reaction scope of internal aryl alkynes for Cu-catalyzed
transfer hydrodeuteration was evaluated. The desired α,α-d2
isotopomer was accessed from a phenylhexyne substrate and
arenes substituted with one or two methyl groups (Scheme 3,

Scheme 1. Synthesis of Small Molecules Perdeuterated at
the Benzylic Position

Scheme 2. Aryl Alkyne Hydrocupration Regioselectivity
Studies
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5b−5d, 75−83% yield). These results compare favorably to
our prior studies depicted in Scheme 1c.61 Effects from
variation of the alkane chain length were studied, and excellent
yields were obtained with a propyne, pentyne, or hexyne chain
(5e−5g, 79−92% yield). Using isobutyl-, cyclopentyl-, or
cyclohexyl-substituted alkyne substrates also led to highly
regioselective reactions (5h−5j, 81−88% yield). Lewis basic
nitrogen functionality is compatible with the reaction (5k, 62%
yield), while alcohol-containing substrates required a protect-
ing group to avoid competitive protodecupration pathways
(5l−5n, 61−93% yield). Halogenated substrates along with
aryl alkyne substrates containing reducible functionality such as
an ethyl ester, cyano, or benzyl ether group undergo
chemoselective alkyne transfer hydrodeuteration (5o−5u,
72−93% yield). When ketone or aryl bromide functionality
was present, the reaction was not chemoselective for only
alkyne transfer hydrodeuteration. The ketone was reduced to a
silyl ether, and the aryl bromide substrate only reached partial
conversion with trace reductive debromination product
detected (see the SI for details).

Due to their prevalence in small-molecule drugs, hetero-
cycle-containing aryl alkyne substrates were evaluated for
selective Cu-catalyzed alkyne transfer hydrodeuteration.
Quinoline, Ts-protected azaindole, Ts-protected carbazole,

Ts-protected indole, and thiophene aryl alkynes underwent
highly selective transfer hydrodeuteration (Scheme 4, 7a−7e,

61−93% yield), along with dibenzofuran- or amide-substituted
alkynes (7f and 7g, 84% yield). Even substitution of a phenyl
alkyne with a pyridine, one of the most prevalent heterocycles
in small-molecule drugs,36,37 results in a high yield of the
desired deuterated product (7h, 86% yield).

The synthesis of four complex bioactive molecules
exclusively deuterated at the benzylic position was performed.
This included late-stage transfer hydrodeuterations of alkyne-
containing derivatives of TUG-469,69 estrone, and naftifine.70

Each reaction proceeded with high deuteration efficiency (7i−
7k, 53−93% yield, ≥90% D inc.). Lastly, 7l was accessed in
excellent yield and deuterium incorporation. This deuterated
building block was then used to synthesize salmeterol analog
7m, where deuterium is exclusively contained at the benzylic
position prone to metabolic oxidation.71

Molecular rotational resonance (MRR) spectroscopy is an
emerging technology for the characterization and quantifica-
tion of isotopically labeled compounds. Instruments for
rotational spectroscopy have exceptionally high spectral
resolution so that the different isotopic species can be
observed without spectral overlap. This presents a practical
solution to some challenges in NMR spectroscopy where
isotopologues and isotopomers in product mixtures may share

Scheme 3. Aryl Alkyne Substrate Scope

aUsing iPrOD instead of iPrOD8 results in a 91% isolated yield of 5a
with 95% D inc. b5 mol % Cu(OAc)2 and 5.5 mol % DTB-DPPBz
were used. c2 mol % Cu(OAc)2 and 2.2 mol % DTB-DPPBz were
used. dPoly(methylhydrosiloxane) (5 equiv) was used. e3 mol %
Cu(OAc)2 and 3.3 mol % DTB-DPPBz were used. f6 equiv of
(MeO)2MeSiH was used. gIsolated yield over two steps after
deprotection of the TBS group. hThe reaction was performed at 5 °C.

Scheme 4. Heterocycle and Complex Small Molecule Scope

aThe reaction was performed at 60 °C. b6 equiv of (MeO)2MeSiH
was used. c1 mol % Cu(OAc)2 and 1.1 mol % DTB-DPPBz were used.
d2 mol % Cu(OAc)2 and 2.2 mol % DTB-DPPBz were used. e6 equiv
of iPrOD8 was used. f6.8 mol % Cu(OAc)2, 7.4 mol % DTB-DPPBz,
8.1 equiv of (MeO)2MeSiH, and 6.8 equiv of iPrOD8 were used. g5.2
mol % Cu(OAc)2, 5.7 mol % DTB-DPPBz, 5.2 equiv of
(MeO)2MeSiH, and 5.2 equiv of iPrOD8 were used.
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deuterium substitution at the same atom so that several
isotopic species contribute to the same 1H/2H resonance.62,72

MRR analysis was performed on the reaction products of the
phenylhexyne substrate, 4b. The analysis was performed in two
steps (Scheme 5). Using the nonselectively deuterated sample

of Scheme 5a, the spectroscopic signatures of all 10 possible
species associated with hydrogen and/or deuterium insertion
at any of the α- or β-benzylic CH positions were obtained
using a broadband chirped-pulse Fourier transform microwave
spectrometer (see the SI for analysis details).73 The
composition of the reaction mixture from the selective
deuteration process of Scheme 5b was analyzed using an
IsoMRR instrument that employs cavity-enhanced Fourier
transform microwave spectroscopy74 to reduce measurement
time and sample consumption. Two separate sample
preparations were analyzed and found to have nearly identical
compositions. The results are summarized in Scheme 5b. Only
two isotopic impurities were detected above the measurement
threshold of 0.5%. Note that the homochiral and heterochiral
diastereomers for the α,β-d2 species have different rotational
spectra and are easily distinguished in the MRR analysis. The
observation of just the heterochiral diastereomer is consistent
with a reaction mechanism that favors syn addition of the
[Cu−H] in both the alkyne and alkene addition steps.61,62

We performed DFT calculations to understand the
enhanced alkyne hydrocupration regioselectivity observed
with the DTB-DPPBz ligand relative to the DTBM-SEGPHOS
ligand. For the addition of (DTB-DPPBz)CuH to 1-phenyl-
propyne, Cu favors insertion α to the arene by 5.0 kcal/mol at
the level of theory used (Figure 1a; see the SI for the full
energy diagram of this step). In contrast, (DTBM-
SEGPHOS)CuH is unselective, showing a slight preference
for insertion of Cu β to the arene. These predictions are
qualitatively consistent with the experimental observation that
DTB-DPPBz promotes higher selectivity for α-deuteration
than does DTBM-SEGPHOS.

The origin of the increased selectivity with DTB-DPPBz
relates to orbital mixing between the ligand and Cu during the
favored transition state TS8a. In both TS8a and TS8b, the
five-membered cupracycle of (DTB-DPPBz)CuH adopts the
same “envelope” conformation, and the substrate phenyl group
points toward the less hindered endo face of the cupracycle
(Figure 1b). In this geometry, two P-aryl groups are
pseudoaxial with respect to the five-membered cupracycle.
When the hydride is on the exo face of the cupracycle as in
TS8a, the π* orbitals of these aryl groups can mix with a metal-
centered p-type orbital to form the LUMO (Figure 1c). This
mixing lowers the energy of the lowest unoccupied metal-

centered MO of (DTB-DPPBz)CuH when it is distorted into
the TS8a geometry (Figure 1d, compare entries 1 and 2). The
low-energy LUMO facilitates electron donation from the
alkyne to copper. However, when the hydride is on the endo
face of the cupracycle as in TS8b, there is poor overlap
between ligand and metal orbitals, and the LUMO energy is
actually higher in the distorted geometry (entry 3) compared
to the ground state. The conformational preference of the five-
membered cupracycle is critical to the difference between
TS8a and TS8b. For (DTBM-SEGPHOS)CuH, Cu is part of a
seven-membered ring, which does not result in the same
orbital mixing effect. Indeed, the LUMO energy of (DTBM-
SEGPHOS)CuH is slightly raised by distortion into the TS9a
geometry and not significantly affected in TS9b (entries 4−6).

In conclusion, the first highly regioselective transfer
hydrodeuteration reaction of aryl alkynes is reported across a
broad substrate scope. DFT calculations are consistent with
experimental findings and reveal that the high regioselectivity
observed in the alkyne hydrocupration step can be attributed
to enhanced electronic interactions between the substrate and
(DTB-DPPBz)CuH complex. We anticipate that this reaction
and the spectroscopic techniques employed to quantify and

Scheme 5. Analysis by Molecular Rotational Resonance

aSee the SI for all isotopic products. bDenotes the average percent
composition of isolated product from two runs.

Figure 1. DFT analysis of alkyne hydrocupration with (DTB-
DPPBz)CuH.
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characterize the isotopic species will be useful in the
development of precisely deuterated small molecules for
pharmaceutical applications.
General Procedure for Cu-Catalyzed Transfer
Hydrodeuteration
In a N2-filled glovebox, DTB-DPPBz (0.0110 equiv), Cu(OAc)2
(0.200 M solution in THF, 0.0100 equiv), and THF were added to
an oven-dried 2 dram vial followed by dropwise addition of
dimethoxy(methyl)silane (185 μL, 1.50 mmol, 5.00 equiv) or
poly(methylhydrosiloxane) (100 μL, 1.50 mmol, 5.00 equiv based
on Si−H). A color change from green/blue to yellow was observed
while stirring for 15 min. In a separate oven-dried 1 dram vial were
added the alkyne substrate (0.300 mmol, 1.00 equiv), THF (0.150
mL), and 2-propanol-d8 (115 μL, 1.50 mmol, 5.00 equiv). The
solution in the 1 dram vial was added dropwise over 20 s to the 2
dram vial. The total volume of THF was calculated based on having a
final reaction concentration of 1 M based on the alkyne substrate. The
2 dram vial was capped with a red pressure relief cap, taken out of the
glovebox, and stirred for the respective time at the appropriate
temperature, at which point the reaction was filtered through a 1″
silica plug with 50 mL of Et2O or CH2Cl2 followed by 50 mL of Et2O
or CH2Cl2 to elute the remaining product into a 200 mL round-
bottom flask. After removal of the solvent by rotary evaporation, the
crude product was isolated by flash column chromatography.
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