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Abstract

Motivation: Integrative approaches characterizing the interactions among different types of biolo-

gical molecules have been demonstrated to be useful for revealing informative biological mechan-

isms. One such example is the interaction between microRNA (miRNA) and messenger RNA

(mRNA), whose deregulation may be sensitive to environmental insult leading to altered pheno-

types. The goal of this work is to develop an effective data integration method to characterize de-

regulation between miRNA and mRNA due to environmental toxicant exposures. We will use data

from an animal experiment designed to investigate the effect of low-dose environmental chemical

exposure on normal mammary gland development in rats to motivate and evaluate the proposed

method.

Results: We propose a new network approach—integrative Joint Random Forest (iJRF), which

characterizes the regulatory system between miRNAs and mRNAs using a network model. iJRF is

designed to work under the high-dimension low-sample-size regime, and can borrow information

across different treatment conditions to achieve more accurate network inference. It also effectively

takes into account prior information of miRNA–mRNA regulatory relationships from existing data-

bases. When iJRF is applied to the data from the environmental chemical exposure study, we de-

tected a few important miRNAs that regulated a large number of mRNAs in the control group but

not in the exposed groups, suggesting the disruption of miRNA activity due to chemical exposure.

Effects of chemical exposure on two affected miRNAs were further validated using breast cancer

human cell lines.

Availability and implementation: R package iJRF is available at CRAN.

Contacts: pei.wang@mssm.edu or susan.teitelbaum@mssm.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With the past decades rapid technological advances in genomic profil-

ing, multiple types of genomic profiles can be collected on the same

set of samples. Recently, we carried out an animal study to assess the

effect of three environmental chemicals on miRNA and mRNA activ-

ity in mammary tissue (Gopalakrishnan et al., 2017). In this and simi-

lar studies, there is increasing interest to characterize changes in the

regulatory patterns among different molecular types across different

experimental conditions. Compared to commonly used marginal ana-

lyses, integrative approaches examining interactions often help to

reveal more subtle yet biologically important mechanisms. For in-

stance, it is well known that miRNAs drive the development of many

diseases via the regulation of post-transcriptional gene expression

(Jansson and Lund, 2012; Nogales-Cadenas et al., 2016). Thus it will

be more powerful to characterize miRNA activities through monitor-

ing the global regulatory system between miRNA and mRNA (Arner

and Kulyté, 2015).

Multiple challenges arose during the construction of the high di-

mensional miRNA–mRNA interaction networks. First, such analysis

involves thousands or tens of thousands of genes but a much smaller
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sample size (n¼20 in the motivating chemical exposure study). This

problem, well known in statistics as the ‘large p, small n’ paradigm

(Bernardo et al., 2003), arises in many biological applications

(Kosorok et al., 2007). Second, samples under different conditions

in the same study often share common properties, and borrowing in-

formation across conditions is crucial to maximize the power of the

estimation process (Flutre et al., 2013; Li et al., 2011; Petretto et al.,

2010). Third, properly incorporating information from existing

databases in the analysis could greatly enhance the accuracy of the

inference (Bernard and Hartemink, 2004; Petralia et al., 2015;

Werhli et al., 2007; Yip et al., 2010; Zhu et al., 2008).

However, recent methodologies for integrating different genomic

profiles (for example, Mo et al., 2013; Hwang et al., 2005; Ebrahim

et al., 2016; Ritchie et al., 2015) either were not designed for charac-

terizing interaction networks, or do not fully address the above chal-

lenges, especially the latter two. Recently, random forest based

methods have been utilized to estimate multiple networks simultan-

eously (Petralia et al., 2016). In particular, we demonstrated the ad-

vantage of joint learning and showed the high performance of

random-forest compared to Gaussian graphical models such as

Danaher et al. (2014). In this work, we will extend these ideas to

model the relationship of dependence among miRNAs and mRNAs.

Moreover, in Petralia et al. (2015), we introduced a probability sam-

pling scheme to effectively incorporate prior information in building

random forest models. This framework can be effectively modified

to incorporate existing knowledge on miRNA–mRNA regulatory re-

lationships documented in miRNA–mRNA databases (Agarwal

et al., 2015; Betel et al., 2010; Hsu et al., 2010; Kertesz et al.,

2007).

Therefore, in this paper, we propose a new method—integrative

Joint Random Forest (iJRF), which borrows information across mul-

tiple chemical exposure conditions and takes into account prior in-

formation from existing databases when inferring miRNA–mRNA

interactions. iJRF is built upon our two previous random-forest

based algorithms (Petralia et al., 2015, 2016). The advantages of

our integrative framework are multiple. First, its ensemble nature

allows the delivery of excellent performance with moderate sample

size requirements. Second, treatment-specific tree ensembles are de-

signed to share common structures, so that miRNAs regulations

playing a crucial role in multiple conditions will be detected more

accurately. Third, existing databases are utilized in order to priori-

tize miRNA–mRNA interactions. Specifically, TargetScan (Agarwal

et al., 2015) was chosen over other databases (Betel et al., 2010;

Kertesz et al., 2007) for its comprehensive list of predicted miRNA–

mRNA interactions and, as mentioned in Lee et al. (2015), its con-

sistency with databases containing experimentally validated targets

(Farazi et al., 2014; Helwak et al., 2013).

Applying iJRF to the chemical exposure study, we simultan-

eously estimated miRNA–mRNA interaction networks for the con-

trol group and three chemical exposed groups: diethyl phthalate

(DEP), methyl-paraben (MPB) and triclosan (TCS). We found that

the interaction among miRNAs and mRNAs was greatly reduced in

the chemical exposed groups compared to the control group.

Among all chemicals, DEP exposure was associated with the highest

loss of connectivity. iJRF also detected two important miRNAs:

miR-200a and miR-375, that played crucial roles in the inferred

regulatory network of the control group, but lost more than 90%

connectivity in the network corresponding to the DEP expos-

ure group. mRNAs connecting with miR-200a and miR-375 in con-

trol network only, were enriched for the ‘Mammary Gland

Development’ and ‘Gland Morphogenesis’ pathways. This suggests

a mediating role for these miRNAs associated with chemical

exposure in mammary gland development. We then confirmed the

effect of DEP on miR-375 and miR-200a using human breast cancer

cell lines.

2 Materials and methods

2.1 Random forest for network construction
Random forest is a non-linear algorithm that models the response

variable via a series of decision trees where each tree is constructed

based on a random subset of samples (Breiman, 2001). At each

node, a random subset of predictors is considered and the predictor

maximizing a certain utility function (i.e. decrease in node impurity)

is chosen to split observations into two subsets. Recently, Huynh-

Thu et al. (2010) introduced GENIE3, a random forest based model

for inferring gene regulatory networks (GRNs). In GENIE3, first,

the expression of each target gene k is modeled as a function of the

expression of all other genes via random forest, then, the regulatory

events fðj! kÞgj¼k are ranked based on random forest importance

scores. Specifically, the importance score Ij!k is defined as the total

decrease in node impurities from splitting on the jth predictor, aver-

aged over all trees. Recently, Petralia et al. (2015) proposed

iRafNet—a new random-forest based algorithm for network con-

struction which can integrate prior information from database and

independent datasets. According to iRafNet, potential regulators

considered important by other datasets are prioritized and sampled

more often within the random-forest framework. Petralia et al.

(2016) extended the original random-forest algorithm to estimate

multiple related networks (JRF). As shown by Petralia et al. (2016),

borrowing information across multiple networks is crucial to accur-

ately detect common mechanisms. In particular, information across

different class of data is borrowed by using the same splitting vari-

ables for the tree construction. In this paper, JRF and iRafNet are

combined to jointly estimate miRNA–mRNA interactions from dif-

ferent exposure conditions while integrating information from exist-

ing databases.

2.2 iJRF: integrative joint random forest
We are interested in inferring miRNA - mRNA interactions in tis-

sues samples for control and three common environmental chem-

icals: diethyl phthalate (DEP), methyl paraben (MPB) and triclosan

(TCS). Denote g ¼ 1; 2; . . . ;G as the index over different treatment

conditions. For each treatment condition g, we observe the expres-

sion of M miRNAs and p mRNAs for ng samples. Denote yg
ik and xg

ij

as the expression of the kth mRNA and the jth miRNA for the ith

sample exposed to the gth treatment.

An overview of the proposed algorithm is shown in Figure 1.

Specifically, for each treatment condition g, the expression of the

kth mRNA is modeled as a function of the expression of miRNAs

via random forest, i.e. yg
ik ¼ fgkðxg

i1; . . . ; xg
iMÞ. Therefore, for each

target mRNA, G random forest models corresponding to G treat-

ment conditions are constructed. The key idea of iJRF is to build

G tree ensembles simultaneously. Let sg denote the current node in

the gth tree model corresponding to the gth condition. As illustrated

in Figure 1, the allocation processes for fsggG
g¼1 are performed sim-

ultaneously through the following steps:

1. iRafNet Step (Petralia et al., 2015): For different tree ensembles

corresponding to different treatments, the same set of predictors

(miRNAs) are proposed for the splitting rule of nodes fsggG
g¼1.

This subset of predictors is selected by prioritizing miRNAs that

have similar sequences to that of the target mRNA and, thus, are

more likely to bind to the target mRNA. Specifically, we sample
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a set Ss containing N miRNAs from the entire set of miRNAs

with probabilities

ðp1; . . . ;pMÞ ¼
s1!kPM

‘¼1

s‘!k

; . . . ;
sM!kPM

‘¼1

s‘!k

0
BBB@

1
CCCA

where scores fs‘!kgM
‘¼1 are derived based on prior information on

miRNA–mRNA regulations from existing databases. In this study,

TargetScan (Agarwal et al., 2015) was chosen over other databases

given its comprehensive list of predicted miRNA–mRNA inter-

actions. Also, as mentioned in Lee et al. (2015), TargetScan is con-

sistent with databases containing experimentally validated targets

(Farazi et al., 2014; Helwak et al., 2013). For each interaction

j! k, TargetScan provides a context score cj!k based on sequence

similarity (Garcia et al., 2011). Context scores are non-positive

with more negative values corresponding to more favorable sites.

We then calculate: sj!k ¼ exp facj!kg with a ¼ log ð2Þ=bc and bc
being the minimum context score. Scores fsj!kg take values in the

interval [1, 2] and the probability to sample the miRNA with the

most similar sequence to that of the target mRNA will be twice

the probability of the least similar miRNA (context score equal

to zero). This transformation was considered in order to not ex-

cessively penalize interactions that are not contained in prior

databases.

2. JRF Step (Petralia et al., 2016): Among predictors contained in

subset Ss, the optimal splitting variable of nodes fsggG
g¼1 is the

predictor maximizing the summation of the decrease in node

impurity across different treatment conditions, i.e.,

k�s ¼ arg maxj:j2Ss

XG
g¼1

C
sg

j

ng

with C
sg

j being the decrease in node impurity observed in the gth tree

after splitting sg based on the jth predictor. Specifically, the decrease

in node impurity is defined as C
sg

j ¼ ðv½Psg � � v½Lsg

j � � v½Rsg

j �Þ where

vðAÞ is the variance of observations allocated to set A; Psg is the set

of samples allocated to node sg in the gth tree ensemble; while sets

Lsg

j and Rsg

j are respectively the sets of samples allocated to the left-

child and right-child of node sg according to a splitting rule based

on the jth predictor.

Once G random forest models are constructed for the kth

mRNA, interactions between miRNAs and the kth mRNA under

different conditions are ranked based on random forest importance

scores. In order to derive the final unweighted networks, a proper

cut-off value for importance scores needs to be chosen. Specifically,

we follow the same permutation based procedure described in

Petralia et al. (2016), whose details are provided in Supplementary

Section 1.

The computational complexity of the proposed algorithm is in

the same order as the complexity of JRF (Petralia et al., 2016), i.e.

OðpTN
PG

g¼1 log ðngÞngÞ with T being the number of random forest

trees. The computational burden can be greatly reduced by estimat-

ing in parallel random forest models corresponding to different tar-

get mRNAs (further information can be found in Supplementary

Section 2.1). In practice, the number of trees (T) and the number of

potential regulators to be sampled at each node (N) are parameters

to be specified by the users. In this paper, we used the conventional

choice of T¼1000 and N ¼
ffiffiffiffiffi
M
p

with M being the number of pre-

dictors (Breiman, 2001).

Fig. 1. Joint Random Forest with iRafNet sampling scheme. For each exposure condition, model the expression of mRNAs as function of the expression of

miRNAs via random forest. At each node, sample miRNAs prioritizing those present in TargetScan (Agarwal et al., 2015). Following JRF model (Petralia et al.,

2016), the four random forest tree ensembles (Control, DEP, MPB and TCS) use the same splitting variables (miRNAs) to build trees. In this way we achieve bor-

rowing information across them. This procedure is repeated for each mRNA and, then, interactions are ranked based on random forest importance scores

iJRF to estimate miRNA-mRNA interactions i201
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3 Data

3.1 Data overview
Exposure to environmental chemicals, especially during mammary

gland development, has been linked to breast cancer risk using ani-

mal models (Manservisi et al., 2015; Moral et al., 2008; Rudel

et al., 2011; Russo et al., 2001). Increased understanding of the bio-

logical and genomic mechanisms mediating the effects of chemical

exposures can lead to better prevention and treatment of the disease.

In a recent pioneering study using a Sprague-Dawley (SD) rat model,

animals were exposed chronically from birth through adulthood

(postnatal day 146) to three environmental chemicals present in

daily personal care products: diethyl phthalate (DEP), methyl para-

ben (MPB) and triclosan (TCS) at an exposure level comparable to

those observed in human population (Teitelbaum et al., 2016). The

study involved 20 rats in each of the following groups, control, DEP

and MPB treatment groups, as well as 15 rats in the TCS treatment

group. Gopalakrishnan et al. (2017) provides a detailed description

of the animal study and the chemical treatment for MPB and TCS

exposure. Likewise other chemicals, diethyl phthalate (DEP) (CAS #

84-66-2, lot # STBB0862V, 99% purity) was supplied in plastic con-

tainers (Sigma Aldrich, Italy). The experimental oral dose of DEP

was 0.1735 mg/Kg/day, which represented 1=1;000 of no observed

adverse effect levels (NOAEL) of DEP (Brown et al., 1978; Moody

and Reddy, 1978; Oishi and Hiraga, 1980).

3.2 Data processing
The expression matrices of both mRNAs and miRNAs can be found

in the GEO database (ID: GSE72276) (Barrett et al., 2005). Quality

control of.CEL files and preprocessing based on the robust multiarray

average method (RMA) were done using the expression console soft-

ware (Affymetrix, CA). For mRNA data, batch effects were removed

using the ComBat package (Leek et al., 2012) available in R CRAN.

We applied a signal intensity filter to retain only those probesets with

high and stable expression (signal value>30th percentile in at least 1

of the experimental groups). A variance-based filter was used to retain

the top 50% of the probesets with high interquartile range. For

miRNA data, 283 miRNAs were profiled and only miRNAs with

variance different from zero were considered. The data were normal-

ized using the package NanoStringNorm available in R CRAN

(Waggott et al., 2012). The filtered data contained 7546 genes and

272 miRNAs which were used for downstream analyses. For both

miRNA and mRNA data matrices, quantile normalization across

samples was performed.

4 Results

4.1 Network estimation
For ease of explanation, we will refer to the network from control

rats as Control-Net and networks from different chemical exposed

rats as DEP-Net, MPB-Net and TCS-Net. For the analyses, we con-

sidered 7546 messenger RNAs and 272 miRNAs. As mentioned in

section 3, the sample size was 20 each for the control, DEP and

MPB treatment groups, and 15 for TCS. In order to implement the

proposed algorithm, 1000 trees were considered and a total of N

¼
ffiffiffiffiffiffiffiffi
272
p

miRNAs (predictors) were sampled at each node (Breiman,

2001). The four networks were estimated using iJRF and mRNA-

miRNA interactions were derived using permutation techniques

considering an FDR cut-off of 0.001 (further information can be

found in Supplementary Section 1).

Table 1 shows the total number of interactions inferred for each

network as well as the number of interactions shared across

networks. As shown, all three chemicals result in a loss of inter-

action compared to Control-Net which involved 6829 edges linking

47 miRNAs and 2270 mRNAs. In particular, the total number of

interactions in DEP-Net, MPB-Net and TCS-Net were respectively

44%, 84% and 52% of the total number of interactions in Control-

Net. Therefore, DEP was the chemical exposure resulting in the

most dramatic loss of interaction compared to control.

Figure 2(a) shows the top 10 hub-miRNAs in Control-Net,

which were responsible for more than 85% of connecting edges in

Control-Net. In particular, a substantial portion of those inter-

actions (> 65%) were not present in any of the chemical-networks.

Figure 2(b) compares each chemical-Net and Control-Net showing,

for each miRNA, the number of edges shared between chemical-Net

and Control-Net (green bar), the number of control-specific edges

(blue bar) and the number of chemical-specific edges (red bar). The

three quantities have been normalized dividing them by the total

number of connecting edges present in either Control-Net or

chemical-networks. As shown, DEP-Net has miRNAs such as miR-

375-3p, miR-200a-3p and miR-214-3p with remarkable loss in con-

nectivity (> 90%) compared to Control-Net. Given the dramatic

loss in connectivity observed in DEP-Net, we decided to focus on

this chemical and miRNAs miR-375-3p, miR-200a-3p and miR-

214-3p for further investigation. Besides the consistent loss of con-

nection in chemical-networks compared to Control-Net, differences

among chemical-networks were also observed, as shown in

Supplementary Section 2.2. Further investigation is needed to under-

stand the biological implication of these differences across chemical-

networks.

It is important to note that, no significant results were detected

by traditional univariate analysis (i.e. unpaired t-test, Wilcoxon test)

when testing was conducted on one miRNA at-a-time, suggesting

the advantage of the proposed network based approach (further in-

formation on univariate analysis based on the Wilcoxon test can be

found in Supplementary Section 3.1). As a comparison, we also esti-

mated miRNA–mRNA interactions under different treatment condi-

tions via Pearson’s correlation test, a commonly used approach in

the literature (Mertins et al., 2016; Zhang et al., 2014, 2016). As

shown in Supplementary Section 3.2, when considering the same

FDR cut-off (fdr¼0.001) as in the iJRF analysis, the correlation test

detects far fewer edges than iJRF, and fails to reveal any informative

hub structure or pathway enriched network module. We then

relaxed the FDR cut-off to 0.01 for the correlation tests to obtain

more connected networks, and tested for enriched GO terms. As

shown in Supplementary Figure S6, the correlation test resulted in

far fewer enriched GO terms compared to iJRF. This suggests that

iJRF is more effective to detect biologically relevant interactions.

Moreover, the percentage of shared edges across networks based on

correlation tests is much smaller than that based on iJRF, which

makes the detection of treatment-specific interactions particularly

vulnerable to high false positive rates. This result is expected since

iJRF, through joint learning, is more effective in detecting common

Table 1. Number of interactions inferred in Control-Net, DEP-Net,

MPB-Net and TCS-Net and number of interactions shared across

networks

Control DEP MPB TCS

Control 6829 2079 3593 2374

DEP 3018 842 1630

MPB 5743 3491

TCS 3557
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associations than algorithms handling different treatment conditions

separately (Petralia et al., 2016).

4.2 miR-375, miR-214 and miR-200a
Overview: One of the top hub miRNAs in Control-Net poorly con-

nected in chemicals was miR-375-3p. In particular, the number of

mRNAs interacting with miR-375-3p in DEP-Net, MPB-Net and

TCS-Net was, respectively, 2%, 51% and 27% of the number of

interacting mRNAs in Control-Net. Recent studies have investigated

the role of miR-375 in breast cancer (Madhavan et al., 2016; Ward

et al., 2013; Zehentmayr et al., 2016). In particular, Ward et al.

(2013) reported a loss of miR-375 expression in drug-resistant

breast cancer cells; while Madhavan et al. (2016) showed that miR-

375 was significantly associated with breast cancer survival. As

shown in Figure 2(b), other miRNAs poorly connected in DEP-Net

were miR-214 and miR-200a. Their role in breast cancer has been

investigated in several papers (Kalniete et al., 2015; Ming et al.,

2015; Penna et al., 2015; Pieraccioli et al., 2013; Wang et al., 2015;

Yao et al., 2014; Yu et al., 2015). In particular, miR-214 was shown

to be associated with breast cancer survival (Kalniete et al., 2015)

and drug sensitivity (Yu et al., 2015). On the other hand, miR-200a

has been associated with survival in metastatic breast cancer

(Madhavan et al., 2016) and its role in cell proliferation inhibition

has been demonstrated (Yao et al., 2014).

Overlap with MirTarBase: Some Control-specific interactions de-

tected by iJRF are contained in miRTarBase (Hsu et al., 2010)—the

database of experimentally validated miRNA–mRNA interactions.

Table 2 shows the list of interactions in Control-Net contained in

miRTarBase for miR-375 and miR-200a (other interactions contained

in miRTarBase can be found in Supplementary Table S2). As shown in

Table 2, some of these interactions were contained in DEP-Net, MPB-

Net and TCS-Net as well. Particularly interesting is the interaction of

miR-375 with the human epidermal growth factor receptor 2 (HER2)

(Pillai et al., 2014; Shen et al., 2014) only contained in Control-Net

and MPB-Net. HER2 stimulates the growth of breast cancer cells and

is one of the main targets for breast cancer survival and therapy.

Another interesting interaction is miR-200a - ZEB2 which has been

investigated in different ovarian and breast cancer studies (Ahmad

et al., 2011; Bracken et al., 2008; Jang et al., 2014; Park et al., 2008;

Truong et al., 2014; Wu et al., 2011). In particular, many articles have

described ZEB2 as the crucial target of miR-200 family members

(Burk et al., 2008; Christoffersen et al., 2007; Korpal et al., 2008).

Brabletz and Brabletz (2010) showed that ZEB2 and miR-200a are

involved in a ‘feedback loop’ which drives the progression of metasta-

sis in breast cancer. As shown in Table 2, the interaction between

ZEB2 and miR-200a is only contained in Control-Net, suggesting the

impact of all chemicals on the regulatory mechanism between miR-

200a and ZEB2.

Enrichment Analysis: Among hub-miRNAs in Control-Net,

interesting pathways were obtained for miR-375-3p and miR-200a-

3p. Figure 3(a) shows some interesting enriched categories for

mRNAs connected to miR-375-3p and miR-200a-3p in Control-Net

but not in DEP-Net (enriched pathways for other hub-miRNAs in

(a) (b)

Fig. 2. (a) Plot of top ten hub-miRNAs in Control-Net with interactions detected only in Control-Net (Shannon et al., 2003). These miRNAs were responsible for

more than 85% of connecting edges in Control-Net. The total number of interactions detected in Control-Net was 6829. (b) For each miRNA, we show the number

of edges shared by chemical and control (green bar), the number of control-specific edges (blue bar) and the number of chemical-specific edges (red bar). The

three quantities have been normalized dividing them by the total number of connecting edges in either Control-Net or chemical-networks

Table 2. List of interactions in Control-Net contained in miRTarBase

for miR-200a and miR-375

miRNAs mRNAs DEP MPB TCS

miR-375 HER2, TMTC4, SFT2D2, KRT8 x

miR-375 PLAG1, CCDC88A, CELF2 x

miR-375 GATA6 x x

miR-375 CMTM4, FOLR1, CTSC

miR-200a ZEB2

miR-200a HOXB5 x

miR-200a DLC1 x

For each interaction, we indicate if it was contained in other networks such

as DEP-Net, MPB-Net and TCS-Net.
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Control-Net can be found in Supplementary Table S3). The enrich-

ment analysis was performed using David Tool 6.7 (Huang et al.,

2008) and Benjamini adjusted p-values were reported in Figure 3(a).

As shown, miR-375-3p and miR-200a-3p share some enriched cate-

gories such as ‘Mammary Gland Development’ with Benjamini ad-

justed p-values less than 0.1. This result is not surprising since the

two miRNAs share some connections in Control-Net. Various stud-

ies have shown that chemical exposure can alter mammary gland

development (Manservisi et al., 2015; Mandrup et al., 2015;

Schwarzman et al., 2015). In this context, DEP exposure might alter

the regulatory mechanism of miR-375-3p and miR-200a-3p and af-

fect mammary gland development. As shown in Figure 3(a), en-

riched pathways include genes such as ERBB2 (HER2), FOXA1 and

SFRP1 which play a crucial role in breast cancer. To further demon-

strate the loss in connectivity in DEP-Net, Figure 3(b) shows the cor-

relation density between each miRNA and mRNAs connected in

Control-Net but not in DEP-Net. As expected, the correlation dens-

ity for DEP exposure is shifted to the left compared to that of con-

trol revealing a loss of correlation. Supplementary Figure S7 shows

that the loss of correlation observed in DEP-Net for both miR-375-

3p and miR-200a-3p is significant.

4.3 Validation via cell line experiments
In Section 4.1,we showed that DEP-Net resulted in a dramatic loss

of interaction compared to Control-Net. In particular, the three

hub- miRNAs poorly connected in DEP-Net were miR-375,

miR-214 and miR-200a. To validate the effect of DEP, in vitro ex-

periments of a human breast cancer cell line are utilized.

Experiments: MCF-7 cells were maintained in phenol-red-free

DMEM (Gibco #11054) containing 5% (v/v) dextran-charcoal-

stripped fetal calf serum, with 1� 10�5 M diethyl phthalate, for

4 weeks. These cells were subcultured every 3-4 days with a conflu-

ence level less than 70%. The total RNA was isolated from 10 cm

Petri plate using the Promega Maxwell simplyRNA kit according to

the manufacturer’s instructions. Reverse transcription was done

using the Exiqon Universal cDNA Synthesis kit and the detection of

qPCR was performed with the Exiqon ExiLENT SYBR Green mas-

ter mix on Roche LightCycler 480 machine.

Results: We quantified the expression of miR-200a, miR-375

and miR-214 in MCF-7 cells. Unfortunately, miR-214 was not ex-

pressed in this cell line, thus only results for miR-200a and miR-375

are reported. As shown in Figure 4, the expression levels of both

miR-375 and miR-200a are significantly different between control

and DEP-exposed cells. This result suggests that the two miRNAs

are affected by DEP exposure in breast cancer human cell lines.

Further analyses are necessary to elucidate the role of these two

miRNAs on mammary gland development.

5 Discussion

In this paper, we focused on exposure to chemicals commonly used

in personal care products during mammary gland development

(a)

(b)

Fig. 3. (a) We consider genes connected to miR-375-3p and miR-200a-3p in Control-Net but not in DEP-Net and derived enriched categories using David Tools

(Huang et al., 2008). Pathways ‘Gland Development’, ‘Plasma Membrane’ and ‘Mammary Gland Development’ were enriched for both miR-375-3p and miR-200a-

3p with Benjamini adjusted p-values smaller than 0.10. Pathway ‘Gland Morphogenesis’ was enriched only for miR-375-3p. (b) Density of absolute correlation be-

tween miR-375-3p and miR-200a-3p with mRNAs connected only in Control-Net for DEP exposed data (red) and control data (black)
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(birth to adulthood) and their effect on miRNA–mRNA inter-

actions. Some challenges arose given the large number of miRNAs/

genes involved and the limited sample size of our data. In order to

overcome this problem, we proposed iJRF, an ensemble algorithm

with small sample size requirement. The advantage of iJRF is dual.

First, it is designed to borrow information across different treatment

conditions so that associations shared across treatments can be de-

tected more accurately. Second, iJRF can integrate information from

existing miRNA–mRNA databases such as TargetScan.

Using our newly developed algorithm, we estimated miRNA–

mRNA interaction in mammary tissues for control and chemical-

exposed animals. All chemical-networks registered a loss in

connectivity compared to control. In particular, DEP was the chem-

ical registering the most dramatic loss of interaction compared to con-

trol. In fact, the total number of interactions in DEP-Net, MPB-Net

and TCS-Net were respectively 44%, 84% and 52% of the total num-

ber of interactions in Control-Net.

Among the leading miRNAs in Control-Net, miR-200a, miR-

214 and miR-375 lost more than 90% of connectivity in DEP-Net

compared to Control-Net. Messenger RNAs connected to miR-200a

and miR-375 in Control-Net but not in DEP-Net were enriched in

‘Gland Morphogenesis’ and ‘Mammary Gland Development’, indi-

cating their potential involvement in mammary gland development

mechanisms. Among genes in these pathways, we found targets in

breast cancer such as ERBB2, FOXA1 and SFRP1. Recent studies

have investigated the role of miR-375, miR-214 and miR-200a in

breast cancer. For example, Ward et al. (2013) reported a loss of

miR-375 expression in tamoxifen-resistant breast cancer cells; while

Madhavan et al. (2016) reported a significant association between

survival in metastatic breast cancer and both miR-375 and miR-

200a. The expression of miR-214 was shown to be associated with

breast cancer survival (Kalniete et al., 2015) and drug sensitivity (Yu

et al., 2015); while Yao et al. (2014) demonstrated the role of miR-

200a in the inhibition of cell proliferation in breast cancer.

Given the dramatic loss of connectivity observed in DEP-Net, we

validated the effect using cell line experiments. Specifically, we

focused on miRNAs with the highest loss in connectivity: miR-375,

miR-214 and miR-200a. Using MCF-7 cells, we showed that the ex-

pression levels of both miR-375 and miR-200a were significantly

different between the control and DEP exposed groups. In this

study, we hypothesized that chemical exposures first affect miRNA

activity, which then changes the regulatory pattern among miRNAs

and mRNAs. In our validation experiments, we demonstrated the ef-

fects of chemical exposure on miRNA activity. Future research is

warranted to further validate the detected changing of regulatory re-

lationships among miRNAs and mRNAs.

In this paper we examined miRNA–mRNA networks for single

exposure conditions. On the other hand, humans are exposed to a

mixture of different chemicals with the interaction and combination

of chemicals playing a crucial role. In order to deal with such com-

plex data, as future work, we will design a model to estimate net-

works which vary across exposure conditions in a dynamic way.

Once chemical-induced mechanisms will be identified, their associ-

ation to breast cancer phenotypes will be assessed.

Finally, the proposed algorithm can be utilized in different biolo-

gical applications. As an example, eQTL analysis might be per-

formed for different tissues simultaneously while borrowing

information from existing databases. It is well known that borrow-

ing information across tissues is crucial to detect shared eQTLs

more accurately (Flutre et al., 2013) and, iJRF is a non-parametric

model that can be easily implemented for such analyses.
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