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Reproductive disorders, including intrauterine adhesion (IUA), premature ovarian
insufficiency (POI), and polycystic ovary syndrome (PCOS), are great threats to female
reproduction. Recently, mesenchymal stem cells derived–extracellular vesicles (MSC-EVs)
have presented their potentials to cure these diseases, not only for the propensity ability
they stemmed from the parent cells, but also for the higher biology stability and lower
immunogenicity, compared to MSCs. EVs are lipid bilayer complexes, functional as
mediators by transferring multiple molecules to recipient cells, such as proteins,
microRNAs, lipids, and cytokines. EVs appeared to have a therapeutic effect on the
female reproductive disorder, such as repairing injured endometrium, suppressing fibrosis
of endometrium, regulating immunity and anti-inflammatory, and repressing apoptosis of
granulosa cells (GCs) in ovaries. Although the underlying mechanisms of MSC-EVs have
reached a consensus, several theories have been proposed, including promoting
angiogenesis, regulating immunity, and reducing oxidate stress levels. In the current
study, we summarized the current knowledge of functions of MSC-EVs on IUA, POI, and
PCOS. Given the great potentials of MSC-EVs on reproductive health, the critical issues
discussed will guide new insights in this rapidly expanding field.

Keywords: mesenchymal stem cells, extracellular vesicle, exosome, reproduction, infertility
INTRODUCTION

Mesenchymal stem cells (MSCs), a type of adult stem cells, could be harvested from various tissues,
including bone marrow, umbilical cord, menstrual blood, endometrial tissue, adipose tissue, etc. (1).
Given the capacity of self-renewal and differentiation potentials, emerging researches have regarded
MSCs as exciting candidates for cell therapy in regenerative medicine (2, 3). There are lots of pre-
clinical and clinical trials confirming the efficacy of MSCs in a variety of diseases, such as
cardiovascular disorders, diabetes, neurological diseases, renal fibrosis, and female reproductive
disorders (4–8). However, stem cell therapy may raise some negative issues such as transplant
rejection, inconvenience of transportation or storage, difficulties of commercialization, and still
exhibit safety problems without proper monitoring tests (9, 10). EVs refer to lipid bilayer particles
that release from cells into the microenvironment, serving as messengers by trafficking plenty of
n.org June 2021 | Volume 12 | Article 6656451
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cargo, such as proteins, microRNAs, lipid and cytokines, and so
on (11, 12). In contrast with MSCs, MSC derived extracellular
vesicles (MSC-EVs) not only have similar functions with the
parent cells, but also exhibit higher biology stability and lower
immunogenicity (13, 14).

Female reproductive disorders are great threats to women’s
reproductive health and contribute to infertility (15, 16).
Although assisted reproductive techniques (ART) have made a
great contribution to improving the pregnancy outcomes of
infertile couples, women with intrauterine adhesion (IUA) or
premature ovarian insufficiency (POI) are still difficult to
conceive even with the help of ART (17, 18).

Considering the abovementioned advantages and great
potentials in regenerative medicine, MSCs-EVs hold great
promise as an alternative therapy for IUA and POI (19, 20).
Moreover, recent evidence also indicated that MSC-EVs were
functional in improving the ovarian health of women with
polycystic ovarian syndrome (PCOS) (21). Accordingly, we
draft this review to summarize the therapeutic effects and
mechanisms of MSC-EVs on the abovementioned disorders. In
this review, the latest studies on the therapeutic effect of MSC-
EVs on these diseases are provided and the current limitations
and future perspectives of MSC-EVs are discussed as well.
METHODS

For this review, an extensive literature search was performed in
PubMed, Embase, and Cochrane libraries. Literature published
in English and available up to January 2021 was included.

The following keywords were used for the search, alone or in
combination: mesenchymal stem cells, extracellular vesicles,
exosomes, female reproductive diseases, intrauterine adhesion,
thin endometrium, injured endometrium, endometrial fibrosis,
premature ovarian insufficiency, premature ovarian failure,
diminished ovarian reserve, polycystic ovary syndrome,
follicles, in vitro fertilization treatment, angiogenesis, immune
regulation, immunosuppressive, collagen remodel, anti-
apoptosis, oxidative stress, embryo transfer. Then, the resulting
articles were selected by screening titles and reviewing full-text of
papers, only articles correlating to the interest topics and its
relatives were selected for this review. In addition, we hand-
searched references of relevant reviews, and included ongoing
studies to locate other potentially eligible materials.

Extracellular Vesicles From Mesenchymal
Stem Cell
Almost all cell types can generate EVs, and MSCs are no
exception (22). There are three subtypes of EVs, including
exosomes (50–150 nm), microvesicles (MVs) (100–1,000 nm),
and apoptotic bodies (500–5,000 nm) (23). The biogenesis
mechanism of these subtypes is different to some extent.
Generally, the endocytosis and exocytosis account for the
biogenesis of most exosomes: initially early endosome can be
formed in endocytosis of plasma membrane; with subsequent
inward budding of endosomal membrane, late endosome can
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arise and develop into multivesicular bodies (MVBs) filled with
intraluminal vesicles (ILVs); then MVBs release ILVs upon
fusion with cell membrane, which mediated by endosomal
sorting complexes required for transport (ESCRT)-dependent
pathway or ESCRT-independent pathway; finally the vesicles are
secreted extracellularly as exosomes (24, 25) (Figure 1). As for
MVs, the biogenesis is relatively simple, including directly
budding from the plasma membrane (26) (Figure 1). In fact,
evidence showed that exosomes could also originate in cell
membrane protrusions (24, 25). Hence, the mechanism of EVs
biogenesis needs to be investigated further. As aforementioned,
the biogenesis of exosomes and MVs is not alike, their molecular
contents or functions are thus dissimilar as well (27). For
example, Phinney et al. pointed that the mitochondria could be
transferred by MVs, not exosomes, to enhance mitochondrial
bioenergetics in macrophages (27). Thus, the functional contents
may be different between exosomes and MVs regarding the
treatment of female reproductive disorders, which are worthy
of exploration.

According to the statement of the International Society for
Extracellular Vesicles, ultracentrifugation has been the most
commonly used technique to isolate exosomes or MVs, but the
resultant EVs are a mixed population owing to the overlaps in
the density or size of different EV types (23). As a consequence, it
is of importance to characterize individual EV. Conventional
means for identifying the characteristics of EVs usually include
nanoparticle tracking analysis (NTA) and transmission electron
microscope (TEM) observation for morphological information,
or western blotting for membrane protein markers (19).
Recently, atomic force microscope-infrared (AFM-IR)
spectroscopy has been reported to be applied in characterizing
individual EV structure and composition, which may provide us
a vital tool for deeply understanding subtypes or individual
EVs (20).

Generally, the function of EVs is up to their originating cells
(13). The therapeutic use of MSCs was reported in female
reproductive diseases, so did MSC-EVs (28–30). Table 1
summarized the major findings of EVs secreted from different
categories of MSCs in terms of ameliorating female reproductive
disorders. MSC-EVs with different origins exhibited diverse
functions, such as repairing injured endometrium, suppressing
endometrial fibrosis, regulating immunity, and anti-
inflammatory, repressing apoptosis of damaged granulosa cells
(GCs), and reducing reactive oxygen species (ROS) level of the
ovary (Table 1). Although adipose-derived MSC (ADSC)/
umbilical cord-derived MSC (UCMSC)/bone marrow MSC
(BMSC)–EVs have shown their therapeutic potentials on
intrauterine adhesion (IUA) or premature ovarian insufficiency
(POI) in small animals (Table 1), further studies are required to
determine the efficacy and safety of MSC-EVs in primates or
even patients.

Compared with small animals, primates or human needs a
higher dose of EVs. Currently, small-scale production of EVs is a
restriction for the clinical application, thus, it is important to find
new methods to scale up EV production (50). Previous evidence
indicated that MSCs culture parameters were significant for EV
June 2021 | Volume 12 | Article 665645
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production and functions. For example, Patel et al. found that
enhanced production of EVs per cell of BMSCs resulted from
lower cell seeding density in the culture flasks, and high
vascularization bioactivity of EVs was within passage 4 of
BMSCs (14). For 3D culture, Watson et al. utilized a hollow-
fiber bioreactor to produce bioactive EVs (51). This bioreactor
culture model yielded more than 40-fold EVs without serum
protein contaminants in comparison with conventional cell
culture. Besides, Haraszti et al. also developed a microcarrier-
based 3D culture system in combination with tangential flow
filtration as a scalable production method for MSC-EVs (52).
Moreover, EV yield varies among different MSC cell types (52).
With regard to the application method, we are presently
witnessing the utilization of MSC-EVs with biomaterials
developed rapidly, including collagen scaffold, extracellular
matrix mimicking nanofibrous scaffolds, and 3D engineered
scaffolds (32, 53, 54). All of them may be very useful for the
future use of MSC-EVs in female reproductive diseases. In brief,
in terms of clinical application of MSC-EVs, we should take
several aspects into consideration, including MSC sources, MSC-
EVs production, and usage approaches, which can help us to
Frontiers in Endocrinology | www.frontiersin.org 3
build a platform of MSC-EVs for clinical application and shorten
the time from bench to bedside.

Therapeutic Effects of MSC-EVs on
Female Reproductive Disorders
IUA
IUA, also known as Asherman’s syndrome (AS), is characterized
by the damage of the endometrial basalis layer and consequent
obliteration of endometrium by fibrous tissues (17). Patients with
IUA presented with decreased volume of menstrual flow,
recurrent pregnancy loss, aberrant placental implantation, and
infertility (55). Besides, the endometrium of patients with
recurrent IUA is usually very thin, that is, thin endometrium
(TE) occurs (56). Multiple factors that interfere with the
homeostasis of the uterine environment might be related to
this condition, such as artificial abortion, curettage, chronic
endometritis, and retained placenta (57). It is acknowledged
that endometrial fibrosis is involved in the formation and
progression of IUA (58). Initially, the impaired endometrium
cannot be normally repaired, which may trigger immune
activation and lead to inflammation response along with the
FIGURE 1 | The biogenesis of extracellular vesicles. Exosomes are released upon fusion of MVBs with cell membrane or originate in cell membrane protrusions.
Microvesicles bud from the plasma membrane.
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over-deposition of extracellular matrix (ECM) protein (collagen
and fibronectin) (58–60). As a result, the persistent inflammatory
irritation promotes the formation of aberrant avascular fibrotic
areas, which may cause tissue hypoxia and sequentially impede
endometrial repair (60).

The pathogenesis of IUA is shown in Figure 2. Many studies
indicated that the activation of transforming growth factor-b1
(TGF-b1)/Smad3 signaling pathway participated in the
occurrence of IUA (61, 62). Moreover, inflammatory factor
NF-kB was also identified as a risk factor for IUA (63). Xue
et al. observed the expression of TGF-b and connective tissue
growth factor-2 (CTGF/CCN2) were positively related to NF-kB
pathway activity in the endometrium of IUA patients, and the
expression of TGF-b was decreased after inhibiting NF-kB
signaling pathway (64). Moreover, it has been reported that the
aberrantly activated Wnt/b-catenin pathway was confirmed to
Frontiers in Endocrinology | www.frontiersin.org 4
stimulate TGF-b-mediated fibrosis and mediate fibrogenesis in
the endometrium (65, 66). FOXF2 protein, which activated Wnt/
b-catenin pathway and upregulated Collagen Type V Alpha 2
(COL5A2) transcription in the endometrium, was reported to
promote fibrogenesis in the IUA as well (67, 68). Therefore, the
interaction between many proteins or signaling pathways is of
significance to the pathogenesis of IUA.

Bioinformatic analysis revealed an evident cell heterogeneity
in the uterus: endothelial cells, stromal cells, fibroblasts, M1
macrophages, mast cells, T cells, and smooth muscle cells (69).
Understanding the intercellular interactions and cellular trans-
differentiation may enable the pathogenesis of IUA to be
elucidated and provide novel treatment targets. For instance, in
this study, a heatmap showed the interaction between endothelial
cells, especially endothelial cells in endothelial to mesenchymal
transition stage, and fibroblasts or stromal cells was high,
TABLE 1 | Markers and therapeutic effects of reported MSC-derived EVs which contribute to ameliorating female reproductive disorders.

EVs
Resource

Species
Resources

EVs
markers

Major findings Reference

ADSCs-
Exo

Rat/
Human

Alix/
CD9/
CD63/
CD81

1. IUA rat model: Improved endometrial thickness and glands; Decreased fibrotic area; Increased pregnant rate and
the number of implanted embryos; Decreased conception time.
2. POI mice model: Increased the number of primordial primary secondary and antral follicles; Increased the level of
E2 and AMH; Decreased FSH level; Improved proliferation rate and Inhibited apoptosis of GCs; Increased number of
FSHR+/AMH+ GCs and FOXL2+CYP19A1+ GCs.
3. In vitro model: Promoted cell growth and inhibited apoptosis of CCs from PCOS patients.

(21, 30, 31)

UCMSCs-
Exo

Human Alix/
CD9/
CD63/
CD81/
Hsp70/
TSG101

1. IUA rat model: Promoted epithelium repair and neovascularization; Improved endometrial thickness and glands;
Decreased fibrotic area; Decreased IL-1, IL-6, TNF-a; Increased CD140b, RUNX2, and ER/PR; Increased pregnant
rate and implantation sites.
2. TE rat model: Improved proliferation of endometrium; Upregulated VEGF and Bcl-2 level; Decreased caspase-3
level.
3. POI rat/mice model: Decreased the apoptosis and stress of damaged GC; Increased E2 and AMH level;
Decreased FSH level; Improved ovarian weight, follicle number, and oocyte retrieved; Reduced conception time;
Improved offspring weight; Anti-apoptosis of GCs; Attenuated ROS level.
4. In vitro model: Anti-apoptosis; Increased Ki-67 level and follicular count; Increased E2 and AMH; Decreased FSH
and ROS level of GCs from POI women.

(29, 32–37)

UCMSCs-
MVs

human CD9
CD63/
TSG101

1. POI mice model: Increased body weight, follicular number and E2 level; Decreased atretic follicles and FSH level;
Promoted angiogenesis.

(38)

BMSCs-
Exo

Rabbit/
Rat/
Mice

CD9/
CD63/
CD81/
HSP70

1. IUA rabbit model: Increased endometrial glands number; Decreased fibrotic area; Reversed EMT.
2. IUA rat model: Improved endometrial thickness and glands; Decreased fibrotic area.
3. POI rat/mice model: Restore normal estrous cycle; Increased follicular number, E2, and AMH; Decreased FSH
and LH; Improved GCs viability.

(39–42)

AMSCs-
MVs

equine / 1. In vitro model: Improved endometrial cell proliferation and anti-apoptosis of LPS-treated cells; Decreased TNF-a,
IL-6, MMP1, and MMP13 level.

(43)

AMSCs-
Exo

human Alix/
CD9/
CD63/
CD81/
TSG101

1. POI mice model: Anti-apoptosis and elevated proliferation in ovaries; Repressed oxidative stress genes in ovaries;
Restore follicular numbers; Increased E2 and AMH level; Decreased FSH level; Promote oogenesis.
2. In vitro POI model: Anti-apoptosis of GCs induced by CTX.

(44)

AFMSCs-
Exo

Rat/
mice

/ 1. POI rat/mice model: Increased AMH; Decreased PTEN and caspase3; Increased estrous cycle; Improved viable
offspring and follicular count; Prevented follicular atresia; Anti-apoptosis of damaged GCs

(45, 46)

uMSCs-
Exo

rat / 1. IUA rat model: Decreased fibrotic area; Increased MMP-2 and MMP-9 level; Decreased TIMP-1 level; Increased
CD31 and VEGF level.

(47)

endMSCs-
EVs

Human
menstrual
blood

CD9/
CD63

1. Embryo maturation: Improved total cell the number of embryos obtained from murine and blastocyst hatching
rate.
2. IVF murine model: Improved embryos yield and quality in aged Murine.

(48, 49)
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EVs, Extracellular Vesicles; EXO, Exosomes; MVs, Microvesicles; MSCs, Mesenchymal stem cells; ADSCs, Adipose-derived MSCs; UCMSCs, Umbilical cord-derived MSCs; BMSCs,
Bone marrow MSCs; AMSCs, Amniotic MSCs; AFMSCs, Amniotic fluid MSCs; uMSCs, uterus derived MSCs; endMSCs, endometrial MSCs; IUA, Intrauterine adhesion; POI, premature
ovarian insufficiency; TE, Thin endometrium; E2, Estradiol; GCs, Granulosa cells; CCs, Cumulus cells; FSH, Follicle-Stimulating Hormone; LH, Luteinizing hormone; AMH, Anti-Mullerian
hormone; CTX, Cyclophosphamide; ROS, Reactive oxygen species; IVF, In vitro fertilization; LPS, Lipopolysaccharides; MVD, Micro-vascular density; HUVECs, Human umbilical vein
endothelial cells; IL, Interleukin; TNF-a, Tumor necrosis factor alpha; MMP, Matrix metalloproteinase; TIMP, Tissue inhibitor of metalloproteinase; VEGF, Vascular endothelial growth factor;
ER, Estrogen receptor; PR, Progesterone receptor; ECM, Extracellular matrix.
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suggesting the communication might be involved in the
progression of IUA. Moreover, the epithelial-to-mesenchymal
transition (EMT) also plays an important role in IUA
progression (65). A study with the use of IUA rat models
revealed the EMT process was promoted by NUS1 protein
overexpression via regulating AKT/NF-kB pathway, which
could be attenuated by microRNA (miR)-466 (70). In contrast,
another study showed that miR-1291 promoted endometrial
fibrosis through acting ArhGAP29 negatively to upregulate
RhoA/ROCK1 pathway that is also relevant to EMT (71). In
addition, the Hippo/TAZ signaling pathway was also implicated
in regulating EMT process negatively (65). Herein, activation of
Hippo pathway would result in the phosphorylated TAZ,
consequently inhibiting EMT process (65). Zhu et al. further
found that Hippo pathway, which was stimulated by menstrual-
blood derived stem cells (MenSCs), could inhibit TGFb-
Frontiers in Endocrinology | www.frontiersin.org 5
mediated activation of myofibroblast phenotypes of
endometrial stromal cells (ESCs) (72). Taken together, it is
essential to treat AS via regulating the alternation of cell
phenotypes in endometrium that is involved in IUA
pathological process.

As shown in Table 1, the application of MSC-EVs on AS has
been investigated in animal and in vitro experiments (30, 32, 43).
For example, Yao et al. found that BMSC-EVs promoted
endometrial glands, decreased the fibrotic area, and even
reversed EMT process in the rat IUA models (39). In this
study, injection of BMSCs-EVs significantly declined vimentin
(VIM) level and increased the cytokeratin (CK) 19 level. Besides,
the expression of TGF-b1, TGF-b1R, and Smad2 was also lower
in the treatment group, suggesting BMSC-EVs might repair
endometrium by inhibiting TGF-b1/Smad2 signaling pathway
(39). Additionally, in Saribas’ work, the injection of uterus-
FIGURE 2 | The pathogenesis of IUA. The left part showed the crosstalk of TGF-b, Wnt, NF-kB, Hippo, and RhoA/ROCK signaling pathways, which was relevant to
endometrial fibrosis. The right part revealed the process of EMT and endothelial to mesenchymal transition that was involved in fibrogenesis. DKK-1, Dickkopf-1;
ECM, Extracellular matrix; GFs, Growth factors; TNF, Tumor necrosis factor; EECs, Endometrial epithelial cells; ESCs, Endometrial stromal cells; EMT, Epithelial-
mesenchymal transition.
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derived MSC_(uMSC)–EVs into the uterine cavity promoted
angiogenesis in the IUA rats by increasing the expression of
vascular marker CD31 and vascular endothelial growth factor
receptor 1 (VEGFR1) (47). Recently, a conference paper reported
that UCMSC-EVs promoted rat TE repair by upregulating
VEGF, Bcl-2 level and decreasing fibrosis area, suggesting that
the regeneration of endometrium could be improved by MSC-
EVs (33). Moreover, MSC-EVs may impede IUA progress by
inhibiting inflammation. UCMSC-EVs could repress the
inflammatory factor interleukin (IL)-1b, IL-6, and tumor
necrosis factor (TNF)-a, and increase anti-inflammatory factor
IL-10 expression (32). In terms of fertility reservation, the
implantation and pregnancy rates were analyzed in this study.
Results revealed that UCMSC-EVs could improve these two rates
respectively in IUA rats, indicating that UCMSC-EVs might be
beneficial to restore infertility of IUA patients (32). Hence, MSC-
EVs may serve as a new strategy for treating AS by ameliorating
endometrial condition, impeding fibrosis process, promoting
angiogenesis, and exerting immunomodulation effect.

However, the application of MSC-EVs in IUA patients is still
in its infancy. Several challenges exist in terms of utilizing MSC-
EVs in human-beings. First, the mechanisms of MSC-EVs on
IUA have not been fully understood yet. Additionally, though the
injured endometrium could be repaired by MSC-EVs in vivo,
such therapeutic effects verified in animal models were in a short
period. Whether MSC-EVs were functional in a long-lasting
time, has not been explored yet. Furthermore, we could not
mimic chronic IUA in animal models, the effect of MSCs on
chronic IUA has not been determined. Actually, many patients
with IUA have suffered for quite a long time, whether MSC-EVs
are efficient in treating those patients demand more
investigation. Besides, we only know few information of safety
about MSC-EVs used in patients, so the safety of MSCs-EVs is
required to study as well (73). Notably, Wu et al. reported clinic-
grade human embryonic stem cells (hESCs)–derived immunity-
and matrix-regulatory cells (IMRCs) that were verified to cure
lung fibrosis, had an efficacy and safety profile in mice and
primates (74). Moreover, IMRCs was demonstrated to be
superior to UCMSCs as their higher expression of proliferative,
immunomodulatory, and anti-fibrotic genes. Hence, it
emphasized the safety of IMRCs, however, the therapeutic
effects required to be determined in IUA models.

POI
POI is defined by senescence of ovarian function in women less
than 40 years old and characterized by amenorrhea or
oligomenorrhea for at least 4 months, an elevated FSH level
(≥25 IU/L), and fluctuant reduction of estradiol (E2) (75–77). It
affects approximately 1% of women under 40 years, which will
result in poor infertility outcomes eventually and burden young
couples (75, 78). POI might be caused by genetic abnormality,
aberrant immunity, chemotherapy or radiotherapy, and
environmental pollutants (79, 80). It is believed that primordial
follicles cannot be generated and ovarian reservoir is determined
at birth, so the ovarian function is easily compromised by
accelerated activation of primordial follicles, depletion of
Frontiers in Endocrinology | www.frontiersin.org 6
ovarian follicles in the resting pool, and abnormal follicular
atresia as shown in Figure 3 (81).

X chromosome and multiple genes are essential for follicle
growth and development (82, 83). It has been reported that the
inactivation of STAG3, SMC1B, or REC8 gene related to meiosis,
would result in oocyte arrested with concomitant POI (84, 85).
Using whole exome sequencing (WES) analysis, Jaillard et al.
proposed new candidate POI genes, including NRIP1, XPO1, and
MACF1 (86). In fact, it is hard to define a specific causative factor
as different genes interplay intricately in the folliculogenesis (81).
Apart from gene mutation, abnormal epigenetic modification
might also be relevant to an increase of atresia follicles (87–89).
Hence, aberrant gene expression or regulation in women can
perturb folliculogenesis and bring about follicular atresia, which
might lead to the occurrence of POI.

Signaling pathways play critical roles in the follicular
development as well, such as PI3K/AKT/mTOR pathway,
TGF-b pathway, and Hippo pathway (90, 91). Recently,
Grosbois et al. found a synergistical effect of PI3K/AKT and
Hippo signaling pathways, wherein primordial follicle
recruitment was accelerated and consequently caused rapid
depletion of follicles stock (91). Abnormal activation of PI3K
pathway could induce the upregulation of AKT/mTOR, while
the disruption of Hippo pathway would lead to the de-
phosphorylation of YAP/TAZ, both of which resulted in a
massive and precocious growth of primordial follicles (91).
Whereas repressing PI3K/AKT pathway via depleting protein
kinase Ck2 contributed to massive follicles atresia in mouse
ovaries (92), indicating the significance of PI3K/AKT
pathway equilibrium.

Besides, exaggerated autoimmune reaction or inflammatory
response also accelerated follicular atresia (75, 93). For example,
follicular atresia occurs when GCs continuously exposed to pro-
inflammatory cytokines, such as IFN-g (94). Apart from that, other
factors, including unlimited ROS level, some chemotherapeutics,
and environmental pollutants, might lead to follicular atresia or
depletion as well (80, 81, 95). Notwithstanding, the exact
pathogenesis of declined ovarian function remains an enigma,
and the relatively complicated pathological mechanism of POI
makes it difficult to cure this disease.

Ongoing researches demonstrated that MSC-EVs were able to
rescue viability of GCs, suppress ROS level, and restore follicular
number in POI animal models (Table 1) (31, 34, 38, 96).
Recently, AFMSC-EVs were discovered to protect ovarian
follicles against gonadotoxic effects of chemotherapy. Herein,
miR-10a, a highly enriched miRNA in AFMSC-EVs, promoted
resistance to GCs apoptosis or follicular atresia in
chemotherapeutics-treated mice (45). After that, Sun et al. also
found the UCMSC-EVs reduced cisplatin induced GCs apoptosis
in vitro (35). And then a study in mice revealed higher level of
AKT, P-AKT, VEGF, and IGF in UCMSC-MVs-treated groups
compared to non-treated POI group, implying that UCMSC-
MVs might induce angiogenesis and activate the PI3K/AKT
signaling pathway in ovaries (38). Notably, PTEN, which
regulated PI3K/AKT pathway negatively, was downregulated
after injected BMSC-EVs or AFMSC-EVs in POI rat models
June 2021 | Volume 12 | Article 665645
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(40, 46), suggesting that MSC-EVs might ameliorate GCs
apoptosis in POI via PTEN-PI3K pathway. Moreover, MSC-
EVs could suppress SIRT families (including SIRT4 or SIRT7)
and P53 to reduce cisplatin or cyclophosphamide (CTX)-
induced GCs apoptosis (36, 41, 44). Meanwhile, using mRNA
and protein assay, Huang et al. found that ADSC-Exo regulated
SMAD signaling pathway and rescue GCs from apoptosis (31).

Moreover, MSC-EVs improved offspring outcomes in POI
models as well (37). In this study, Liu et al. found that POI mice
in UCMSC-EVs transplantation group had higher fertility with
less time-to-pregnancy and an increased number of offspring
compared to the POI group. Besides, their offspring had nearly
similar cognitive behaviors through assessing Y-maze test and
novel object recognition task. It was demonstrated that MSC-
EVs could improve the fertility of POI mice without adverse
effects on the cognitive behavior of their offspring (37).

Similarly, the clinical application of MSC-EVs in POI women
is still rudimentary. On one hand, the mechanism of MSC-EVs
Frontiers in Endocrinology | www.frontiersin.org 7
therapeutic effect on POI is opaque, further researches are
needed. On the other hand, the therapeutic effects of MSC-EVs
verified on abdominal-injection-constructed animal models,
could not totally extrapolate to human patients. Recently, a
clinical trial reported a retrograde injection method was used
to transplant MSCs based on collagen scaffold (CS) into ovaries
of POI patients, suggested CS/MSC-EVs could also be
transferred by intra-ovarian injection (97). However, the safety
and efficacy of using this method remains to be studied.
Additionally, Blazquez et al. noticed the higher blastomere
count and hatching rate when murine embryos were exposed
to endometrial MSCs (endMSC)-EVs (48, 98). Furthermore,
endMSC-EVs were also verified to improve in vitro fertilization
(IVF) outcome in aged murine model (49). IVF-embryo transfer
(IVF-ET) was widely applied in POI patients for assisted
conception (99). Perhaps IVF-ET combined with MSC-EVs
might be a new method for helping POI patients to conceive,
although the safety to offspring needs to be explored.
FIGURE 3 | The pathogenesis of POI. Aberrant X chromosome and genes, abnormal signaling pathways, inflammation response, oxidative stress, etc. contributed
to the occurrence of POI.
June 2021 | Volume 12 | Article 665645
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PCOS
PCOS is a common reproductive endocrine disorder
characterized by hyperandrogenism, ovulatory dysfunction,
polycystic ovarian morphology, obesity, and insulin resistance,
which affects about 5–20% of women of reproductive age (98,
100, 101). Hyperandrogenism has been demonstrated as the
essence of PCOS (102, 103). Herein, androgen excess was
reported to initiate small antral follicle growth and trigger
premature luteinization, which inhibited dominate follicle
selection and consequently impaired ovulation (102, 103).
Anovulatory infertility is a major challenge for women with
PCOS, and assisted reproductive techniques are recognized as a
last resort to conceive (104). Recently, it was found that in vitro
maturation (IVM) protocol based on heterologous follicular fluid
and GCs supernatant (HFF/GC-IVM protocol) could improve
the maturation rate of immature denuded oocytes, fertilization
rate, and hatched blastocysts rate for women with PCOS (105).
In the meanwhile, ADSC-EVs were noticed to inhibit apoptosis
and promote proliferation of cumulus cells (CCs) from PCOS
patients, wherein elevated expression of miR-323-3p in
exosomes works (21). However, the case of MSC-EVs used in
treating PCOS is still few so far.

Possible Mechanism of Treatment
As described above, though the precise mechanisms of MSC-EVs
on female reproductive diseases have not been elucidated yet,
several hypotheses have been proposed, including promoting
angiogenesis, regulating immunity, reducing oxidate stress level,
etc. The functional contents related to above mechanisms in
MSC-EVs were summarized in Table 2.

IUA
It has been well established that MSC-EVs stimulate
neovascularization (111, 120, 137, 138). MSC-EVs promoted
the formation of tube-like structure formation and spheroid-
based sprouting of human umbilical vein endothelial cells
(HUVECs) (102, 116, 118). Besides, hemoglobin or CD31+
cells were increased after injecting the mixture of Matrigel and
MSC-EVs in mice subcutaneously, indicating the MSC-EVs
promoted the formation of functional capillaries (102, 118).
Similarly, MSC-EVs increased the expression of VEGF and
CD31 in IUA model (29, 47, 139). The contents enclosed in
the MSC-EVs might be responsible for such effects. MSC-EVs
not only contained multiple pro-angiogenic proteins, such as
VEGF and HGF (106). Moreover, several non-coding RNAs (nc-
RNAs) enriched in the MSC-EVs, including miR-30b and miR-
125a (102, 118). In addition, the following signaling pathways are
greatly affected: a) Wnt4/b-catenin pathway (137), b) NF-kB
signaling pathway (111), c) VEGF/VEGFR (106, 138), d) PI3K/
AKT pathway (120, 140), e) ERK/AKT signaling pathway (114),
f) DLL4/Notch signaling pathway (102, 118, 141). Interestingly,
these signaling pathways not only were functional in promoting
angiogenesis, but also exerted therapeutic effects via other
mechanisms. For instance, Wnt/b-catenin pathway promoted
angiogenesis, and was involved in TGF-b1-mediated fibrosis (67,
142). Therefore, further researches need to characterize the role
of pathways in ameliorating IUA by MSC-EVs.
Frontiers in Endocrinology | www.frontiersin.org 8
Some researchers proposed that MSC-EVs regulated cell
phenotypes, like conferring plasticity of fibroblasts, or inducing
mesenchymal-epithelial transition (MET) (39, 143). ADSC-EVs
could induce the osteogenic and adipogenic differentiation of
human dermal fibroblasts, via enhancing the expression of
OCT4 and NANOG (143). It presents a new horizon in
investigating the mechanism of MSC-EVs in terms of
ameliorating IUA.

Besides, emerging studies supported that MSC-EVs had
immunomodulatory properties (121, 144, 145). MSC-EVs
could guide phenotypic switch of M1 to M2 macrophages in
vivo and in vitro (146). Del Fattore et al. revealed MSC-EVs could
promote the proliferation of regulatory T (Treg) cells, which
repress immune response through Galectin-1 and PD-L1 (147).
In addition, endMSC-EVs and Wharton’s Jelly-derived MSC
(WJMSC)-EVs could suppress CD+4 T cell proliferation and
activation (122, 123). Moreover, MSC-EVs could modulate
immunology via regulating cytokines. MSC-EVs were able to
downregulate IL-1b, IL-6, and TNF-a levels in LPS-treated
endometrial cells (43). Herein, inflammatory pathway, such as
NF-kB signaling pathway and JNK/P38 MAPK pathway, could
be regulated negatively by MSC-EVs. Contents derived from
MSC-EVs, like IL-10, KGF, and TSG-6, could alleviate
inflammation as well (131, 133, 148). The role of such factors
should be investigated in MSC-EV therapy for IUA (42, 74, 75,
107, 108, 112, 115, 117, 119, 124–126, 129, 131, 131, 149).

POI
Apart from promoting angiogenesis (150), MSC-EVs could
ameliorate POI via reducing oxidative stress (44). Oxidative
stress is a phenomenon resulted from accumulation of ROS,
which impairs the function and structures of cells and tissues
(136, 149). BMSC-EVs could protect cells from toxic effects of
peroxide via reducing malondialdehyde (MDA) and increasing
superoxide dismutase 1 (SOD1) and catalase expression (151).
Moreover, MSC-EVs were likely to have a mitochondrial (MIT)-
protective effect. The compromised mitochondrial membrane
potential (MMP) or ATP level was rescued, and ROS level was
reduced significantly after MSC-EVs treatment (151, 152). For
this reason, studies about the mechanism of MSC-EVs in
ameliorating POI, should not only focus on the effect of anti-
apoptosis of GCs under lower levels of ROS, but also further
explore the influence of MSC-EVs on MIT dysfunction of GCs
or oocytes.

In addition, inflammation response in chemotherapeutic
drugs-injured GCs was also inhibited by MSC-EVs, with the
decreasing level of IL-6 and IL-1b. The survival rate of GCs was
higher in MSC-EV-treated group compared to the model group
(153). Collectively, MSC-EVs improve ovarian function mainly
inducing angiogenesis, reducing oxidative stress, protecting MIT
protective, and regulating inflammation.

PCOS
Currently, researches about the therapeutic effect of MSC-EVs
on PCOS are still limited, thereby the mechanism of MSC-EVs
om improving PCOS has not been elucidated yet. As above
mentioned, the dysfunction of follicles is involved in the
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TABLE 2 | Summary of the functional contents in reported EVs derived from different MSCs.

Contents Sources Function Reference

VEGF Human ADSC-EV
Mice BMSC-EV

Enhanced neovascularization via promoting VEGF/VEGFR signaling pathway (106, 107)

HGF Mice BMSC-EV Stabilized endothelial barrier function (108)
Jagged1 Human dental pulp

MSC-EVs
Promoted angiogenesis (109)

MFG-E8, ANGPTL1,
Thrombopoietin, c-kit, SCF

Human ADSC-EV Promoted angiogenesis (110)

PDGF, EGF, FGF,
NFkB signaling proteins

Human BMSC-EV Induced angiogenesis (111)

Wnt4 Human UCMSC-EV Enhanced angiogenesis through promoting Wnt4/b-Catenin signaling (112)
Ephrin-B2, Angptl4, PDGFC,
Wnt7b, DOK2

Pig ADSC-EV Induced angiogenesis (113)

EMMPRIN CMPC-MSC-Exo Promoted angiogenesis (114)
IL-8, miR-21,
miR-132, miR-222

MSC-EV Promoted angiogenesis (115)

Wnt3a, STAT3 Human BMSC-EV Promoted angiogenesis and fibroblast proliferation, migration in vitro (116, 117)
miR-125a, miR-30b Human ADSC-EV Promoted angiogenesis via inhibiting DLL4-Notch signaling pathway (102, 118)
miR-210 Mice BMSC-EV Improved angiogenesis, limited fibrosis in ischemic hearts (119)
miR-130a Rat BMSC-EV Promoted angiogenesis (120)
miR-21 Rat AFMSC-EV Improved ovarian function (46)
miR-210 MSC-EV

Mice BMSC-EV
Promoting angiogenesis through VEGF pathway, ameliorating inflammation via miR-210/serpine1
axis

(119, 121)

TGF-b endMSC-EV Counteracted CD4+ T cells activation, (122, 123)
Dog WJMSC-EV Matrix remodeling

Let7b Human UCMSC-EV Phenotypic conversion of M1 to M2, inhibited pro-fibrotic genes (collagen IVa1, TGF-b1/TGF-
bR1)

(124, 125)

CXCL2, CXCL8,
CXCL16, DEFA1, HERC5, and
IFITM2

MSC-EV Recruited immune cells to proximity of MSC-EVs (126)

miR-147 Human UCMSC-EV Suppressed M1 (127)
miR-182 Mouse BMSC-EV Induced M2 polarization via targeting TLR4. (128)
miR-223, miR-146b, miR-126,
and miR-199a

Human ADSC-EV Induced M2 polarization (129)

miR-216a-5p Human BMSC-EV Induced M2 polarization (130)
TSG-6 Human UCMSC-EV Anti-inflammation (131)
KGF Human BMSC-EV Alleviated inflammation, induced M2 polarization (132)
IL-10 Human BMSC-EV Anti-inflammation (133)
miR-146a-5p,
miR-548e-5p

Human AFMSC-EV Anti-inflammation in human trophoblast cells (134)

miR-29 MSC-EV Attenuating renal fibrosis and EMT via targeting PI3K/AKT signaling pathway, downregulating
TGF-b pathway, or suppressing snail expression

(121)

miR-145 MSC-EV Attenuating EMT via inhibiting TGF-b/smad signaling or suppressing ZEB2 (121)
MMP19, ACVR1 Pig ADSC-EV Matrix remodeling (113)
MFG-E8 Human BMSC-EV Attenuated renal fibrosis partly via inhibiting RhoA/ROCK pathway (135)
miR-340 Rat BMSC-EV Attenuating endometrial fibrosis (42)
Catalase Human WJMSC-EV Decreased ROS level (136)
miR-320a Human AMSC-EV Decreasing ROS level (44)
miR-17-5p Human UCMSC-EV Decreasing ROS level,

improved ovarian function
(36)

miR-144-5p Rat BMSC-EV Improved ovarian function (40)
miR-323-3p Human ADSC-EV Anti-apoptosis of CCs (21)
miR-644-5p Mice BMSC-EV Anti-apoptosis of GCs (41)
miR-10a Mice AFMSC-EV Anti-apoptosis of GCs,

Improved ovarian function
(45)

miR-146a-5p,
miR-21-5p

Human UCMSC-EV Improved ovarian function in aged mice (135)
Frontiers in Endocrinology | www.
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VEGF, Vascular endothelial growth factor; HGF, Hepatocyte Growth Factor; MFG-E8, Milk fat globule EGF factor VIII; ANGPTL, Angiopoietin-related protein; SCF, Stem cell factor; PDGF,
Platelet derived growth factor; EGF, Epidermal growth factor; FGF, Fibroblast growth factor; NF-kB, Nuclear factor-kappa B; DOK2, Docking protein 2; EMMPRIN, Extracellular matrix
metalloproteinase inducer; IL-8, Interleukin-8; TGF-b, Transforming growth factor-b; CXCL, C-X-C motif chemokine ligand; DEFA, Alpha defensin; HERC5, HECT and RCC1 domain
protein 5; IFITM2, Interferon inducible transmembrane protein 2; TSG-6, Tumor necrosis factor-stimulated gene-6; KGF, Keratinocyte growth factor; MMP-19, Matrix metalloproteinase-
19; ACVR1, Activin receptor type-1; WJMSC, Wharton’s Jelly MSC; CMPC, Cardiomyocyte Progenitor Cells.
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pathogenesis of PCOS. It has been demonstrated that the
communication between oocytes and CCs plays a significant
role in the development of follicles (154). Therefore, CCs
dysfunction may be related to the decreased oocyte quality and
poor pregnancy outcomes of women with PCOS. Zhao et al.
found that miR-323-3p transferred by MSC-EVs could
ameliorate PCOS via promoting growth and inhibiting
apoptosis of CCs (21). Previous literature indicated that
administration of functional CCs into IVM medium facilitated
the oocyte meiosis and embryo development in women with
PCOS. Therefore, MSC-EVs, which potentially improve CCs
viability, might be a promising treatment for PCOS patients.

As stated above, the functions that MSC-EVs exert depend on
the cell types, as the resources of MSC-EVs are heterogeneous.
Hence, further studies regarding the therapeutic mechanisms and
massive production of MSC-EVs, which may provide reliable
evidence supporting clinical applications, are encouraged.
CONCLUSIONS AND FUTURE
PERSPECTIVE

MSC-EVs hold great prospects in treating female reproductive
diseases, such as IUA, POI, and PCOS. The therapeutic
mechanisms included pro-angiogenesis, immunomodulation,
anti-fibrosis, and anti-oxidative stress. Although numerous
studies confirm the efficacy of MSC-EVs on improving female
fertility in in vitro and in vivo models, such effects may not fully
extrapolate to humans. Besides, several questions need to be fully
clarified before the application of MSC-EVs in clinic:
Frontiers in Endocrinology | www.frontiersin.org 10
a) standardized purification and identification protocols for
MSC-EVs, b) convenient storage and transportation methods
for MSC-EVs, c) determined cargo of large-scale generation of
MSC-EVs, d) determined the exact mechanism of MSC-EVs
treatment, e) safety issues of MSC-EVs (73). Limited yield is one
of the most important problems that restrain the widespread
application of MSC-EVs. The production of MSC-EVs might
gain benefits from bioreactor culture models (11, 51). For
example, hollow-fiber bioreactors or a microcarrier-based 3D
culture system are reported to reach industrialized mass
production of EVs (51, 52). Herein, a quality-control system
should be established to monitor the process of production.
Moreover, engineered MSC-EVs may also enhance the efficiency
of delivering specific proteins to targeted cells (132, 155). It
should be assessed from the effects and safety via long-
term monitoring.
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