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Abstract: Noise suppression capacity in multiple-input multiple-output (MIMO) sonar signal
processing is derived under the assumption of white Gaussian noise. However, underwater noise
mainly includes white Gaussian noise and colored noise. There exists a certain correlation between
the noise signals received by each MIMO sonar array element. The performance of traditional
direction-of-arrival (DOA) estimation methods decreases obviously in complex marine noise. In this
paper, we propose a marine environment noise suppression method for MIMO applied to multiple
targets’ DOA estimation. The noise field can be decomposed into a symmetric noise component and an
asymmetric noise component. We use the covariance matrix imaginary component to pre-estimate the
signal sources, then use the dimension reduction transformation to reconstruct the real component of
the covariance matrix. The Toeplitz technique is utilized to reduce the correlation of the reconstructed
covariance matrix. Thus, the subspace decomposition-based techniques such as multiple signal
classification (MUSIC) can be used for multiple targets’ DOA estimation. To reduce the computational
complexity of the methods, search-free direction-finding techniques such as the estimation of signal
parameters via rotational invariance techniques (ESPRIT) can be utilized. As a result, the proposed
methods can achieve better direction-finding performance in the condition of limited snapshots
with lower computational cost. The corresponding Cramer-Rao bound (CRB) is deduced and the
signal-to-noise ratio (SNR) gain obtained by dimension reduction processing is discussed. Simulation
results also show the superiority of the proposed method over the existing methods.

Keywords: direction-of-arrival estimation; MIMO sonar; noise suppression; covariance matrix;
Toeplitz

1. Introduction

Multiple-input multiple-output (MIMO) sonar is a system that consists of the transmit array and
the receive array. Both arrays employ multiple sensors. The transmit array emits orthogonal waveforms
and the receive array completes the echo signal acquisition [1–3]. The MIMO array can be mainly
classified into two types. One type is equipped with separated sensors [4–8]. This kind of MIMO sonar
system utilizes widely separated sensors to gain spatial diversity. The large aperture arrays at both the
transmitter and receiver enable the MIMO sonar to view different aspects of a target [9]. The other
type is equipped with co-located sensors [10–12]. This kind of MIMO sonar employs arrays of closely
spaced sensors to view the same side of one target from the same angle. In this scenario, it is assumed
that the source is the point target in the far field of MIMO sonar. Additionally, the transmitted signals
are normally assumed to be narrowband. Hassanien et al. [13] assumed the point target signal model.
Under this circumstance, since the receiver gathers the multiple independent waveforms, the diversity
of the waveform is used to increase the receiver virtual aperture.
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Direction-of-arrival (DOA) estimation of multiple targets is corrupted by complex marine noise
at the receiver sensors. DOA estimation accuracy improvement is one of the most important issues
to be overcome in the application of MIMO sonar [14,15]. Many DOA estimation techniques have
been proposed for the MIMO array [16–18]. The concept of phased-MIMO array is introduced in
References [13,19–21]. It is shown that a tradeoff between phased-array and MIMO array may help to
gain high-angle resolution. By using proper transmit beam space design, it is possible to satisfy the
desired property. In comparison to the previous methods, Luo et al. [9,22] used the iterative approach to
improve the DOA estimation super-resolution. A joint transmitter and receiver optimization approach
was proposed. It is very important to enhance the direction-finding ability at a low signal-to-noise ratio
(SNR) in the situation of a complex marine environment. The methods proposed above are applicable
to the background noise as white Gaussian noise. In the case of complex marine environment noise,
in order to avoid the influence of colored noise on MIMO direction finding, several techniques are
proposed to suppress the spatial colored noise that exists in the marine noise environment [23–27].
The approach adopted by Zhou et al. [23] is based on the characteristic that higher order cumulants are
not sensitive to Gaussian noise. This helps to avoid the effect of the colored noise component on the
accuracy of direction finding. By utilizing an angle estimation method that uses both the Estimating
Signal Parameters via rotational invariance techniques (ESPRIT) and singular value decomposition
(SVD) of the cross-correlation matrix, spatial colored noise suppression can be effective for three or more
transmitters [24]. A novel algorithm is proposed by combining the canonical correlation decomposition
(CCD) and the shift-invariance properties of the various steering matrices [25]. Recently, the tensor
subspace-based versions of the cross-correlation methods have been derived [26,27]. Nevertheless,
all the above methods are only applicable to the distributed MIMO array. If we use the co-located
MIMO array, these methods will be unable to meet the accuracy requirements of the DOA estimation.
On the other hand, the DOA estimation method proposed by Xia et al. [28] is based on the real part
reconstruction of the covariance matrix. It solves the target direction fuzzy problem coming from the
bilateral spectrum. The lake experiment is carried out to verify its effectiveness. The noise suppression
performance of this method outperforms the traditional algorithms. In the case of white Gaussian
noise, we utilize MIMO sonar to detect multiple targets. If the elements of the transmit array and
receive array are equaled spaced, then we need more elements to make up for the degree of freedom
(DOF) loss caused by the virtual array that is overlapped. In order to improve the performance of the
MUSIC algorithm, the theory and applications of time reversal (TR) are discussed [29]. TR-MUSIC was
first applied to Born-approximated linear scattering model [30]. Further, the performance analysis and
statistical testing of TR-MUSIC were provided by Ciuonzo et al. [31–33]. In particular, the hypothesis
testing technique was adopted to propose a theoretically-founded decision statistics approach [32].
A low complexity MUSIC-based Toeplitz reconstruction method was utilized [34]. This method can
effectively reduce the operation dimension and avoid the loss of virtual array aperture and DOF caused
by the traditional decorrelation method. The dimension reduction transformation method and the
ESPRIT algorithm are combined to reduce the calculation amount [35]. This method effectively reduces
the complexity of the calculation and gains a better direction-finding result than the original algorithms.
Further, this method was improved [36,37]. The addressing covariance reconstruction is used to do
direction-finding of targets with the situation of an unknown target number [36]. The method proposed
by Tan et al. [37] employs the beam space algorithm, which reduces the computational complexity and
maintains the accuracy of the direction finding. However, the above three methods only consider the
case of white Gaussian noise. They are not suitable for a complex marine noise environment. If we
add colored noise to the echo signals, the accuracy of the DOA estimation cannot be guaranteed.

Therefore, an effective method to improve the noise suppression ability of multi-target DOA
estimation is the main contribution of this paper. We proposed a new method for the accurate DOA
estimation in the case of complex noise. The essence of this method is to improve the accuracy
of direction finding, minimize the computational complexity and reduce the number of snapshots
required. The ability to successfully reduce the number of snapshots is because this method is less
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sensitive to snapshots. It is worth mentioning that the probability of the target resolution of this
method increases faster than traditional methods. Simultaneously, this method avoids the freedom
loss caused by decoherent processing. We can simulate complex marine environments by adding
colored noise to white Gaussian noise. In the actual noise field, the proportion of the symmetric noise
component is much larger than that of the asymmetric noise component [38,39]. Considering that the
imaginary part of the covariance matrix has no relationship with the symmetric noise component,
we can remove the real part of the covariance matrix to avoid the effect of the symmetric noise
component on DOA estimation. The real part of the covariance matrix is reconstructed by using
the method of dimension reduction transformation and the replacement principle of the matrix
imaginary component, and the interference of the bilateral spectrum interference is avoided. Thus, we
obtain the reconstructed covariance matrix. Moreover, Toeplitz is utilized to reduce the correlation
of the covariance matrix. This operation can reduce the influence of limited snapshots and complex
marine noise on the covariance matrix. The new covariance matrix we obtained is closer to the
ideal covariance matrix. Therefore, the phenomenon of fuzzy division between the signal subspace
and the noise subspace can be avoided. To further reduce the computational complexity, dimension
reduction processing is once again used to obtain a lower dimension covariance matrix. Above all,
we get a novel noise suppression method for MIMO sonar DOA estimation. This method is based on
dimension reduction transformation and the Toeplitz decoherence technique. For the sake of simplicity,
we abbreviate this method as RC-STIM. Then, DOA estimation methods, such as MUSIC can be used to
pre-estimate the target angle and carry out the final DOA estimation. Due to the established rotational
invariance property at the MIMO sonar array, ESPRIT can be used to replace MUSIC. This search-free
method can obviously reduce the computational complexity. In view of the advantageous property of
MUSIC, we try to combine the advantages of the two methods to reach a balance between performance
and complexity. As a result, the proposed algorithms can achieve better DOA estimation performance
at lower computational cost, in limited snapshots, simultaneously.

The paper is organized as follows. In Section 2, the signal model of MIMO sonar is briefly
introduced. Section 3 presents the influence of the noise component and the noise suppression MIMO
sonar model. Several performance parameters, such as computational complexity, Cramer-Rao Bound
and SNR gain are presented in Section 4. The simulation results which show the superiority of the
proposed MUSIC-based and ESPRIT-based RC-STIM MIMO sonar DOA estimation techniques are
presented in Section 5, followed by conclusions drawn in Section 6.

Notation: (·)T, (·)H, (·)C and (·)−1 represent the transpose, conjugate-transpose, conjugate
and inverse, respectively. ⊗ represents the Kronecker product. vec(·) indicates the vectorization
operation. IM×M denotes an M×M identity matrix, CM×N is M× N matrix. diag(·) represents the
diagonalization operation.

2. MIMO Sonar Signal Model

Consider a uniform linear array (ULA) of co-located MIMO sonar, equipped with a transmit
array of M sensors and a receive array of N sensors, with half-wavelength spacing employed for both
the transmit and receive arrays. The two arrays are collinear and the genetic centers are overlapped.
The sensors are assumed to be in close proximity so that all the elements can detect a far-field target
at the same spatial angle. Assume that there are K targets, satisfying the condition 2K < MN.
AT = [at(θ1), at(θ2), . . . , at(θK)] is a M × K dimensional matrix composed of the K transmit array
steering vector. AR(θ) = [ar(θ1), ar(θ2), . . . , ar(θK)] is a N × K dimensional matrix composed of the K
receive array steering vector. The effectiveness of the proposed method is not influenced by whether
the transmit and receive array element numbers are equal or not. For simplicity, but without loss of
generality, take the co-located MIMO array with equal numbers of transmit and receive array elements
as an example. The convolution operation is performed on the positions of the transmit and receive
array elements [40], we can obtain the positions of the MIMO sonar virtual array elements, which are
shown in Figure 1. Under the condition of far-field, the coordinates of each virtual array element are
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equal to the convolution of the corresponding transmit and receive array elements. The coordinates
of the virtual array elements can be expressed as VPi = (m + n− 1)dt, m = 1, . . . , M, n = 1, . . . , N.
In this scenario, several overlapped positions of virtual elements will appear due to the co-located
location of the transmit and receive array elements. Each column in Figure 1 represents a set of virtual
elements in the same location.
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The M transmit elements are used to transmit M orthogonal waveforms. Therefore,
by discretization of P snapshots, the representation of the transmitted signals is a unit energy
baseband pulse matrix. We assume that there is no Doppler shift between the targets and each
element. Simultaneously, the effects of channel fluctuation, dielectric absorption, echo distortion
and propagation loss on the echo signals are ignored. Then, we operate under the assumption that
there is no multipath among the different sources’ emissions, i.e., the propagation is nondispersive.
The narrowband echo signals of K far-field targets obtained at the receiver can be modeled as

X =
K

∑
k=1

βkar(θk)a
T
t (θk)S + N (1)

where βk is the reflection coefficient of the target located at an unknown spatial angle θk. Spatial noise
N, consisting of white Gaussian noise and colored noise, is a N× P dimensional matrix. ( )T stands for
transpose. The distribution model of array elements and target signals is plotted in Figure 2a. As can
be seen from this figure, the vertical direction of the line array is the reference direction 0

◦
. The angle

increases with rotating to the right until 90
◦
.
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Figure 2. (a) The distribution model of the array elements and target signals. (b) The model of
spatial noise.

The components of spatial noise include white Gaussian noise and colored noise. It can be
regarded as the superposition of discrete planar waves generated by several noise sources. Compared
to actual noise, the error decreases as the number of noise sources increases. According to statistical
characteristics, if we add as many noise sources as possible, we can gain an environmental noise
field that is closer to the true value. As shown in Figure 2b, spatial noise can be decomposed into
several narrowband sources. φ denotes the azimuth of the noise source. Assume that the spatial noise
consists of Q narrowband noise sources with a frequency of f . The power and azimuth of the qth
noise source is σ2

q and φq, respectively. Obviously, we can get φq = φQ−q+1. The noise waveform is
represented by nq(t). Therefore, we can obtain the noise waveform received by the mth array element:

Q
∑

q=1
nq(t)e−jkT

n(φq)Pm . Where kn(φq) = 2π f vn(φq)/c, vn(φq) denotes the direction vector of the noise

sources, c is the sound velocity, Pm is the position vector of each element.
For simplicity, we take two symmetric noise sources, N1 and N2 as examples. The azimuths are φ

and −φ. The power is σ2
N1

and σ2
N2

, σ2
N1

> σ2
N2

. We can get σ2
N1

= σ2
N2

+ ∆σ2
N1

, i.e., N1 can be divided

into N′1 with the power of σ2
N2

and N∆ with the power of ∆σ2
N1

. Therefore, we can define N′1 and N2 as

symmetric noise and define N∆ as asymmetric noise. Further, we can draw the conclusion that random
noise can be decomposed into a symmetric noise component and an asymmetric noise component.
Figure 3 shows the power distribution and decomposition of the noise component. Therefore, subfigure
(a) depicts the power of the noise component, it contains colored noise and white Gaussian noise term.
Subfigure (b) shows the symmetric noise component. It can be seen from subfigure (b) that the azimuth
and energy of noise are statistically symmetric around the receive array center. Obviously, we can
draw that symmetrical noise component account for a much larger proportion than the asymmetric
noise component; this may lead to a direct way of suppressing noise.
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By using matched filtering on echo signals generated by the orthogonal signals S, we can obtain
the autocorrelation function at the output end.

Ỹ = XSH = (
K
∑

k=1
βkar(θk)aT

t (θk)S + N)SH

=
K
∑

k=1
βkar(θk)aT

t (θk)(SSH) + NSH,
(2)

Because of the orthogonality between the echo signals, the covariance matrix of the transmitting
signal can be simplified into the identity matrix IM×M. By substituting the matrix into Equation (2),
the receive signal matrix can be reformulated as

Ỹ
H
=

K

∑
k=1

βkar(θk)a
T
t (θk) + NSH, (3)
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By vectorizing Equation (3), we can obtain the output end signal sample vector after
matched filtering.

y = vec(Ỹ) = vec(
K
∑

k=1
βkar(θk)aT

t (θk) + NSH)

=
K
∑

k=1
βkatr(θk) + n

, (4)

atr(θk) = at(θk) ⊗ ar(θk) = ar(θk)aT
t (θk), n = n1 + n2, n1 = vec(N1SH) obeys the spatial colored

noise distribution. n2 = vec(N2SH) obeys the complex Gaussian distribution with zero mean and
covariance matrix σ2

nIMN . Set A = [atr(θ1), atr(θ2), . . . , atr(θK)], β = [β1, β2, . . . , βK]
T, Equation (4) can

be expressed as
y = Aβ + n, (5)

The receiving signal matrix is composed of L snapshots.

Y = [y(1), y(2), . . . , y(L)], (6)

where B = [β(1), β(2), . . . , β(L)], W = [n(1), n(2), . . . , n(L)], Y can be expressed as a matrix form

Y = AB + W, (7)

By calculating the echo signal covariance matrix of Equation (7), we can obtain

RYY = 1
L

L
∑

l=1
Y(l)Y(l)H = ARBBAH + Q

= Rs + Rn

, (8)

where Q is the covariance matrix of the spatial noise component, which contains spatial colored
noise and white Gaussian noise. The uncorrelation between the target reflection coefficients enables
simplifying the matrix into a diagonal matrix.

RBB =
1
L

L

∑
l=1

B(l)BH(l) =


β2

1
β2

2
. . .

β2
K

, (9)

3. Problem Formulation

The main goal is to suppress the influence of noise in the direction of arrival estimation, especially
the symmetric component of the spatial noise. In an actual acoustic environment, the symmetric noise
component in the noise component has a large influence on the real part of the covariance matrix and
has little effect on the imaginary part. By using the imaginary part DOA estimation method, the real
part of the echo signal covariance matrix is removed, and the influence of symmetric noise on the
direction-finding performance of the algorithm is reduced. To further analyze the covariance matrix,
we consider the idea of dimension reduction transformation and obtain

atr(θk) = Gd(θk), (10)

d(θk) = [1, e−jπ sin(θk), . . . , e−jπ(M+N−2) sin(θk)]
T

, (11)
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G =



1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 1 0 · · · 0

M

0 1 0 · · · 0 · · · 0
0 0 1 · · · 0 · · · 0
...

...
...

. . .
...

. . .
...

0 0 0 · · · 1 · · · 0

M

0 · · · 0 1 0 · · · 0
0 · · · 0 0 1 · · · 0
...

. . .
...

...
...

. . .
...

0 0 0 0 0 · · · 1

M



∈ CMN×(M+N−1), (12)

It can be rewritten as a matrix

A = GD
D = [d(θk), d(θk), · · · , d(θk)] ∈ C(M+N−1)×K , (13)

The signal covariance matrix Rs can be modeled as

Rs = ARBBAH = G(D


β2

1
β2

2
. . .

β2
K

DH)GH

= G



K
∑

k=1
β2

k

K
∑

k=1
β2

kejπ sin θk · · ·
K
∑

k=1
β2

kejπ(M+N−2) sin θk

K
∑

k=1
β2

kejπ sin θk
K
∑

k=1
β2

k · · ·
K
∑

k=1
β2

kejπ(M+N−3) sin θk

...
...

. . .
...

K
∑

k=1
β2

kejπ(M+N−2) sin θk
K
∑

k=1
β2

kejπ(M+N−3) sin θk · · ·
K
∑

k=1
β2

k


GH

, (14)

The signal covariance matrix can be expressed as (Rs)a,b = G(
K
∑

k=1
β2

kejπ(b−a) sin θk )GH; the

imaginary part of the signal covariance matrix can be obtained as

(Rsi)a,b = jG
[

K
∑

k=1
β2

k sin(jπ(b− a) sin θk)

]
GH

= 1
2 G
[

K
∑

k=1
β2

kejπ(b−a) sin θk

]
GH − 1

2 G
[

K
∑

k=1
β2

kejπ(b−a) sin(−θk)

]
GH

, (15)

Considering Equation (15), the two parts of the equation can be regarded as the covariance matrix
of the signal matrix with the incident angle of θk and −θk. It is worth noting that the imaginary
part of the signal covariance matrix contains the correct target direction-finding information and the
false target direction-finding information. The two sets of azimuths are symmetric about the normal
direction of the array.

The noise component can be considered as the superposition of mutually independent plane
waves generated by several noise sources. The larger the number of noise sources, the closer the noise
is to the real noise. In this paper, we decompose the spatial noise component into several narrowband
noises with the quantity of P and the center frequency of f . We can rewrite the noise as
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n =
P

∑
p=1

an(ϕp)np(t), (16)

To simplify the calculation, in Figure 2, we assume that there are only two receive array elements
and two symmetric noise sources, each of which is independent with each other and has the same
power δ2. The azimuth angle of the two noise sources relative to the array normal is θ and −θ.
The output signals with matched filtering of the two receive array elements can be respectively
modeled as

X1(t) = N1(t)SH(t) + N2(t)SH(t), (17)

X2(t) = N1(t)e−jπ sin θSH(t) + N2(t)ejπ sin θSH(t), (18)

The spatial correlation function of X1(t) and X2(t) can be expressed as

γ12 = E
[

X1(t)XH
2 (t)

]
= δ2

s E(|N1(t)|2)ejπ sin θ + δ2
s E(|N2(t)|2)e−jπ sin θ , (19)

where E(|S(t)|2) = δ2
s , E(|N1(t)|2) = E(|N2(t)|2) = δ2. Equation (19) can be simplified as

γ12 = δ2
s δ2ejπ sin θ + δ2

s δ2e−jπ sin θ = 2δ2
s δ2 cos(π sin θ), (20)

It is worth noting that the imaginary part of γ12 is zero. Therefore, the covariance matrix of the
symmetric noise component is a real symmetric matrix. Moreover, the imaginary part of the covariance
matrix is independent of the symmetric noise components in the noise component. From Equation
(20), we observe that the interference of symmetric noise components in the noise component can be
suppressed by eliminating the real part of the covariance matrix.

Let the real part of the covariance matrix RYY is RR, and the imaginary part is RI . Suppose that
Λ = [A, Ac]. We can define a new matrix

∆R = RYY −Rc
YY

= Λ

[
RBB 0

0 −RBB

]
ΛH , (21)

where ( )c denotes conjugate. As [A, Ac] and diag(RBB,−RBB) are all full column rank matrices and
the rank is 2K. Therefore, the rank of ∆R is 2K. The power spectrum obtained from the imaginary
part contains 2K peaks, where K pseudo-peaks are symmetric with the real peaks. The angles
of the peaks are expressed as Ψ = [ψ1, ψ2, . . . , ψK,−ψ1,−ψ2, . . . ,−ψK], the real angle estimation
is Θ = [θ1, θ2, . . . , θK,−θ1,−θ2, . . . ,−θK]. Among them, the first K elements are the real target
locations. Suppose that the matrix I is the permutation matrix generated by noise, the locations of each
element in Θ are changed by one transformation and we can get the following relationship Ψ = ΘI.
By constructing the array manifold matrix of the imaginary part by Ac

T(θ) = [ac
r(θ1), ac

r(θ2), . . . , ac
r(θK)],

AI(ψ) = [ar(ψ1), ar(ψ2), . . . , ar(ψK), ac
r(ψ1), ac

r(ψ2), . . . , ac
r(ψK)] is obtained, so AI = ΛI. Thus, we can

build matrix
R̃ = (AH

I AI)
−1

AH
I ∆RAI(AH

I AI)
−1

, (22)

By substituting Equation (21) into Equation (22), we can get

R̃ = (AH
I AI)

−1AH
I Λ

[
RBB 0

0 −RBB

]
ΛHAI(AH

I AI)
−1

= IT

[
RBB 0

0 −RBB

]
I

, (23)
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when AI = Λ, we can get I = E. The diagonal elements in R̃ are sorted correctly. In this
scenario, the first K diagonal elements are positive and the corresponding K target reflected signal
power. When AI 6= Λ, the diagonal sort is not correct in R̃. The matrix is still a diagonal matrix
after two transformations, but the positions of the elements on the diagonal change. The positive
signal power estimated value corresponds to the correct signal angle. By confirming the correct
signal angle estimation and signal power estimation according to the element positions of the
diagonal in Equation (23), we extract the positive value of the diagonal in R̃ as the signal
power σ̃2

k (k = 1, 2, · · · , K). The angle information in Ψ corresponding to the position is the target
direction of the estimation. Construct the estimated power matrix containing the signal as ∆s =

diag
(
σ̃2

1 , σ̃2
2 , . . . , σ̃2

K
)
. By considering the idea of dimension reduction transformation, we can obtain

atr(ψk) = Gd(ψk), d(ψk) = [1, e−jπ sin(ψk), . . . , e−jπ(M+N−2) sin(ψk)]
T

, which can be rewritten as a matrix
A = GD, D = [d(ψ1), d(ψ2), · · · , d(ψK)] ∈ C(M+N−1)×K. We reconstruct the covariance matrix as

R̂ = A∆sAH = (GD)∆s(GD)H = G(D∆sDH)GH, (24)

By taking the real part of D∆sDH, we can obtain R∆ = (rij)i,j=1,2,...M+N−1, rij =

K
∑

k=1
σ2

k cos[(j− i)π sin ψk]. Therefore, the covariance matrix of the echo signal with noise suppression

can be reconstructed as
R = GR∆GH + jRI , (25)

Because of the numerical difference and complex noise in the array elements, the covariance
matrix is an approximate Toeplitz matrix. In this case, when we do eigen-decomposition on the
covariance matrix, the division of the signal subspace and noise subspace is not clear, which will lead
to a performance decline in the DOA estimation of MUSIC algorithm. This phenomenon is particularly
pronounced in the case of low SNR, the direction-finding result shows worse performance compared
with the traditional MUSIC method. Therefore, we can modify the real part RR and imaginary part RI
of the reconstructed covariance matrix R by Toeplitz respectively.

By averaging the diagonal elements of the matrix R∆, we can obtain the covariance matrix of
the ideal situation. Symbol m and n denote the rows and columns of M + N − 1 dimension matrix,
rmn denotes the element of the mth row and the nth column. The modified matrix elements can be
expressed as

r̂mn = r̂(m− n) = 1
M+N−1−(m−n)

M+N−1−(m−n)
∑

i=1
r̂i(i+m−n) m ≤ n

r̂mn = r̂(m− n) = r̂(−(m− n)) = r̂H
mn m > n

(26)

We can obtain the modified RR by Equation (25). In the same way, by averaging the diagonal
elements of matrix RI , we can obtain the modified RI . However, it is worth noting that, since the
MIMO sonar system normally has a large virtual array number, the computational complexity of the
conventional subspace-based method grows up greatly. We use the reduced dimension transformation
method to improve computational efficiency. Based on Equation (12), we define W = GHG, and get
W = diag(1, 2, · · · , min(M, N), · · · , min(M, N)︸ ︷︷ ︸

|M−N|+1

, · · · , 2, 1). We denote P = W−
1
2 GH by the reduced

dimension transformation method and then use the transformation P for the echo signal after matched
filtering. We can obtain the dimension reduction matrix z(t) = Py(t). Moreover, the covariance matrix
Rz can be expressed as

Rz = E[z(t)zH(t)]
= PE[y(t)yH(t)]PH (27)

Through the above transformation, we obtain the covariance matrix Rz, which efficiently
reduces the computational complexity. It is worth pointing that since the application of the spatial
spectrum estimation algorithm is in the DOA estimation, it is necessary to know the number of signal
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sources. The signal sources can be estimated according to the distribution of the covariance matrix
eigenvalues [41]. On the other hand, considering the MIMO sonar configuration and the dimension
reduction transformation, the DOF of the proposed method is DOF = M + N − 2, i.e., the number of
detectable signal sources.

Up to now, we have achieved the noise suppression method for DOA estimation in co-located
MIMO sonar. We show the major steps of the proposed method as follows:

i. Remove the real part of the covariance matrix RYY. The imaginary part RI is used for
DOA pre-estimation.

ii. Construct G matrix, then use the sorting refactoring method and the dimension reduction
transformation to reconstruct the real part of RYY. We can obtain the new covariance matrix R.

iii. Reduce the coherence of R by the Toeplitz method.
iv. Construct W and P from G, and then use P left multiply R and use PH right multiply R.

Through the dimension reduction transformation, we can get the covariance matrix Rz.
v. Compute the noise subspace and the signal subspace, finally estimating DOAs.

The choice of the twice DOA estimation methods in the steps will be discussed in the
following section.

4. Performance Analysis

In this section, we analyze the performance of the noise suppression technique for MIMO
sonar DOA estimation. For simplicity, RC-STIM is used to represent the noise suppression method
we proposed.

In the following subsection, we assume a uniform linear transmit array consists of M = 8
omnidirectional sensors. The spacing of the elements is half a wavelength. The receive array is the same
as the transmit array; the centers of the two arrays are overlapped. We compare the aforementioned
methods in terms of the computational complexity, Cramer-Rao bound (CRB) and SNR gain methods.

4.1. Computational Complexity Analysis

The RC-STIM method we proposed needs to be combined with the appropriate DOA estimation
algorithm to complete direction-finding. Considering the characteristics of the MIMO sonar array,
we adopt the MUSIC algorithm and the ESPRIT algorithm. For achieving the effect of suppressing
noise, we need to perform two DOA estimation operations. In order to obtain the computational
complexity of the proposed algorithm, we can analyze the complexity of the traditional MUSIC
algorithm (hereinafter referred to as MUSIC). The computational complexity of the MUSIC algorithm
is mainly affected by the covariance matrix calculation, eigenvalue decomposition (EVD) and spectral
peak search calculation. Compared with the MUSIC algorithm, the proposed method requires
higher computational complexity. On the other hand, the dimension reduction transformation can
help to reduce the computational complexity. For convenience, we abbreviate the MUSIC-based
dimension reduction method as RC-MUSIC. While O{(M + N − 1)2L + (M + N − 1)3 + n[(M +

N − 1)(M + N − 1− K) + M + N − 1− K]} presents the computational complexity of RC-MUSIC.
O{M2N2L + M3N3 + n[MN(MN − K) + MN − K]} presents the MUSIC method which needs higher
computational cost than RC-MUSIC. n is the number of searching steps. Hence, the total computational
complexity of the proposed method is

O{M2N2L + M3N3 + n[MN(MN − K) + MN − K] + (M + N − 1)2K
+(M + N − 1)3 + n[(M + N − 1)(M + N − 1− K) + M + N − 1− K]}

(28)

Similarly, we can get the computational complexity of the ESPRIT-based RC-STIM algorithm.
The abbreviated definition of RC-ESPRIT is the same as above. Different from the MUSIC algorithm,
the ESPRIT algorithm avoids the computational load brought by spectral peak search and the
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calculating speed is more prominent than the MUSIC-based methods. Hence, the total computational
complexity of the proposed method is

O{M2N2L + M3N3 + 2K3 + (M + N − 1)2K + (M + N − 1)3} (29)

while RC-ESPRIT requires O{(M + N − 1)2L + (M + N − 1)3 + K3}. ESPRIT requires O{M2N2L +

M3N3 + K3}. Through all these equations, we can see that the ESPRIT-based methods outperform
the MUSIC-based methods in computational complexity. In order to achieve noise suppression,
we perform DOA pre-estimation, which leads to an increase in computational complexity. In this case,
we use the dimension reduction transformation and search-free direction-finding techniques to further
reduce the computational complexity.

4.2. Cramer-Rao Bound

In our framework, a useful statistical bound for evaluating the limiting DOA estimation
performance is the CRB. In this section, we analyze the CRB of MIMO sonar DOA estimation accuracy.
It can be derived from the considered reconstructed covariance matrix, i.e., the model expressed by
Equation (27). It is worth mentioning that the proposed MIMO sonar model with the reconstructed
covariance matrix differs from the traditional MIMO sonar model given in Equation (4) due to the fact
that the reduced dimension transformation method is used in Equation (27). Because of the irrelevance
of noise and signals, the covariance matrix of noise can be written as

Q = E
[
n(t)nH(t)

]
= diag(σ2

1 , σ2
2 , · · · , σ2

MN) (30)

According to Refs. [42,43], we derive the CRB estimation as

CRB =
1

2L

{
Re

[(
D̃

H ⊥
∏
Ã

D̃

)
� PT

]}−1

(31)

where Ã = Q−
1
2 A, ∏⊥Ã = IMN − Ã(Ã

H
Ã)
−1

Ã
H

; D̃ = Q−
1
2 D, D = [d1, d2, · · · , dK], dk = ∂atr(θk)/∂θk;

P = 1
L

L
∑

l=1
s(tl)sH(tl) and � stands for the Schur–Hadamard matrix product.

4.3. SNR Gain

Assume that the noise source signals that generate colored noise are irrelevant, therefore, the
covariance matrix of colored noise can be modeled as γ and we assume that the imaginary part
of the main diagonal is diag(γ1, γ2, . . . , γMN). We can obtain the SNR of the received signals from
Equation (8)

SNRi =
tr(Rs)

tr(IMNσ2 + γ)
=

tr(Rs)

MNσ2 +
MN
∑

i=1
γi

(32)

The SNR after dimension reduction can be obtained from Equation (27). It is worth noting that
the processing of the covariance matrix reconstruction helps to reduce the symmetric noise component.
Hence, we can obtain

SNRo =
tr(W−

1
2 GHRsGW−

1
2 )

tr(γ)
=

tr(RsGW−
1
2 GH)

M+N−1
∑

i=1
γi

(33)
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We can achieve the extra SNR gain from the dimension reduction processing.

g =
SNRo

SNRi
=

tr(RsGW−
1
2 GH)

[
MNσ2 +

MN
∑

i=1
γi

]
(

M+N−1
∑

i=1
γi

)
tr(Rs)

=

MNσ2 +
MN
∑

i=1
γi

M+N−1
∑

i=1
γi

(34)

5. Simulation Results

Throughout our simulations, we adopt the co-located MIMO array. We assume that the transmit
and receive arrays are both uniform linear arrays with half wavelength spacing of each element and
M = N = 8. Suppose that the direction of the two targets are θ1 = −15

◦
, θ2 = 20

◦
. The additive

noise is spatial colored noise and the production process has been shown in Figure 3. We use
several simulations to compare the performances of the proposed DOA methods, especially MUSIC
and ESPRIT.

In this paper, we use the proposed covariance matrix reconstruction and dimension reduction
method to improve the noise suppression ability. At this time, the subspace decomposition-based
techniques such as MUSIC and the search-free direction-finding techniques such as ESPRIT can be
used for multiple targets’ DOA estimation. In all simulations, unless otherwise stated, all methods are
computed based on 500 independent runs.

We evaluate the DOA estimation performance of our algorithms and present the root-mean-square
error (RMSE) as

RMSE =
1

MONT

MONT

∑
n=1

√√√√ 1
K

K

∑
k=1

(θ̂
(n)
k − θk)

2
(35)

where MONT denotes the number of Monte Carlo experiments, θ̂
(n)
k denotes the estimated angle in

the nth experiment.
Figure 4 shows the RMSE for the MUSIC-based and ESPRIT-based DOA estimators versus SNR

for all the method test results. The noise environment is spatial colored noise and white Gaussian noise.
A total number of snapshots L = 50 is used. It can be seen from this figure that the MUSIC-based
MIMO sonar with the proposed RC-STIM method outperforms the traditional MIMO sonar MUSIC
algorithm at the low SNR region while the opposite occurs at the high SNR region, the same situation
to the other two methods based on ESPRIT. This means that the traditional algorithm is more sensitive
to colored noise at the low SNR region, while the covariance matrix reconstruction operation helps
to reduce the influence of the symmetric colored noise part on the DOA estimation. It can also be
observed that the two methods based on ESPRIT show a similar DOA estimation accuracy. This is
because under limited snapshots, the estimation performance is limited by ESPRIT. In practice, if we
need to achieve a balance between the computational complexity and the DOA estimation accuracy,
we can combine the MUSIC and ESPRIT algorithms, this will be considered in the following section.
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It can be seen from Figure 5 that in the white Gaussian noise environment the noise suppression 
performance of ESPRIT-based RC-STIM algorithm is prominent at the low SNR region, while the 
superiority of MUSIC-based algorithms is feasible at the high SNR region. Therefore, the 
ESPRIT-based algorithms can be selected when the white Gaussian noise is the main noise 
component. It can also be observed from Figure 5 that the covariance matrix reconstruction and 
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Gaussian noise.  
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Figure 4. The root mean square error (RMSE) versus the signal-to-noise ratio (SNR) for
the MUSIC-based and ESPRIT-based direction-of-arrival (DOA) estimation in a spatial colored
noise environment.

It can be seen from Figure 5 that in the white Gaussian noise environment the noise suppression
performance of ESPRIT-based RC-STIM algorithm is prominent at the low SNR region, while the
superiority of MUSIC-based algorithms is feasible at the high SNR region. Therefore, the ESPRIT-based
algorithms can be selected when the white Gaussian noise is the main noise component. It can also be
observed from Figure 5 that the covariance matrix reconstruction and dimension reduction processing
can efficiently reduce the sensitivity of the algorithm to white Gaussian noise.
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Furthermore, we consider that the DOA estimation is considered to be solved when the following
is satisfied ∣∣θ̂k − θk

∣∣ ≤ ∆θ

2
, k = 1, 2, . . . , K (36)

where ∆θ = |θ2 − θ1|, and θ̂k denotes the estimation of θk. The source resolution probability versus SNR
for all the methods we proposed is shown in Figure 6. It can be seen from the figure that the probability
of the source resolution for each method starts to grow at a certain point as the SNR increases.
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All methods, except the ESPRIT-based RC-STIM method, exhibit a 100% correct source resolution
probability at a high SNR value. It can be seen from Figure 6 that the ESPRIT-based RC-STIM method
has the highest SNR threshold. This is because the direction-finding precision of the ESPRIT-based
algorithms is obviously affected by the preliminary DOA estimation processing and the limitation
of algorithm DOA estimation accuracy will influence the reconstruction of the covariance matrix.
The SNR thresholds of the ESPRIT method, the MUSIC method and the MUSIC-based RC-STIM
method are lower than the aforementioned method, at about 0 dB. Moreover, except for the two
RC-STIM algorithms, the target resolution probability of the remaining two algorithms is close to zero
as SNR decreases to −10 dB and −20 dB. The ESPRIT-based RC-STIM algorithm is better than these
two methods, the target resolution probability will not decrease to zero. Finally, the MUSIC-based
RC-STIM method remains at a target resolution probability above 50%, i.e., the best performance of
the source resolution probability.
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Figure 6. The probability of the target resolution versus the SNR for MUSIC-based and ESPRIT-based
DOA estimators.

It is worth noticing that, in the case of low SNR, the MUSIC-based RC-STIM algorithm has
a strong suppression of colored noise, while the ESPRIT-based RC-STIM algorithm can effectively
reduce the impact of the white Gaussian noise. Considering the computational complexity and noise
suppression, we can try to combine the proposed two methods. The computational complexity of the
proposed methods has been discussed above. To access a higher DOA estimation accuracy and lower
computational complexity to improve the algorithm performance, we utilize ESPRIT to carry out the
preliminary DOA estimation before covariance matrix construction processing, and take the advantage
of MUSIC in final DOA estimation to ensure the target direction-finding precision. Another option is
to reverse the two methods. From the above, the computational complexity of this method is

O
{

M2N2L + M3N3 + K3 + (M + N − 1)2K

+(M + N − 1)3 + n[(M + N − 1)(M + N − 1− K) + M + N − 1− K]
} (37)

O
{

M2N2L + M3N3 + n[MN(MN − K) + MN − K] + (M + N − 1)2K + (M + N − 1)3 + K3
}

(38)

Figure 7 shows the computational complexity of the MUSIC-based and ESPRIT-based DOA
estimations. It can be seen from this figure that the MUSIC-ESPRIT-based method of Equation
(37) with a covariance matrix construction operation and dimension reduction processing has an
advantage in computational complexity, the computational load is similar to the ESPRIT-based
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methods. Moreover, with the increasing of snapshots, this advantage will gradually decrease.
Therefore, under limited snapshot conditions, the performance loss due to a limited snapshot number is
proportional to the covariance matrix dimension. The lower the covariance matrix dimension, the less
performance loss. As a result, the method we proposed gains better performance than traditional
algorithms versus the limited snapshot number. On the other hand, the method of Equation (38)
shows a slight advantage in improving computational complexity. However, this method better
preserves the performance of MUSIC algorithm in the preliminary DOA estimation. In the processing
of preliminary DOA estimation, the precision of direction-finding directly affects the accuracy of
covariance matrix reconstruction.
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Since the computational complexity of the algorithms is related to the snapshots, we reduce the 
snapshots to 10L = . In this way, we can observe the effect of the snapshots on the proposed 
algorithms. Figure 8 shows the RMSE versus SNR respectively. Compared with Figure 4, the RMSE 
of the four corresponding algorithms in Figure 8 is not significantly different. Therefore, the 
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DOA estimators.

Since the computational complexity of the algorithms is related to the snapshots, we reduce the
snapshots to L = 10. In this way, we can observe the effect of the snapshots on the proposed algorithms.
Figure 8 shows the RMSE versus SNR respectively. Compared with Figure 4, the RMSE of the four
corresponding algorithms in Figure 8 is not significantly different. Therefore, the snapshots have
little effect on the DOA estimation accuracy of the algorithms. Obviously, Method (37) shows better
performance than Method (38). In the low signal area, Method (37) outperforms all the other methods.
With the increase of SNR, Method (37) gradually lost this advantage. The target resolution probability
of the four algorithms in Figure 6 in the condition of L = 10 are shown in Figure 9. In this figure,
the target resolution probabilities of the shown methods are all reduced, compared with Figure 6.
The ESPRIT-based RC-STIM method failed to reach a 100% correct source resolution at SNR = 20 dB.
Meanwhile, the SNR threshold of the remaining three algorithms is about 15 dB, which is much higher
than the situation in Figure 6. The target resolution probability of the two traditional algorithms
decreases to 0 at SNR = −10 dB and SNR = −5 dB. The ESPRIT-based RC-STIM method shows better
performance, which will not go down to 0. The MUSIC-based RC-STIM method outperforms all the
other methods. In brief, the target resolution probability of all the methods are affected by snapshots,
meanwhile, the RC-STIM methods show a lower sensitivity to snapshots.
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Figure 9. The probability of the target resolution versus SNR for MUSIC-based and ESPRIT-based
DOA estimators.

Figure 10 shows the target resolution probability of Methods (37) and (38). For comparison, we
consider different snapshots, i.e., L = 10 and L = 50. Method (37) has better performance compared
with Method (38), regardless of the value of snapshot. Method (37) successfully reaches a 100% correct
source resolution at SNR = 5 dB, both at L = 10 and L = 50. This situation is obviously better than
the algorithms in Figure 9, however, it is slightly worse than the algorithms in Figure 6. This means
that the performance of Method (37) is not sensitive to changes of snapshots, which helps to provide
better performance in limited snapshot conditions. Meanwhile, the target resolution probability of
Method (38) is not sensitive to snapshots in a low SNR situation. As SNR increases, the SNR threshold
of L = 50 is obviously better than L = 10. Compared to the aforementioned four algorithms, the SNR
threshold of Method (38) is higher at snapshots L = 50, and basically consistent with them in limited
snapshots. As a result, Method (37) outperforms all the mentioned methods in limited snapshots.
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different snapshot number.

Figure 11 presents the effect of array element number on the performance of the algorithms.
Obviously, the performance of the algorithm is proportional to the number of array elements, i.e.,
for the same algorithm, the larger the number of array elements, the higher the direction-finding
accuracy of this algorithm. This situation can be attributed to the diversity gain. In the scenario of
M = N = 6 and low SNR, the MUSIC-based RC-STIM method outperforms the other two methods.
As the SNR increases, when SNR reaches about −5 dB, we can gain better DOA estimation through
the traditional MUSIC method. However, under the condition of M = N = 10, Method (37) has the
best DOA estimation accuracy, until the SNR is greater than −5 dB.
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6. Conclusions

The influence of symmetric noise component on algorithm performance for multiple targets DOA
estimation is proposed. A group of methods for noise suppression is introduced. The essence of
the aforementioned methods is covariance matrix reconstruction and dimension reduction. Unlike
the previous methods that directly utilize the covariance matrix to do DOA estimation, a priori
processing, i.e., pre-estimation, is used to decrease the effect of the symmetric noise component.
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Dimension reduction processing can help to reduce the computational complexity. MUSIC and
ESPRIT can then be used for multiple targets’ DOA estimation. The ESPRIT-based methods are more
advantageous in terms of reducing computational complexity. Simultaneously, Method (37) allows us
to achieve a better DOA estimation performance in the lower SNR region. Performance analysis of
the proposed noise suppression methods and comparison to the existing MIMO sonar techniques are
given. The computational complexity of the proposed methods can be controlled by the selection of the
snapshots and the prior DOA estimation algorithm. The performance of the MUSIC-based RC-STIM
method and Method (37) outperform the other methods. Simulation results show the superiority of
the two proposed methods over the existing methods.

In future work, we intend to further optimize the noise suppression algorithm model, reduce
the impact of the pre-estimation result on the DOA estimation accuracy. On the other hand,
the pre-estimation result can be utilized to design the transmit beam space to improve SNR. Thus,
the DOA estimation accuracy can be improved.
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