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Abstract

This article describes the procedures used to isolate pure B-cell populations from whole

blood using various Miltenyi magnetic-activated cell sorting (MACS) bead Isolation kits.

Such populations are vital for studies investigating the functional capacity of B-cells, as the

presence of other cell types may have indirect effects on B-cell function through cell-cell

interactions or by secretion of several soluble molecules. B-cells can be isolated by two

main approaches: 1) Negative selection—in which B-cells remain “untouched” in their native

state; this is advantageous as it is likely that B-cells remain functionally unaltered by this pro-

cess. 2) Positive selection–in which B-cells are labelled and actively removed from the sam-

ple. We used three Negative B-cell isolation kits as well as the Positive B-cell isolation kit

from Miltenyi and compared the purity of each of the resulting B-cells fractions. Contamina-

tion of isolated B-cell fractions with platelets was the conclusive finding for all of the isolation

techniques tested. These results illustrate the inefficiency of current available MACS B-cell

isolation kits to produce pure B-cell populations, from which concrete findings can be made.

As such we suggest cell sorting as the preferred method for isolating pure B-cells to be used

for downstream functional assays.

Background

The immune system consists of a collection of cell types responsible for maintaining our health

by fighting off infection, eradicating foreign materials and battling disease [1]. B-lymphocytes

(B-cells), an immune cell type that forms part of the adaptive immune response, contribute

fundamentally to the balance between health and disease. B-cells perform a multitude of effec-

tor functions, including antigen presentation, antibody production, cytokine secretion, opso-

nization, complement activation and immune modulation [2–7]. The activation state of B-

cells influences the effect they have on the immune response and ultimately determines

whether or not their presence is beneficial or harmful to the host. For example, during autoim-

munity regulatory B-cells act to suppress pro-inflammatory, self-reactive T-cell immune
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responses, thereby protecting the host from self-harm. Whereas, the presence of regulatory B-

cells during bacterial infection would result in suppression of antibacterial, protective T-cell

immune responses, leading to unsuccessful bacterial containment and poor disease control.

B-cells interact directly with other immunes cells, such as macrophages, T-cells and den-

dritic cells, through receptor-mediated mechanisms as well as indirectly through the secretion

of various molecules. For instance, B-cells present a captured antigen via major histocompati-

bility complex (MHC) to a T-cell clone within a secondary lymphoid organ resulting in cellular

activation, clonal expansion and elicitation of an immune response. This is an example of

immune activation. Moreover, B-cells may enhance the function of already activated immune

cells through indirect means. For example, antibody secretion by plasma cells (differentiated

effector B-cells) enables microbe opsonization which targets foreign material for phagocytosis

by circulating macrophages by increasing binding affinity and uptake by endocytosis.

Similarly, B-cell function is influenced by the presence and interaction with other cells

types. Several studies have illustrated the necessity of co-stimulation by other cell types via

MHC presentation, co-receptor engagement and cytokine encounter for B-cell activation and

differentiation [8–17]. An example of receptor-mediated mechanisms that influence B-cell

function is the CD40-CD40L interaction that occurs between B-cells and T-cells, required for

cellular maturation and survival [10–12]. Additionally, cytokines such as interleukin- 2,4, 6,

21, transforming-growth factor beta (TGF-β) and interferons (IFNs) [9,11,15,17,18] produced

by activated immune cells bind to various receptors on the B-cell surface, such as the B-cell

receptor, CD21, membrane-bound immunoglobulin and toll-like receptors (TLRs), initiating

intracellular signalling pathways that regulate B-cell differentiation and activation. Dysregula-

tion or impaired function of B-cells can result in detrimental consequences for the host; there-

fore, studies investigating the behavior of B-cells and their contribution to observed immune

response are of great importance.

The study of human B-cell populations for functional and/or mechanistic purposes are best

performed in the absence of other cell types. The presence of these other cell types may alter B-

cell function, either through direct contact or indirectly by the production and secretion of sol-

uble factors like cytokines [15,19,20]. B-cells constitute roughly 10–20% of the total lympho-

cytes population within whole blood [21–23], as such studies on whole blood, or isolated

peripheral blood mononuclear cells (PBMCs) are not suitable for investigating in-depth B-cell

specific function. It is thus important to validate isolation procedures that are used to obtain

these desirable pure B-cell populations, as they ultimately determine the reliability and accu-

racy of such studies.

Currently, a range of B-cell isolation kits from various companies are available. Miltenyi B-

cell isolation kits are among the most popular to be used for obtaining pure B-cell populations

from human [3,24–30] and animal samples [13,29,31,32]. As such, a large proportion of the

research currently inferring conclusions regarding B-cell function rely heavily on the efficacy

of these kits to isolate B-cells from whole blood. This paper reviews the ability of various B-cell

isolation kits available from Miltenyi to isolate pure B-cell populations from human blood,

based on the purity of the obtained sample fractions.

Methods

Participant recruitment and sample collection/preparation

Ethical approval was obtained from the ethics committee of Stellenbosch University (N16/05/

070) and the City of Cape Town City Health. The study was conducted according to the Hel-

sinki Declaration and International Conference of Harmonisation guidelines. For this study,

we recruited 27 healthy individuals. On several occasions, varying amounts of peripheral
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blood was collected in Sodium Heparin tubes and processed as described below. Each blood

draw, and subsequent cell isolation procedure, was recorded as a separate event (amounting to

a total of 68 cell isolation procedures). Written informed consent was obtained from all study

participants.

Isolation of peripheral blood mononuclear cells (PBMC) from whole blood

In this section, the various protocols amendments used to isolate B-cells from whole blood are

described. It should be noted that Miltenyi isolation kits used to obtain enriched pure B popu-

lations required a pre-isolation of PBMCs from whole blood. As such the protocol for PBMC

isolation refers to the initial processing of blood samples, before the use of either of the Milte-

nyi isolation kits.

Isolation of mononuclear cells from peripheral blood using the Ficoll-density gradient

method. Human whole peripheral blood was collected in sodium heparin tubes and pro-

cessed within two hours of blood draw. PBMCs were isolated using the Ficoll-density gradient

method. Following this, PBMCs underwent MACS bead isolation. For a more detailed descrip-

tion regarding PBMC isolation refer to dx.doi.org/10.17504/protocols.io.yf2ftqe [PROTOCOL

DOI]

Additions and Alterations to PBMC isolation protocol.

A. Addition of platelet wash step to PBMC isolation procedure. This was done to decrease

the debris/platelet population found in the PBMC sample. Alteration of the speed at which the

isolated PBMC’s were washed was done in an attempt to prevent pelleting and retention of the

platelets during the washing steps. It is assumed that the degree of platelet contamination

within the PBMC fraction is likely to affect the purity of the isolated B-cell fraction, and thus

should be limited. The alteration steps listed replace step 8 in the PBMC isolation method.

Three different approaches were used, each tested in a separate set of experiments multiple

times by various lab technicians:

i. Wash the PBMCs twice in 50mL of PBS, centrifuge at 300xg for 10 min at room

temperature

ii. Wash the PBMCs twice in 50mL of PBS, centrifuge at 200xg for 10 min at room

temperature

iii. Wash the PBMCs twice in 50mL of PBS, centrifuge at 120xg for 15 min at room

temperature

Isolation of B-cells from mononuclear cells using the Miltenyi cell isolation

kits

Miltenyi isolation kits are based on a simple process, in which biotin conjugated antibody-

labelled mononuclear cells are separated from unlabeled cells via a column in the presence of a

magnetic field. During negative selection, the cell type of interest (in this case B-cells) remains

unlabeled/“untouched” and in its native state, while the remaining unwanted mononuclear

cells (in this case T-cells, NK cells and monocytes) are targeted via biotin labelled-antibodies

specific for cell surface receptor(s) of those cell types. During positive selection, the cell type of

interest (in this case B-cells) are specifically targeted, labelled and actively magnetically

removed from the sample by retention in the column in the presence of a magnetic field.

These cells are then retrieved by plunging the column in the absence of a magnetic field.

The efficiency of various Miltenyi isolation kits were tested. Specifically, 3 negative B-cell

isolation kits, 1 positive B-cell isolation kit and 1 T-cell isolation kit were examined (see list
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below). All kits were operated according to the manufacturer’s instructions. For a more

detailed description regarding this process refer to dx.doi.org/10.17504/protocols.io.yfzftp6

[PROTOCOL DOI]

List of Miltenyi isolation kits examined.

i. Isolation of B-cells from mononuclear cells by negative selection using the Miltenyi B-cell

Isolation kit II (For detailed description of kit components see Datafile A in S1 File)

ii. Isolation of B-cells from mononuclear cells by negative selection using the Miltenyi Naïve

B-cell Isolation kit (For detailed description of kit components see Datafile D in S1 File)

iii. Isolation of B-cells from mononuclear cells by negative selection using the Miltenyi CD43

Microbeads kit (For detailed description of kit components see Datafile E in S1 File)

iv. Isolation of B-cells from mononuclear cells by positive selection using the Miltenyi CD19

positive Isolation kit (For detailed description of kit components see Datafile F in S1 File)

Additions and Alterations to Miltenyi B-cell isolation kit II original protocol. A. Addi-

tion of Miltenyi dead cell removal kit to isolation protocol. The addition of this isolation kit

was done in attempt to decrease the “cell debris/platelet” population found within isolated B-

cell fractions. This kit was used according to the manufacturer’s recommendations (For

detailed description of kit components see Datafile B in S1 File) and integrated into the isola-

tion procedure using three different approaches:

i. Perform dead cell removal procedure before B-cells isolation procedure

ii. Perform dead cell removal procedure simultaneously to B-cell isolation (Addition of dead

cell staining buffer together with negative isolation kit buffers–MACS buffer volumes

altered to maintain stipulated staining volume of B-cell isolation kit II)

iii. Perform dead cell removal procedure after B-cells isolation procedure

B. Addition of Miltenyi CD61 platelet removal kit to isolation protocol. The addition of

this isolation kit was done in attempt to decrease the “cell debris/platelet” population found

within isolated B-cell fractions. This kit was used according to the manufacturer’s recommen-

dations (For detailed description of kit components see Datafile C in S1 File) and integrated

into the isolation procedure described in section 2.3.1 was done using three different

approaches:

i. Perform CD61 platelet removal procedure before B-cells isolation procedure

ii. Perform CD61 platelet removal procedure simultaneously to B-cell isolation (Addition of

CD61 staining buffers together with negative isolation kit buffers—MACS buffer volumes

altered to maintain stipulated staining volume of B-cell isolation kit II)

iii. Perform CD61 platelet removal procedure after B-cells isolation procedure

Fluorescent-activated cell sorting (FACS) of isolated B-cell from samples

pre-processed using the Miltenyi B-cell isolation kit II

Lymphocytes were FACS sorted from biological samples, that had already undergone MACS

isolation sample using the B-cell isolation kit II, based on their forward-scatter area (FSC) and

side-scatter area (SSC) properties. In theory, B-cells should account for the majority (above

90%) of the cells within the lymphocyte population. Therefore, this additional separation pro-

cess should remove particles within the sample that do not form part of the lymphocyte
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population, essentially purifying the sample. Sorting based on size and cellular complexity

rather than fluorescence was done to limit the level of manipulation and processing that the

cells were exposed to, as this may have negative effects on downstream processes as previously

mentioned. Prior to sorting the cell suspensions were filtered through 0.35μm filter to remove

any cell aggregates that could block the fluidics lines within the FACS instrument. Samples

underwent two sorting steps:

i. An enrichment sort—to remove excessive debris without compromising the cell numbers

by sorting all cells of interest, and

ii. A pure sort—to completely eliminate cell debris while sacrificing cell yield by only sorting

the cells of interest that were not flanked by contaminating cells.

Immunofluorescence staining and flow cytometric analysis of various cell

fractions to determine the purity of isolated samples

Sample purity is of vital importance; this purity check validates the isolation technique as suffi-

cient in isolating the cell type of interest and that conclusions drawn from downstream experi-

ments are conclusive based on the measured cellular responses of the isolated cells and not by

the presence/influence of other cell types.

The isolated fraction was stained with anti-human mAb specific for CD19 (to determine

the proportion of isolated B-cells in the lymphocyte population i.e “B-cell purity”) and anti-

human mAb specific for CD36 (to determine the proportion of platelets making up the cell

debris population i.e. “Platelet Contamination”). The differentiation of cell debris from lym-

phocytes was determined using FSC and SSC, a due to the fact that cell debris, dead cells and

platelets are of a smaller size and less cellular complexity compared to lymphocytes. The gating

strategy used to evaluate sample purity of isolated B-cells (see Figure A in S1 File and Figure B

in S1 File) and T-cells (Figure C in S1 File) is displayed in Supplementary data. The resulting

data was analyzed using FlowJo v10 software (Oregon, USA).

Statistical analysis

Data analysis of the flow cytometry plots was done using FlowJo V10 (Treestar, USA) and the

resulting stats analyzed using Prism 7 Software (San Diego, CA). Statistical differences between

groups was calculated using a non-parametric Kruskal-Wallis test with a Dunn’s multiple

comparisons test. Alternatively, when applicable a multiple non-parametric unpaired student

t-test was used to calculate statistical differences between groups for a list of independent vari-

ables. Linear regression analysis was performed using Prism 7 Software. A two-way step-up

Benjamini, Krieger and Yekutieli False Discovery rate (FDR) approach, with an FDR of 1%,

was used to correct for multiple testing. Statistical significance is indicated by an asterisk, in

which the p < 0.05 (�), p<. 0.01 (��), p<0.001(���) and p<0.0001(����) or by letters in which

data points with different letters indicated statistical differences.

Results and discussion

The purpose of cell isolation methods is to obtain a pure cell population of interest, that can be

used to investigate cell structure and function without the influence of other cell types. As

such, the presence of contaminants in an isolated sample are undesirable and defeat the objec-

tive of isolation procedures. The methods described in this paper using various Miltenyi B-cell

isolation kits result in such a phenomenon. The desired purity of a cell-type within an isolated

sample equates to 90% or more of the total cell population. Key factors used to assess the purity

Bead isolation of pure B-cells
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of isolated samples within this study included: 1) lymphocyte population frequency—the pro-

portion (%) of lymphocytes within the sample, 2) debris population frequency—the propor-

tion (%) of cell debris within the sample, 3) Platelet frequency–the proportion (%) of CD36+

within the debris population and 4) B-cell purity–the proportion (%) of CD19+ within the lym-

phocyte population. It should be highlighted that the acceptable > 90% isolated cell purity

stated in the data sheet of the tested isolation kits is only achieved when examining the cellular

content of the lymphocyte population, while excluding all cell debris from analysis (Fig 1A).

This type of analysis is termed “gated purity” and overlooks the composition of the isolated

sample as a whole. This isolation method is sufficient for studies only focusing on cell surface

receptor expression analysis but not functional downstream experiments, due to the presence

of cellular contaminants within the final sample fraction. Thus “gated purity” should not be

the only purity of concern when assessing the efficiency of isolation procedures. In almost all

instances, with the exception of the MACS CD19 positive isolation kit, platelets were found to

be a large contaminant within the isolated samples, making up a large portion of the total cell

Fig 1. Analysis of isolated B-cell sample purity obtained using commercially available MACS B-cell isolation kit II (n = 68). (a) Sample purity following negative

MACS bead isolation using B-cell Isolation Kit II only. The left axis illustrates total lymphocytes as a percentage of all cellular content within the isolated sample, while

the right axis illustrates B-cell purity as a percentage of the lymphocyte population (b) Effect of blood volume on effectiveness of MACS B-cell Isolation Kit II. Statistical

differences between blood volumes was calculated using a non-parametric Kruskal-Wallis test with a Dunn’s multiple comparisons test. A two-way step-up Benjamini,

Krieger and Yekutieli False Discovery rate (FDR) approach, with a FDR of 1%, was used to correct for multiple testing. Statistical significance is indicated by an asterisk,

in which the p< 0.05 (�), p<. 0.01 (��), p<0.001(���) and p<0.0001(����).

https://doi.org/10.1371/journal.pone.0213832.g001

Table 1. Summary of B-cell isolation kits tested. This table includes the various parameters used to evaluate the efficiency of each of the Miltenyi B-cell isolation kits

tested. The statistical comparison between the various parameters listed above is graphically illustrated in Fig 3.1.

Total Lymphocytes

(% of sample cellular

content)

Total cell debris (%

of sample cellular

content)

Platelet population

(% of Debris

population)

B-cell Purity (%

CD19+ cells of

lymphocyte

population)

Blood Volume (mL) N

Median Range Median Range Median Range Median Range Range

Naive B kit 11,20 - 87,10 - 94,40 - 96,90 - 36 1

CD43+ kit 11,30 - 85,40 - 83,30 - 61,90 - 36 1

CD19+ kit 52,00 20,30–

62,20

40,70 30,00–

71,40

0,39 0,26–1,82 92,40 91,10–

96,20

20 3

B-cell Isolation Kit II + CD61 removal kit 70,90 65,80–

73,40

9,38 7,61–18,60 54,90 52,20–

69,90

99,00 65,70–

99,30

18 3

B-cell Isolation Kit II + Dead cell removal

kit

17,60 16,30–

63,30

80,60 34,50–

82,80

90,70 72,00–

92,00

98,70 98,30–

99,50

18 3

B-cell Isolation Kit II 69,15 3,63–95,20 17,85 1,48–93,60 86,55 0,014–

99,70

95,75 64,90–

99,90

18–63 68

https://doi.org/10.1371/journal.pone.0213832.t001
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content within the isolated fraction (Table 1). Platelets were identified using flow cytometry

based on their size, cellular complexity and expression of the cell surface marker CD36 [33,34].

This large variation of platelet contamination may be as a result of individual sample variation

in the number of platelets per liter of human peripheral blood–the reference range has been

reported as 150–450 x 109 per liter [35–37].

Consequently, the volume of peripheral blood used for the isolation procedure, and in turn

the number of platelets comprised within the whole blood sample, had a significant effect on

the obtained sample purity (Fig 1B). A significant difference for each of the factors used to

assess sample purity following cell isolation was observed when assessing the effect of starting

blood volume on procedure efficiency. Upon further analysis it was found that a positive rela-

tionship exists between whole blood volume and the frequency of the debris population (Fig

2A), as well as platelet contamination (Fig 2B). Conversely, a negative relationship exists

between whole blood volume and the frequency of the lymphocyte population (Fig 2C). Nota-

bly, the frequency of CD19+ cells within the lymphocyte population remained unaffected by

whole blood volume (Fig 2D).

As previously stated, significantly less platelet contamination was observed in samples iso-

lated with the MACS CD19 positive isolation kit, when compared to the negative B-cell isola-

tion kit II (Table 1). However, the obtained isolated sample comprised of a large proportion of

‘cell debris’ (range 30–70%). Characteristically, dead cells are identified in flow cytometry by

changes in their light scatter; generally they exhibit decreased FSC and increased in SSC prop-

erties [38–41], hence are suspected to make up this debris population. During positive selec-

tion surface receptors on the cell type of interest are targeted for labeling. Theoretically,

Fig 2. Relationship between B-cell isolation quality and sample volume for all B-cell isolation kits tested (n = 79). (a) Linear regression

between blood volume and frequency of debris population (b) Linear regression between blood volume and total lymphocyte population (c)

Linear regression between blood volume and frequency of CD36+ platelets within debris population (d) Linear regression between blood

volume and frequency of CD19+ cells in lymphocyte population.

https://doi.org/10.1371/journal.pone.0213832.g002
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positive selection should result in highly pure cell populations to be obtained, as all non-

labelled cells (including cell debris) should simple elute from the column leaving only the

labeled cell type of interest. However, non-specific binding may occur resulting in unwanted

cell types contaminating the final sample. Dead cells have been known to bind non-specifically

to antibodies [40,41] and could thus be the major source of the observed contamination. Nev-

ertheless, further investigation is required in order to determine the source of this ‘contamina-

tion’. Ideally, negative isolation would be the method of choice as the cell type of interest

surface receptors remain unbound and thus functionally unaltered by this process, where as

positive selection introduces the risk of possible cell activation and ultimately functional alter-

ation of the cell, which may complicate downstream processes. Possible downstream processes

include but is not limited to investigating cellular activation following exposure to a particular

molecule/drug. This ex vivo manipulation could result in altered B-cell function to either

enhance or diminish the measured B-cell response resulting in artefactual observations.

Of the three negative B-cell isolation kits investigated, one of the kits, namely the CD43

microbead isolation kit, did not contain any anti-biotin CD36+ monoclonal antibody (mAb),

which would explain the large degree of platelet contamination within these samples (Table 1,

Figure B in S1 File). However, a large population of CD36+ platelets were identified within iso-

lated samples that underwent processing using either of the other two negative B-cell isolation

kits that contain an anti-biotin CD36 mAb (Table 1), namely the B-cell isolation kit II

(Figure D in S1 File) or the Naïve B-cell isolation kit (Figure B in S1 File), for effective removal

of CD36 positive cells (including platelets). A possible reason for the observed phenomenon is

inadequate concentration of this cell surface receptor mAb within the antibody cocktail solu-

tion, thereby influencing the obtained sample purity. This supports the observed effects of

whole blood volume of the overall effectiveness of the isolation process, in which an increase

in the volume of starting sample, hence platelet numbers, resulting in decreased efficiency in

removal of CD36+ platelets. Due to the large individual variability of platelet counts per partic-

ipant, it is difficult to determine how much anti-biotin CD36 mAb is adequate.

Various steps were implemented into the isolation procedure utilizing the MACS negative

B-cell isolation kit II, in an attempt to decrease the platelet contamination and ‘cell debris’ pop-

ulation found within isolated samples. These modifications including the addition of a MACS

CD61 platelet removal kit to determine whether or not this would improve the resulting sam-

ple purity (Figure A in S1 File). While a general improvement in the obtained sample quality

was observed as seen by a reduction in the frequency of the debris population within the iso-

lated sample, these differences were not statistically significant from either of the other isola-

tion methods (Table 1). It should be noted that when comparing the effectiveness of the

addition of the MACS CD61 microbead kit to other isolation methods, the results from proce-

dure I, II and III were pooled. When subjectively relating each of the implementation methods

separately, no methods was perceived to be superior (Fig 3). Furthermore, the addition of a

MACS dead cell removal kit was implemented to determine whether this would improve sam-

ple quality in cases where platelet contamination within the “cell debris” population was infre-

quent (Figure A in S1 File). No improvement in the resulting sample quality was observed

(Table 1). It should be noted that when comparing the effectiveness of the addition of the

MACS dead cell removal kit to other isolation methods, the results from procedure I, II and III

were pooled. Notable, when subjectively relating each of the implementation methods sepa-

rately, procedure II was perceived to yield sample purity of a superior quality (Fig 4). As such,

further investigation utilizing method II should be performed in order to better evaluate the

usefulness of this kit in improving B-cell isolation.

Additionally, the effectiveness of this MACS dead cell removal kit was not investigated in

combination with the MACS CD19 positive isolation kit, in which dead cells are the suspected

Bead isolation of pure B-cells
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cause of contamination within isolated samples (Figure B in S1 File). Accordingly, additional

investigation is required before a conclusive decision can be made with regards to the effi-

ciency of the modification in refining the isolation process.

Interestingly, when performing T cell isolations using the MACS Pan T cell negative isola-

tion kit available from Miltenyi, limited debris/platelet contamination within the resulting iso-

lated fraction was observed (Fig 5A). Additionally, sample volume was observed to have no

Fig 3. Analysis of isolated B-cell sample purity obtained using the MACS B-cell isolation kit II with the addition of a CD61 platelet

removal kit. The implementation of the CD63 platelet removal kit was done in three different ways, namely before isolation with MACS B-cell

isolation kit II (Procedure 1, n = 1), simultaneously with MACS B-cell isolation kit II (Procedure 2, n = 1) and after isolation with MACS B-cell

isolation kit II (Procedure 3, n = 1).

https://doi.org/10.1371/journal.pone.0213832.g003

Fig 4. Analysis of isolated B-cell sample purity obtained using the MACS B-cell isolation kit II with the addition of the dead cell removal kit.

The implementation of the dead cell removal kit was done in three different ways, namely before isolation with MACS B-cell isolation kit II

(Procedure 1, n = 1), simultaneously with MACS B-cell isolation kit II (Procedure 2, n = 1) and after isolation with MACS B-cell isolation kit II

(Procedure 3, n = 1).

https://doi.org/10.1371/journal.pone.0213832.g004
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confounding effect on the resulting sample purity (Fig 5B). These results thereby illustrate that

our PBMC isolation technique and MACS isolation methods are up to standard and are not

the cause of this recurring contamination issue. Instead, these results emphasize the ineffi-

ciency of current B-cell isolation kits available from Miltenyi to produce pure B-cell popula-

tions from which concrete findings can be made. Given that it is standard practice for

immunology research to be conducted on immune cells in isolation ex vivo [3,13,24–29,29–

32], it is crucial that any external influences, such as the presence of contaminating cells within

an isolated sample, be acknowledged as these factors may contribute to the measured physio-

logical responses, resulting in artefactual observations. It is thus proposed that the Miltenyi B-

cell isolation kits are suboptimal and need further optimization in order to achieve the desired

cell isolation results for which these kits are intended. The presence of platelets and cell debris

within isolated cell samples to be used for downstream functional assays is a significant draw-

back—as these “contaminants” may influence the function of cells under investigation. Plate-

lets and cell debris contribute to the microenvironment, that is the in vitro setting, in which

these cells are investigate as they secrete various substances such as cytokines (in the case of

platelets) or cellular content (in the case of dead cells) known to have an effect on the activation

and function of surrounding immune cells [42,43]. Thus, the observed immune response of

investigated cells may not be identical to those where pure sample isolates were used as the cel-

lular function may have been altered by the substances released from these contaminating cells.

Evidence has illustrated that platelets have the capacity to modulate B and T cell function—and

potentially drive their operation [18]. One such way in which platelets may achieve this is

through the expression of mRNA found within their cytoplasm [44–46]. The resulting proteins

include a variety of molecules known to influence cell function, including cell surface receptors

involved in cellular activation and various cytokines [18,42,43]. These findings are of huge con-

cern, as several studies inferring B-cell function downstream utilizing these kits to obtain “pure”

B-cell populations, have not acknowledged the presence of these platelets within their isolated

samples. Therefore, any conclusions made from isolated cell studies that utilized these B-cell

isolation kits, need to consider the presence of these platelets within the sample, and note the

limitations when reporting their findings contributing to B-cell function.

Fig 5. Analysis of isolated T cell sample purity obtained using the MACS Pan T cell isolation kit (n = 11). (a) Sample purity following negative MACS

bead isolation. The left axis illustrates total lymphocytes as a percentage of all cellular content within the isolated sample, while the right axis illustrates T-cell

purity as a percentage of the lymphocyte population. As illustrated, platelet/cell debris was successfully removed, and a pure T cell population obtained, as

shown by CD3+ cells (b) Linear regression between blood volume and efficiency of MACS Pan T-cell isolation kit with reference to frequency of lymphocyte

population and frequency of CD3+ cells within lymphocyte population (T-cell Purity).

https://doi.org/10.1371/journal.pone.0213832.g005
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Lastly, the addition of a fluorescent-activated cell sorting (FACS) step, following B-cell iso-

lation with the Miltenyi B-cell isolation kit II, was investigated to determine whether this could

improve sample purity. The resulting sample fraction was found to have significantly

improved sample purity, however cell number was compromised using this method (Fig 6).

The gating strategy used to evaluate sample purity of FACS B-cells is displayed in Figure D in

S1 File. Based on the findings of this paper, the addition of FACS sorting to this isolation pro-

cedure for obtaining pure B-cell populations is recommended, as this technique was found to

significantly reduce the platelet contamination within the isolated sample fractions. Conse-

quently, the tested B-cell isolation kits would better serve as a pre-enrichment step prior to cell

sorting rather than an isolation technique alone. This is highly beneficial in comparison to tra-

ditional cell sorting as it allows for the isolation of naïve B-cells, whereas B-cells sorted directly

from whole blood or PBMC samples requires labeling of the cells of interest with a fluorescent

tag for removal from cell suspension. This is disadvantageous as it may result in cell activation

through engagement of the B-cell receptor (CD19) resulting in altered immune function, as

well as the increased amount of time needed to sort the B-cells out of these dense cell popula-

tions, resulting in excessive costs. As such, the use of the commercially available MACS isola-

tion kits is not discouraged but rather recommended as an additional pre-step to cell sorting

procedures.

Various FACS sorting platforms exist (eg. BD, SONY, Beckman Coulter) including the

MACSQuant-Tyto (Miltenyi Germany) and use of the services offered should be to achieve

the desired sample purity. However, in terms of the research cost, processing time and the vol-

ume of blood required to obtain sufficient B-cell numbers for functional assays downstream,

this method may not be feasible for most laboratories. A possible improvement to reduce the

loss in cell number could be to label the sample with a CD36 mAb and actively sort the plate-

lets within the debris population, using the pure sort method, based on their FSC and SSC

properties as well as fluorescence; followed by a pure sort of the lymphocyte population based

Fig 6. Analysis of isolated B-cell sample purity obtained using the MACS B-cell isolation kit II, followed by cell

sorting based on FSC and SSC (n = 2). Statistical differences between sorting conditions was calculated using multiple

non-parametric unpaired student t-tests. A two-way step-up Benjamini, Krieger and Yekutieli False Discovery rate

(FDR) approach, with a FDR of 1%, was used to correct for multiple testing. Statistical significance is indicated by an

asterisk, in which the p< 0.05 (�), p<. 0.01 (��) and p<0.001(���).

https://doi.org/10.1371/journal.pone.0213832.g006
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on FSC and SSC, with less abort rates as the sample will comprise of significantly less cell

debris. Importantly, B-cell isolation kits from additional companies was not investigated

within this study. Therefore, the results depicted within this paper do not dissuade the efficacy

of other B-cell isolation kits. However, it would be advisable to do a comparative study to

determine the efficacy of the kits not tested.

Supporting information

S1 File. Bcell Isolation kit II (Datafile A). Dead Cell Removal Kit (Datafile B). CD61

Microbeads (Datafile C). Naïve B cell Isolation Kit II (Datafile D). CD43 Microbeads

(Datafile E). CD19 Microbeads (Datafile F). Flow cytometric analysis of isolated B cell

sample purity obtained using the B cell isolation kit II. (a) Using the normal PBMC method

(n = 16) (b) Using the altered platelet wash method (n = 4) c) Addition of dead cell removal kit

(n = 3) (d) Addition of CD61 platelet removal kit (n = 3) (Figure A). Flow cytometric analysis

of isolated B cell sample purity obtained using the naive isolation kits. (a) Naïve B cell Isola-

tion kit (n = 1) (b) CD43 microbeads kit (n = 1) (c) CD19 positive Isolation kit (n = 3). These

sample were not stained with CD36 mAb and thus the proportion of platelets that make up the

‘Debris’ population cannot be confirmed (Figure B). Flow cytometric analysis of isolated T

cell sample purity obtained using the Pan T cell isolation kit. Sample purity following nega-

tive MACS bead isolation in which platelet/cell debris was successfully removed, as shown in

SSC-A vs FSC-A, and a pure T cell population obtained, as shown by CD3+ cells (n = 11)

(Figure C). Flow cytometric analysis of isolated B cell sample purity obtained using the B

cell isolation kit II, followed by cell sorting based on FSC and SSC. a) Sample purity of

MACS bead isolated B cell sample b) Sample purity of MACS bead isolated B cell sample fol-

lowed by two cell sorting steps, resulting in successfully removal of undesirable platelet con-

tamination (n = 2) (Figure D).
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Methodology: Dannielle K. Moore, Bongani Motaung, Nelita du Plessis, Ayanda N.

Shabangu.

Resources: Nelita du Plessis, André G. Loxton.
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