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Abstract: The dynamic property of a ligand in the receptor-bound state is an important metric to
characterize the interactions in the ligand–receptor interface, and the development of an experimental
strategy to quantify the amplitude of motions in the bound state is of importance to introduce
the dynamic aspect into structure-guided drug development (SGDD). Fluorine modifications are
frequently introduced at the hit-to-lead optimization stage to enhance the binding potency and other
characteristics of a ligand. However, the effects of fluorine modifications are generally difficult to
predict, owing to the pleiotropic nature of the interactions. In this study, we report an NMR-based
approach to experimentally evaluate the local dynamics of trifluoromethyl (CF3)-containing ligands
in the receptor-bound states. For this purpose, the forbidden coherence transfer (FCT) analysis,
which has been used to study the dynamics of methyl moieties in proteins, was extended to the
19F nuclei of CF3-containing ligands. By applying this CF3–FCT analysis to a model interaction system
consisting of a ligand, AST-487, and a receptor, p38α, we successfully quantified the amplitude of the
CF3 dynamics in the p38α-bound state. The strategy would bring the CF3-containing ligands within
the scope of dynamic SGDD to improve the affinity and specificity for the drug-target receptors.
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1. Introduction

The affinity and specificity of small molecules to their targets need to be improved in the hit-to-lead
and the lead optimization processes in drug development. Target specificity is known to be associated
with the thermodynamic properties of binding [1]. Ligands with larger enthalpic contributions to the
receptor-binding free energy are expected to show better target specificity and to be less susceptible to
drug-resistance mutations [2–4]. Such enthalpy-driven bindings are usually derived from multiple
site-specific intermolecular interactions, such as hydrogen bonds and van der Waals interactions.
The static structures of ligand–receptor complexes, mainly provided by X-ray crystallography, are able
to identify those intermolecular interactions. However, the energetic contribution of each interaction
cannot be readily predicted from a static structure. In this regard, the mobility of atoms in and
near the intermolecular interaction site is expected to reflect the rigidity and strength of the local
interaction [5–7]. Therefore, the current structure-guided drug development (SGDD) approaches,
which rely largely on static structures, would be improved by taking the dynamic aspects of interactions
into account and by developing experimental strategies to quantify the amplitude of motions.

Solution nuclear magnetic resonance (NMR) techniques have greatly contributed to pharmaceutical
development at various stages [8–10]. NMR plays a critical role in the supply of intermolecular distance
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information about ligand–receptor complexes, especially for the cases where solving the crystal structures
of complexes is difficult. More importantly, the solution NMR techniques also provide information
about the dynamics of both the ligands and the target biomolecules at an atomic resolution, with
timescales ranging from picosecond to hour [11–16]. Among them, the forbidden coherence transfer
(FCT) analyses have been established to quantify the amplitude of the ps–ns timescale motion
of methyl (CH3) groups in macromolecules [17]. The CH3–FCT analyses extract two relaxation
parameters: the intramethyl 1H–1H dipolar cross-correlated relaxation rate, η, and the sum of the
dipolar cross-relaxation rates with external protons, δ. The parameter η is directly proportional to the
generalized order parameter, Saxis

2, which reports the amplitude of motion of the methyl threefold axis.
The parameter δ is sensitive to the presence of remote protons within 3 Å, thus providing information
about the surface complementarity if used in a ligand–receptor complex [18]. The advantages of
the CH3–FCT approach in ligand optimization were exemplified in our preceding research [18].
Here, the CH3–FCT analyses were applied to a µM-affinity peptide ligand that binds to a drug-target
kinase, to identify the methyl-bearing residues with a large motional amplitude and low surface
complementarity in the kinase-bound state. The substitution of the residue with such propensities by
a bulkier amino acid substantially improved the affinity and thermodynamic properties of the ligand.

Here, we report the extension of the FCT analysis to trifluoromethyl (CF3) groups. Approximately
25% of therapeutic drugs on the market contain at least one fluorine atom, and the CF3 group is one of
the major fluorine-containing substituents [19]. Since recent advances in medicinal chemistry allow
easy incorporation of fluorine atoms to specific sites of compounds [20,21], fluorine is frequently
introduced at the lead optimization stage to enhance binding potency, oral availability, and/or
metabolic stability [22,23]. The enhancement of the binding potency can be primarily attributed
to the fluorine-mediated intermolecular interactions, including hydrogen bonds, halogen bonds, and
van der Waals interactions. However, the strong electron-withdrawing propensity of fluorine also
affects the interactions of remote functional groups, and the bulky fluorine substituent often modulates
the dynamics of ligands in both the free and bound states. Such a pleiotropic nature makes the effects of
fluorine incorporation difficult to predict. Therefore, implementation of a novel experimental approach
to characterize the interaction and dynamics of compounds at fluorinated sites is of importance. As 19F
is the 100% naturally abundant 1

2 -spin nucleus with the next largest gyromagnetic ratio to the proton,
it is feasible for use in NMR applications, and affords high sensitivity. In addition, the analysis of
19F-NMR spectra is straightforward, owing to the large chemical shift distribution (~100 ppm) and
no background signals. These features make 19F-NMR an attractive approach in drug discovery [24],
and the CF3 moiety has been extensively used in drug-screening procedures due to its high sensitivity
and relatively narrow line width [25,26].

In this report, we developed the CF3–FCT analysis to quantitatively measure the dynamics of
a CF3-containing ligand in the receptor-bound state. The characteristics of the CF3 groups that are
distinct from those of the CH3 groups—including the smaller gyromagnetic ratio, the longer spin–spin
and van der Waals contact distances and the shorter 19F transverse relaxation times—were considered.
We applied the strategy to a ligand, AST-487, complexed with a drug-target protein kinase, p38α,
and demonstrated that the η relaxation parameter is readily obtained to quantitatively measure the
amplitude of the dynamics of the CF3 moiety. In addition, the comparison of the FCT profile of the
ligand in the non-deuterated receptor-bound state, relative to that of the perdeuterated receptor-bound
state, indicated that the strategy would provide the surface complementarity information at the
CF3 site.

2. Results and Discussion

In the FCT analyses, the time (T)-dependent buildup of the intensity ratio of the multiple quantum
coherence (IMQC) over the single quantum coherence (ISQC) is used to determine the motion- and
distance-associated relaxation parameters η and δ, respectively, as following,
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the slope of the IMQC/ISQC buildup curve depends mostly on the ߟி  values. Therefore, the local 
dynamics of the ligand methyl groups in the ligand–receptor complex can be obtained from the initial 
CF3–FCT buildup. Analogously, the δF values, which reflect the vicinity of the CF3 groups with 
external protons, i.e., surface complementarity, would be reflected in the plateau value of the IMQC/ISQC 
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would be less steep, as compared to that of the CH3–FCT. This also means that the FCT profile of CF3 
requires a much longer mixing time to reach the plateau value, and thus, is less sensitive to the 
presence of external protons at practical mixing times, which are defined by the 19F transverse 
relaxation times. In addition, the	ߜ	value itself tends to be smaller, as the van der Waals contact 
distance of fluorine is longer for a 19F–1H pair (2.55 Å) as compared to that for a 1H–1H pair (2.4 Å). 
At the van der Waals contact distance, the δ value is 0.61 times smaller for 19F as compared to that for 1H. 

To experimentally evaluate the CF3–FCT analysis, we used p38α, a 42 kDa mitogen-activated 
protein kinase, as a receptor. p38α is a major drug target for inflammatory diseases such as 
rheumatoid arthritis and Crohn’s disease [27,28]. For the ligand, we selected AST-487, which 
reportedly showed the highest p38α-binding or inhibition potency among CF3-containing 
compounds in the ChEMBL Kinase SARfari database (Figure 1a) [29]. AST-487 was originally 
identified as a receptor tyrosine (RET) kinase inhibitor [30]. However, it is shown to bind also to p38α 
with a dissociation constant (Kd) of 72 nM [31]. We verified the AST-487 binding to p38α by an 
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is the reduced Planck constant,
τC is the rotational correlation time of the molecule, rFF is the distance between two fluorine nuclei
in a trifluoromethyl group, and rFXext is the averaged distance between three fluorine atoms and
an external H or F spin. Similar to that in the FCT analysis of a CH3 group, the slope of the
IMQC/ISQC buildup curve depends mostly on the ηF values. Therefore, the local dynamics of the
ligand methyl groups in the ligand–receptor complex can be obtained from the initial CF3–FCT
buildup. Analogously, the δF values, which reflect the vicinity of the CF3 groups with external protons,
i.e., surface complementarity, would be reflected in the plateau value of the IMQC/ISQC buildup.

However, some differences should be considered for assessing the practical applicability of the
FCT analysis to the CF3 groups. The smaller gyromagnetic ratio and the longer spin–spin distances in
the CF3 group, as compared to those in the CH3 group, lead to smaller η and δ values in the CF3–FCT
analyses. The gyromagnetic ratios for 19F and 1H are 251.662 × 106 rad/s/T and 267.513 × 106 rad/s/T,
respectively. Interatomic 19F–19F and 1H–1H distances for the CF3 and CH3 groups are 2.164 Å and
1.813 Å, respectively. Assuming the same S2

axis and τC values, these differences make the ηF value
0.27-times smaller as compared to the ηH value. Therefore, the slope of the CF3–FCT buildup would
be less steep, as compared to that of the CH3–FCT. This also means that the FCT profile of CF3 requires
a much longer mixing time to reach the plateau value, and thus, is less sensitive to the presence of
external protons at practical mixing times, which are defined by the 19F transverse relaxation times.
In addition, the δ value itself tends to be smaller, as the van der Waals contact distance of fluorine is
longer for a 19F–1H pair (2.55 Å) as compared to that for a 1H–1H pair (2.4 Å). At the van der Waals
contact distance, the δ value is 0.61 times smaller for 19F as compared to that for 1H.

To experimentally evaluate the CF3–FCT analysis, we used p38α, a 42 kDa mitogen-activated
protein kinase, as a receptor. p38α is a major drug target for inflammatory diseases such as rheumatoid
arthritis and Crohn’s disease [27,28]. For the ligand, we selected AST-487, which reportedly showed
the highest p38α-binding or inhibition potency among CF3-containing compounds in the ChEMBL
Kinase SARfari database (Figure 1a) [29]. AST-487 was originally identified as a receptor tyrosine
(RET) kinase inhibitor [30]. However, it is shown to bind also to p38α with a dissociation constant (Kd)
of 72 nM [31]. We verified the AST-487 binding to p38α by an isothermal titration calorimetry (ITC)
experiment, and observed a 1:1 exothermic interaction with a Kd value of 82.6 ± 13.5 nM (Figure 1b),
which was identical to the reported value within the error. To further confirm that AST-487 binds
to a specific site of p38α, we carried out a chemical shift perturbation (CSP) experiment, in which
AST-487 was titrated to p38αwith 1H/13C isotope labeling at the methyl positions of isoleucine (δ1),
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leucine, valine, and methionine in a uniformly deuterated background ([ILVM–methyl–1H/13C, U-2H]
p38α) (Figure 2a and Supplementary Figure S1). Reflecting the high affinity of the complex, the 1H–13C
resonances of p38α were perturbed in a slow exchange manner, saturating at one molar equivalent
(Supplementary Figure S1). Methyl sites with substantial CSPs were mainly distributed in and
near the ATP-binding site (Figure 2b), which is consistent with the canonical interaction mode of
ATP-competitive inhibitors. In fact, intermolecular nuclear Overhauser effects (NOEs) were observed
between the protons of AST-487 and the methyl protons in the ATP-binding site of p38α (Figure 2c,d).
Extensive NOEs were observed for the pyrimidine group and ether-linked ring of AST-487 (Figure 2c).
In particular, NOEs were observed for the pyrimidine group and the p38αmethyl protons deeper in the
ATP-binding cleft (orange spheres in Figure 2d). This NOE pattern is consistent with the binding mode
of the AST-487–mitogen-activated protein kinase kinase 4 (MEK4) complex, which was previously
analyzed by computational docking and saturation transfer difference (STD) NMR experiments, where
the pyrimidine group of AST-487 resides deep in the binding cleft [32]. In contrast, we detected no
intermolecular NOEs for the trifluoromethyl-phenyl ring and 4-ethyl-piperazin groups. This might
be due to the lack of protons around these groups in the p38α bound state, or to the less-efficient
NOE transfer caused by fast local dynamics. Such an ambiguity can be clarified by quantifying the
amplitude of the local dynamics. In addition, as described above, AST-487 binds a broad range of
kinases including Tyr kinases (e.g., RET kinase) and Ser/Thr kinases (e.g., MEK4 and p38α). Therefore,
the dynamics information would contribute to the rational design of modifications for achieving better
binding potency and the desired target specificity.

To characterize the dynamic property of the CF3 group of AST-487 in the p38α-bound state, we
observed the 19F resonance of the CF3 moiety of AST-487 in the presence of p38α. The 19F resonance in
the presence of p38α was observed at −59.97 ppm, which was high field-shifted by 0.32 ppm from
−59.65 ppm in the free state (Figure 3a). This resonance is derived from AST-487 in the bound state,
as the binding of AST-487 to p38α occurs in the slow exchange manner and saturates at one molar
equivalent (Supplementary Figure S1). Then, we performed the double quantum coherence (DQC)
and single quantum coherence (SQC) measurements of AST-487 complexed with perdeuterated p38α.
In these experiments, a broadband 1H decoupling was applied throughout the pulse sequence to
suppress the 1H–19F scalar couplings. Mixing delays were set to 2.5, 5 and 7.5 ms, taking the signal
decay due to the 19F transverse relaxation into consideration (Supplementary Figure S2). Although
no signal was observed in the DQC spectra of the free AST-487, the buildup of a DQC signal was
clearly observed in a mixing time-dependent manner for AST-487 in the p38α-bound state (Figure 3b).
This supports that the signal observed in the p38α-bound state is derived from the FCT phenomenon,
which is allowed only under high-molecular-weight conditions. Thus, the results confirmed that the
FCT measurement is applicable to the CF3 group.

To estimate the motional amplitude of the CF3 moiety, the IDQC/ISQC buildup was fitted to
Equation 1 (Figure 3c). Here, we assumed δF = −28 s−1, taking account of the intramolecular dipolar
cross-relaxation from two adjacent protons at the van der Waals distance. The dipolar contribution
from perdeuterated p38αwould be negligible. Under this assumption, the ηF value was determined as
18.3 ± 1.96 s−1. This corresponds to the Lipari–Szabo model-free S2

axis of 0.64 ± 0.069. The estimated
order parameter indicates that the CF3 group and its directly attached phenyl ring of AST-487
retain a substantial mobility in the p38α-bound state. This complements the lack of the NOE-based
information about the intermolecular interaction for the trifluoromethyl-phenyl group.

We further investigated the effect of intermolecular dipole interactions on the CF3–FCT profile.
To this end, we used non-deuterated p38α, instead of perdeuterated p38α, to introduce intermolecular
dipole–dipole interactions between the CF3 group of AST-487 and the protons of p38α. The linewidth
of the AST-487 19F resonance complexed with non-deuterated p38α was broader than that with
perdeuterated p38α (102 and 72 Hz, respectively; Supplementary Figure S3a), indicating a considerable
increase in dipole–dipole interactions. The IDQC/ISQC ratio of the CF3 moiety at a mixing time of 5 ms
was 24% smaller in the non-deuterated p38α-bound state than that in the perdeuterated p38α-bound
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state (Supplementary Figure S3b). This could be ascribed to the enhancement of δF by the p38α protons,
indicating that the CF3 group of ATS-487 is at least partially buried in the binding pocket of p38α.
Thus, the result demonstrated that the surface complementarity information could be extracted from
the CF3–FCT analysis.

In summary, we demonstrated that the CF3–FCT analyses are capable of characterizing the fast
timescale motion and surface complementarity of the CF3 group of a small ligand in the receptor-bound
state. The extension of the FCT analyses to the CF3 group would contribute to expanding the
applicability of the dynamic SGDD to CF3-containing molecules. The analyses provide important
ways to proceed with the hit-to-lead and lead optimization processes to obtain a small compound
with improved affinity and specificity for the drug-target biomolecules. Nevertheless, the utility of
the CF3–FCT analyses would not be limited to the field of drug development: the strategy might
also be useful to characterize the functional dynamics of proteins. CF3 groups have been chemically
introduced to monitor the conformational equilibrium of proteins in structural analyses that are
difficult to tackle by other methods [33–38].
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Figure 1. Chemical structure of AST-487 and its binding thermodynamics against p38α. (a) The
chemical structure of AST-487, with the CF3 moiety highlighted in green; (b) The isothermal titration
calorimetry (ITC) profile and thermodynamic properties of the interaction between AST-487 and p38α.
In the ITC experiment, 50 µM AST-487 was titrated to 5 µM p38α at 25 ◦C.
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the structure of p38α in the apo state (Protein Data Bank (PDB) code: 1P38) [39]. The ATP-binding site 
is indicated by the blue broken line; (c) The intermolecular nuclear Overhauser effects (NOEs) 
observed between AST-487 and p38α are illustrated by broken lines. For Leu-167, only one resonance 
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Figure 2. Structural characterization of the interaction between AST-487 and p38α. (a) The 1H–13C
band-selective optimized-flip-angle short-transient–heteronuclear multiple quantum coherence
(SOFAST–HMQC) spectra (Ile-δ1 region) of p38α with 1H/13C isotope labeling at the methyl
positions of isoleucine (δ1), leucine, valine, and methionine in a uniformly deuterated background
([ILVM–methyl–1H/13C, U-2H] p38α) in the presence (red) and absence (black) of an equimolar
concentration of AST-487; (b) The structural mapping of the chemical shift perturbations (CSPs)
induced by the addition of AST-487. Methyl groups with CSPs larger than the linewidth are shown
as red spheres in the structure of p38α in the apo state (Protein Data Bank (PDB) code: 1P38) [39].
The ATP-binding site is indicated by the blue broken line; (c) The intermolecular nuclear Overhauser
effects (NOEs) observed between AST-487 and p38α are illustrated by broken lines. For Leu-167,
only one resonance of the two δ-methyl groups was identified with no stereospecific assignments;
thus, it is labeled as “δ”. The pyrimidine ring and the methylamino substituent are colored orange,
while the ether-linked phenyl ring is colored blue; (d) The methyl sites with intermolecular NOEs
with AST-487 are shown as spheres in the p38α structure (PDB code: 1A9U) [40]: orange methyl
sites represent NOEs with the pyrimidine ring or its methylamino substituent; blue methyl sites
represent NOEs with the ether-linked phenyl ring; and brown methyl sites represent NOEs to both.
The surface of a representative p38α inhibitor, SB203580, is colored purple to indicate the typical
compound-binding site.
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of AST-487 in the presence (red) and absence (black) of perdeuterated p38α; (b) Spectral regions
of the CF3 resonance of AST-487 bound to perdeuterated p38α (upper) and those in the absence
of p38α (lower) in the 19F–DQC (double quantum coherence) spectra at mixing times of 2.5, 5 and
7.5 ms; (c) The time-dependent evolution of the IDQC/ISQC ratio. Error bars are estimated from the
signal-to-noise ratios. The fitting curve is drawn as a solid line. For comparison, a simulated curve
with S2
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3. Materials and Methods

The compound AST-487 (molecular weight 529.6 Da, Purity 99.90%, Catalog No. SYN1210) was
purchased from AK Scientific (Union City, CA, USA) and used without further purification. Powder of
AST-487 was dissolved in DMSO-(d6) at a concentration of 100 mM, and small aliquots were stored
at −30 ◦C.

3.1. Preparation of the Recombinant p38α

Overexpression and purification of the recombinant p38αwere performed following the procedure
as reported previously [41]. Briefly, the E. coli strain BL21 (DE3) was transformed with the pET15b
plasmid harboring an N-terminally hexahistidine-tagged human full-length p38α sequence between
the NcoI and XhoI restriction sites of the plasmid. Bacterial colonies grown on freshly prepared
LB agar plates, containing 100 µg/mL ampicillin, were inoculated into a 5 mL LB medium and
cultured at 37 ◦C overnight. For the production of perdeuterated p38α, the overnight culture
was mildly centrifuged and the resultant cell pellet was gently resuspended in a 100× volume of
D2O-based M9 medium containing 15NH4Cl and 2H7-D-glucose as the sole nitrogen and carbon sources,
respectively. When an optical density at 600 nm (OD600) of 0.6 was reached, the culture temperature
was lowered to 16 ◦C. After 30 min, protein overexpression was induced by the addition of 0.6 mM
isopropyl-β-D-thiogalactopyranoside (IPTG). For preparing [U–2H/15N, ILVM–methyl–1H/13C] p38α
sample used in the p38α-observed NMR experiment, methionine and precursors of isoleucine,
leucine and valine were supplemented 30 min before induction at the following concentrations:
50 mg/L [ε-13C] l-methionine; 90 mg/L [3-methyl-13C, 3,4,4,4-D4] α-ketoisovalerate, sodium salt;
and 70 mg/L [methyl-13C,3,3-D2] α-ketobutyrate, sodium salt [42]. H2O-based M9 medium with no
isotope enrichment was used for the preparation of non-deuterated p38α sample. Bacterial cells
were collected by centrifugation and the cell pellet was stored at −80 ◦C until purification. The cell
suspension was sonicated on ice to lyse cells. The supernatant was subjected to metal–chelate affinity
chromatography by using a His60 Ni Superflow column (Takara Bio, Shiga, Japan), followed by
size-exclusion chromatography using a HiLoad 16/60 Superdex 200 prep grade column (GE Healthcare,
Little Chalfont, UK). The elution fraction was concentrated in the buffered solution containing
25 mM Tris-HCl (pH 7.5), 150 mM NaCl and 5 mM dithiothreitol (DTT), by ultrafiltration using
an Amicon Ultra centrifugal device (MWCO 10 kDa, 4 mL, Merck Millipore, Darmstadt, Germany).
The concentration of p38α was determined by measuring the ultraviolet absorbance at a wavelength
of 280 nm and using an extinction coefficient of 47,850 L/mol/cm.
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3.2. NMR Sample Preparation

All NMR samples were prepared in the buffered solution containing 25 mM Tris(D11)-DCl (pH 7.7),
150 mM NaCl and 10 mM DTT-(D10) in 95/5 D2O/DMSO-(d6). An aliquot of the p38α stock in the
H2O-based buffer solution was buffer-exchanged to the DMSO-free NMR buffer by ultrafiltration
using an Amicon Ultra device (MWCO 3 kDa, 0.5 mL). After adjusting the volume, the AST-487
solution and DMSO-(d6) were added to have the final concentrations of 1 mM AST-487 and 5% (v/v)
DMSO-(d6). The concentrations of p38α were 150 µM and 400 µM for p38α-observed 1H–13C
correlation experiments and AST-487-observed 19F-detected experiments, respectively. To the latter
samples, trifluoroacetic acid (TFA) was supplemented at a concentration of 500 µM for chemical
shift calibration.

3.3. NMR Experiments

Two dimensional 1H–13C SOFAST–HMQC [43,44] spectra of p38α in the absence and presence of
AST-487 were acquired on a Bruker Avance 600 spectrometer equipped with a TXI cryoprobe operating
at 298 K. The numbers of data points for the direct 1H and the indirect 13C dimensions were 1024
and 512, with maximum acquisition times of 61.1 and 74.8 ms, respectively. Twelve transients were
acquired per free induction decay (FID), with an interscan delay of 0.3 s. Time domain data were
processed with TopSpin2.1 software (Bruker BioSpin, Billerica, MA, USA) and analyzed by Sparky [45].
Proton and carbon chemical shifts were calibrated using 4,4-dimethyl-4-silapentane-1-sulfonic acid
(DSS) as the external standard [46]. Methyl sites experiencing CSPs larger than the linewidth upon
AST-487 binding were classified as perturbed.

The rotational correlation time (τc) of p38α was determined as 24 ns in 85/10/5
H2O/D2O/DMSO-based solution by transverse relaxation-optimized spectroscopy for rotational
correlation times (TRACT) experiments [47]. Considering the increased viscosity due to higher D2O
content, the τc of p38α in 95/5 D2O/DMSO-based solutions used for FCT experiments was estimated
to be 29 ns.

One-dimensional 19F–1D and the CF3–FCT experiments were performed on a Bruker Avance
600 (Bruker BioSpin, Billerica, MA, USA) spectrometer equipped with a QCI-F cryoprobe at 298 K.
The pulse sequence for the one-dimensional 19F–DQC and SQC experiments were analogous to those
for proton DQC and SQC measurements, respectively [48]. The DQC and SQC experiments were
performed with complex data points of 8096 and an acquisition time of 151 ms. For the DQC and SQC
measurements, 46,080 and 1024 transients, respectively, were acquired with a recycling delay of 1.5 s.
The mixing times were 2.5, 5.0 and 7.5 ms for experiments using perdeuterated p38α, and 5 ms for
those using non-deuterated p38α. The 19F carrier frequency was set at −58.84 ppm. The WALTZ-16
composite pulse decoupling [49] was applied to proton spins from the excitation to the end of the
acquisition period to suppress any potential 1H–19F scalar couplings. The time domain data were
processed and analyzed on the TopSpin3.1 software (Bruker Biospin), and the chemical shifts of 19F
resonances were calibrated by using TFA as the internal standard.

3.4. ITC Experiments

The MicroCal VP-ITC calorimeter (Malvern, Malvern, UK) was used to determine the
affinity and thermodynamic parameters associated with the binding of AST-487 to p38α.
AST-487 and p38α were dissolved in the buffered solution (ITC buffer), containing 50 mM
(N-2-hydroxyethylpiperazine-N-2-ethane sulfate (HEPES)–NaOH (pH 7.5), 150 mM NaCl, 1 mM
tris(2-carboxyethyl)phosphine hydrochloride (TCEP), 4% (v/v) glycerol and 5% (v/v) DMSO. The ITC
buffer was freshly prepared before use, passed through a 0.22-µm membrane filter and degassed by
sonication. The 100 mM stock of AST-487 was diluted 1:1000 with the ITC buffer and centrifuged.
The resultant supernatant was filtered through a 0.22-µm syringe filter. A stock solution of p38αwas
exchanged to the ITC buffer by ultrafiltration using an Amicon Ultra (Merck Millipore, Darmstadt,
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Germany) centrifugal device (MWCO 10 kDa) and filtered through a 0.22-µm syringe filter. A total
of 27 aliquots of 50 µM AST-487 in the titration syringe (2 µL at the initial titration point and 10 µL
at successive points) were added to the cell filled with 5 µM p38α, with an interval of 350 s between
each pair of titration points at 25 ◦C. The reference titration data was acquired with the same titration
procedure, except that the ITC buffer was used instead of the p38α solution. After subtracting the
reference data and omitting the initial titration point, the molar heat–ligand concentration profile was
fitted to the one-to-one binding model by using the Origin software (OriginLab Corporation).

Supplementary Materials: Supplementary materials are available online. Figure S1: ATS-487 concentration-dependent
spectral changes of p38α, Figure S2: Estimation of the applicable mixing delays for CF3–FCT analyses of the
ATS-487-p38α complex, and Figure S3: The effect of receptor protonation on the 19F linewidth and the FCT
build up.

Acknowledgments: We thank Yu Tsutsumi (Bruker BioSpin) for the instructions for the 19F-NMR experiments.
This work was supported by a grant from the Ministry of Economy, Trade, and Industry (METI) and Japan
Agency of Medical Research and Development (AMED) to I.S. (Grant name: Development of core technologies
for innovative drug development based upon IT). Funding was also provided by JST, PRESTO (Grant number
JPMJPR14L5) to K.T., and by JSPS KAKENHI Grant Number 17K15083 to Y.T.

Author Contributions: Y.T., K.T. and I.S. conceived the project. Y.T. and K.T. performed the experiments. Y.T., K.T.
and I.S. wrote the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Klebe, G. Applying thermodynamic profiling in lead finding and optimization. Nat. Rev. Drug Discov. 2015,
14, 95–110. [CrossRef] [PubMed]
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