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More than 1million sexually transmitted infections (STIs) are acquired each day globally. Etiotropic drugs
cannot effectively control infectious diseases therefore, there is a dire need to explore alternative strate-
gies especially those based on the regulation of immune system. The review discusses all rational
approaches to develop better understanding towards immunotherapeutic strategies based on modulation
of immune system in an attempt to curb the elevating risk of infectious diseases such as HIV, HPV and
HSV because of their high prevalence. Development of monoclonal antibodies, vaccines and several other
immune based treatments are promising alternative strategies that are offering new opportunities to
eradicate pathogens.
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1. Introduction

Practice to prevent and treat diseases by boosting, suppressing
or stimulating immunity is known as immunotherapy. Though,
antimicrobial drugs have developed rapidly in recent past but
these drugs are of narrow spectrum and target certain groups of
microbes leading to an increased resistance. Such hindrances in
treatment compel scientists to investigate new ways of developing
effective and cost-effective treatments especially immuno-
therapies [1]. The alarming increase in prevalence of immunocom-
promised people besides booming antimicrobial resistance and
lack of novel antimicrobial agents form the basis of development
of immunotherapeutic strategies. Frequently used immune-based
therapies against infectious diseases span the use of cytokines
and growth factors to boost natural immunity, increase effector
Fig. 1. Evolution of infectious diseas
cell response to restrain infectious diseases, introduction of anti-
bodies against different organisms, use of monoclonal antibodies,
hyperimmuneglobulins, cytokines, different interleukins and inter-
feron [2,3].

The 20th century witnessed remarkable discoveries, including
antimicrobial agents that changed the face of medical practice
[4]. The use of antibiotics and preventive vaccines led to a decline
in major endemics in industrialized countries and, to a lesser
extent, in developing countries. However, pathogens developed
resistance to antimicrobial agents in both developing and
developed countries (Fig. 1) [5,6].

During the last century, infectious diseases have been the
leading reason of morbidity and mortality in developing world.
Likewise, millions people have lost their lives in different cities
of Europe due to bacterial and viral infections [7]. In 1800, Edward
es and microbial resistance [7].
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Jenner reached to the first milestone in controlling infections when
he demonstrated immunization by inoculating humans with mate-
rial extracted from cowpox lesions [8]. The basis of immune-based
therapy dates back to 1890, during which Emil von Behring and
Shibasabura Kitasato introduced serum therapy and successfully
cured children infected with diphtheria using horse anti-sera [9].

Whenever pathogen gains entry into the host, immune media-
tors are released to activate the immune system. This initial
response controls the infection by stimulating phagocytic effector
cells such as macrophages and neutrophils to eliminate infectious
agents. Modulation of immune response is more reasonable
approach to control infections as compared to antimicrobial
chemotherapy [10].

Immunotherapy against infectious diseases includes modifica-
tion of antigen-specific response (e.g., by using interferons), mobi-
lization of immune response against pathogens (e.g., by using
cytokine inhibitors and cytokines) and minimization of end-
organ damage based on use of nonspecific anti-inflammatory
agents (e.g., use of steroids) (Table 1) [2].
1.1. Active immunotherapy: vaccination and its immunological
mechanism

Active immunotherapy has been proved effective against acute
infectious diseases and the efficacy depend upon the use of suit-
able target antigens, optimization of antigenic peptide interaction
with antigen presenting cells and T-cells, and concurrent blockage
of negative regulatory mechanisms which inhibit immunothera-
peutic impacts [11]. There are several different types of immune
responses evolved qualitatively to avoid infections e.g., different
subsets of T helper cells (e.g., TH1, TH2 and TH17), TFH (follicular
helper T cells) [12] that secrete IL-21 (interleukin-21) and differen-
tiates B cells to generate memory B cells [13]. In addition, memory
T cells consist of distinct populations of effector memory cells and
central memory cells both having distinct effector function along
with homing capacity [14].
Table 1
Immunotherapeutic strategies against infections.

Immunotherapy Function

Mobilization of immunity using
vaccines

Inactivated vaccines contain killed microbes th

Live attenuated vaccines contain live pathogen
Toxoid vaccines consists of pathogen’s toxin (p
Subunit vaccines contain only antigenic part in
Conjugate vaccine is a combination of poor (po
In DNA vaccination, genetic material is directly
protein antigens
Recombinant vector vaccines are produced by r
as vaccines which introduce pathogen DNA int

Modification of specific antigen-
based response

Use of antigen delivery to induce regulatory ce

Instigation of B cell tolerance
Shifting of immune response from type 1 helpe

Cytokine immunomodulation G-CSF and GM-CSF decrease the frequency and
IL-2 increases proliferative response of lympho
cytotoxic function
IFN-a improve NK-cell mediated cytotoxic func
IFN-! diminishes the severity and frequency o

T cell based approaches Engineered T cells with novel T cell receptors a
T cells are engineered to produce material such
T cells are engineered to produce an enzyme (z
Chimeric T cell receptor therapy (CAR-T) uses e
cell

Antibody based therapy Monoclonal antibodies enhance immune funct
Polyclonal antibodies recognize multiple epitop
Intravenous IgG type immunoglobulins stimula
The mammalian immune system includes innate and adaptive
components, which cooperate to protect the host against microbial
infections. Innate immunity sense microbes using pattern-
recognition receptors [15], like C-type lectin-like receptors [16],
toll-like receptors [15], cytosolic nod-like receptors [17], and
RIG-I-like receptors [18], which trigger the activation of adaptive
immune response and antimicrobial responses. The adaptive
immune system, in turn, activates innate effector mechanisms in
an antigen-specific manner. Several different subsets of function-
ally distinct dendritic cells are also present and it has now been
proved that pattern-recognition receptors and dendritic cells
determine the quality and magnitude of acquired immunity
[19,20]. Foreign agent or microbe is integrated by dendritic cells
and translated to antigen specific B and T cells to boost the
strength, persistence, and quality of the adaptive immune response
[19].
2. Passive immunotherapy

Passive immunization was introduced in 1891, when a boy with
diphtheria was injected with diphtheria antitoxin that cured him.
anti-diphtheria serum because of its favourable results got public
acceptance in all parts of Europe during 1894 [21]. Serum therapy
had been used to control bacterial infections such as Neisseria
meningitidis and Streptococcus pneumoniae since 20th century
[22] but this practice was dumped in 1940s due to toxicity associ-
ated heterologous sera whereas the recent advancements such as
development of monoclonal antibodies provide new insights for
elimination of infectious organisms [23].

Passive immunotherapy is based on administration of
immunoglobulinswhich is either combinedwith a toxic counterpart
molecule or involve adoptivemigration of an activated immune cell
effector component to act against host’s neoplasm. Cellular therapy
includes adoptive transfer of specifically sensitized cytotoxic T lym-
phocytes and nonspecifically activated LAK (lymphocyte-activated
killer) cells [24]. Passive immuno-therapies include use of
at stimulate body’s immunity

s with reduced virulence
oison) that has been made harmless but elicits immune response in host
stead of entire microbe
lysaccharides) antigen and carrier protein belonging to same pathogen
injected into living host that efficiently elicits humoral and cellular immunity to

ecombinant DNA technology and involve the use of attenuated virus or bacterium
o body cells

ll response

r T cell to type 2 helper T cell

severity of infections
cytes, enhance capacity for antibody responses, improve NK-cell mediated

tion and help in expansion of CD56dim NK cells
f infections

re infused into patients that attack and kill viral infected cells
as an antiviral RNA that control viral replication
inc finger nuclease) that blocks viral infection
ngineered receptors, which graft an arbitrary specificity onto an immune effector

ion of host and cause minimal toxicity to host or targeted tissue
es on any one antigen
te humoral immunity in host



Fig. 2. Proposed mechanisms of action of intravenous immunoglobulin (IVIg) in infectious diseases. The mode of action of IVIg in infectious diseases involves its direct
interaction with pathogens and various cellular and soluble components of the immune system [5].
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polyclonal and monoclonal antibodies and other components of
immune system such as interleukins, cytokines and interferons.
3. Intravenous immunoglobulins

Intravenous immunoglobulin therapy is being used in different
clinical trials as therapeutic or prophylactic agent for infectious
diseases and various studies have proved it a promising alternative
strategy to control infections. Intravenous immunoglobulin prepa-
rations are made up of IgG type antibodies which recruit viruses
into lymphoid organs where they are presented to B and T cells
leading to an activation of immune response [5,25] (Fig. 2).

Immunocompromised patients are more susceptible to chronic
infections and a study demonstrated that when patients with pri-
mary immunodeficiencies were treated with double amount of
immunoglobulin (two times of standard dose), a significant
decrease in severity and frequency of infection was observed
[26]. Treatment of patients of West Nile virus encephalitis with
intravenous immunoglobulins containing high titres of antibody
has been found to be effective [27]. Intravenous immunoglobulin
therapy can also clear viremia and re-establish cytokine balance
in patients suffering from acute PV-B19 infection such as chronic
fatigue syndrome. Cytomegalovirus and parvovirus B19 virus are
the cause of glomerulopathy in transplanted kidneys but introduc-
tion of intravenous immunoglobulin preparation before transplan-
tation eliminates the risk of viruses [28,29]. Intravenous
immunoglobulin prepared from individuals exposed to HPV, HIV
and HSV or any other outbreak may emerge as beneficial adjunct
therapy.
4. Monoclonal antibodies

Injection of monoclonal antibodies is another attractive
technique of passive immunotherapy that triggers recruitment of
lymphocytes and activation of complement system. Most mono-
clonal antibodies that have been developed so far are for immuno-
logical disorders and cancer treatment whereas, monoclonal
antibodies against infectious diseases are still in progress [30]. The
recently developed monoclonal antibodies against different strains
of influenza virus have been raised the possibility of mitigating
infectious epidemics [31]. The only approved monoclonal antibody
palivizumab (Synagis) is leading to development of 2nd and 3rd
generation monoclonal antibodies AstraZeneca/MedImmune
against respiratory syncytial virus infection in infants [32]. Another
study has suggested that clinical trial of monoclonal antibodies
against Hendra and Nipah viruses in animals exhibited convincing
results [33,34]. Likewise, antibody based treatment of Ebola, HIV,
and HPV virus is under clinical trials [35].
5. Polyclonal antibodies

Polyclonal antibodies are more efficient and provide better pro-
tection against infections because of their ability to target different
antigenic polymorphisms and serotypes. It provides an excellent
opportunity to ameliorate the prognosis of emerging infectious
diseases and neglected tropical diseases as well. Additionally,
polyclonal antibodies can simultaneously target variety of epitopes
and kill pathogens. Symphogen introduced effective methods to
develop antigen-specific recombinant human polyclonal antibod-
ies i.e., SymplexTM and SympressTM techniques against infectious
diseases and cancers. Sympress platform uses mammalian cell
lines that express high level of single antibody molecule to develop
reproducible and robust polyclonal antibodies.

Polyclonal antibodies have been efficaciously applied to
intoxication, envenomation and rabies. Rabbit anti-Rabies virus
Glycoprotein G polyclonal antibody (Catalog Number:
CSB-PA14899A0Rb) induces the endocytosis of virion because this
polyclonal antibody cause attachment of the virus to host cellular
receptors. This fusion triggered by acidic pH of endosome leads to
conformational changes in the glycoprotein trimer. This
transmembrane glycoprotein is the viral attachment protein that
promotes uptake of virus by infected cells, and acts as target of
the host humoral immune response to infection [36,37]. Only
two individuals developed rabies out of total 7660 Filipino
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recipients of F (ab0)2 equine rabies immunoglobulin (ERIG),
(Favirab, Sanofi Pasteur, Lyon, France). As per WHO guidelines
none of them had given post-exposure prophylaxis (PEP) strictly
[38,39]. There are limited therapeutic options available against
viruses therefore polyclonal serum therapy will very soon be
emerged as potent and effective technique against viral infections
based on several researches and clinical studies that have demon-
strated the effectiveness of animal-derived polyclonal antibody
based treatments targeting different venoms, toxins and infections
[40]. Currently, immunoglobulin therapy is targeting HPA1 (highly
pathogenic avian influenza) viruses e.g., H7N9 and H5N1 are new
targets for polyclonal F(ab0)2 immunoglobulin therapy. In mice,
in vivo proof-of-concept studies of equine polyclonal F(ab0)2 to
HPAI H5N1 (Highly pathogenic avian influenze-H5N1) have been
found to prevent infection after an intranasal HPAI H5N1 attack
[41]. According to another study, both prior (prophylaxis) or post
(therapeutic) administration of four pepsin digested immunoglob-
ulin H5N1 avian influenza equine F(ab0)2 preparations exhibited
cytopathic effect against H5N1 infected cultured MDCK
(Madin–Darby canine kidney) cells and provided protection to
mice [42]. In another study, 100% survival rate was observed in
influenza-infected-mice that was intravenously infused with high
dose 320 lg) of anti-influenza IgG [43]. No serious adverse events
were observed in phase 1 clinical trial carried out in 21–40 years
old, 16 healthy human males who were injected with polyclonal
F(ab0)2 to HPAI H5N1 [44]. Likewise, many animal based studies
have demonstrated the clinical efficacy of polyclonal antibody
therapy against various neglected tropical viral diseases. Unimmu-
nized hamsters injected with West Nile Virus-immune hamster
antisera (1 h before and 24 h after a West Nile Virus challenge)
were protected from life-threatening West Nile Virus infection
[45]. Decrease in disease and deaths were noticed when Marburg
and Ebola filoviruses challenged non-human primates were
injected with Marburg and Ebola filoviruses specific polyclonal
antibodies obtained from non-human primates who had survived
flavoviruses exposure [46]. Likewise, similar results were obtained
when Ebola infected mice, guinea pigs, and monkeys were injected
with polyclonal sera acquired from Ebola immunized mice [47,48].
Equine F (ab0)2 have been found effective in both hamsters
and mice infected with SARS-CoV infection because a significant
reduction in lung viral titres was observed compared to
controls [49].

6. Advantages of immunoglobulin therapy

i) Immunoglobulin therapy acts as broad spectrum antimi-
crobial therapy active against all classes of infectious
organisms and can be developed against any kind of
pathogen. Human body is able to generate antibodies
against all existing pathogens. Antibodies encoded by vari-
able gene elements are assembled because combination of
diverse gene elements in the germline increases the possi-
bility of antibody production against large number of anti-
gens. Induction of somatic mutations antibody genes leads
to production of more diverse, more specific and high
affinity antibodies [50].

ii) Therapeutic antibody development does not only target
extracellular pathogens it has been reported that mono-
clonal antibodies are also effective against intracellular
pathogens e.g., there are some intracellular viruses which
can be neutralized by IgA monoclonal antibodies [51].

iii) Introduction of antibodies bring about antimicrobial action
using different mechanisms such as antibody directed cellu-
lar toxicity, toxin and viral neutralization, opsonization,
obstruction of microbial attachment and complement acti-
vation [52].
iv) Pharmacokinetics of immunoglobulin isotype IgG demon-
strated it as an effective antimicrobial agent because of half
life of 20 days [53] and good tissue penetration power [54].
The half life of murine monoclonal antibodies is shorter in
humans and this usually triggers human antibody response.
Humanized monoclonal antibodies and human-mouse
chimeric antibodies are synthetic antibody preparations
made up of human antibody protein sequences that
maintain antigen binding region present on heterologous
antibody and have longer half-lives [55].

7. Adoptive immunotherapy

Adoptive immunotherapy is the extraction and ex-vivo activa-
tion of native immune cells of patients followed by intravenous
injection into human body to target infections [56]. It is an effective
and efficient technique to build up immunity against viruses. T cells
are depleted and progressively lose their function during cancer and
chronic infections therefore, effective T cell responses can curb
tumors and viral infections hence, techniques that either provide
functional T cells based on adoptive immunotherapy or restore
endogenous immune responses are being explored. CD8+T cells play
key role in cancer and viral infections whereas but their function is
supported by CD4+ T cells in addition to this, CD4+ T cells trigger
optimal B-cell responses and boost up innate immunity. Therefore,
adoptive immunoglobulin strategies based on exploitation of CD4+
T cells alone or in association with CD8+T cells, are effective against
cancer and chronic infections [57,58]. T-cell immunotherapy can be
ameliorated by following strategies:

Culture conditions for ex vivo T-cell expansion to produce T cells
with desirable phenotype. Novel types of antigen presenting cells
and cytokine combinations are able enough to produce functional
T cells of peculiar phenotypes.

i) T cells are genetically modified for generation of T cells with
high affinity towards desired antigen (by introducing chi-
meric antigen receptor along with specific T-cell receptor)
or with specific characters (for example, T cells deficient in
HIV co-receptors can be produced in HIV-infected patients).

ii) Adoptive immunotherapy can be combined with other
immunotherapies to reconstitute in vivo function as well
as expansion of the transferred T cells, to control inhibitory
signals and to prevent exhaustion of the transferred T cells
[57].

A study demonstrated that virus specific T cells produced in
response to antigen presenting cells along with unmanipulated T
cells are helpful in treatment of viral infections such as cytomega-
lovirus, HIV, Ebola virus and adenoviruses [59,60]. It is anticipated
that adoptive immunotherapies that impede inhibitory pathways
(such as PD-1 pathway) in association with adoptive T-cell therapy
will lead to the long-term maintenance of effective immune
responses to eliminate cancer and chronic infections [57].
8. Human immunodeficiency virus (HIV)

Human immunodeficiency virus (HIV-1) is lentiretrovirus that
causes acquired immuno deficiency syndrome (AIDS) and destroys
immune system by interacting with variety of different body cells.
This virus is transmitted vertically, sexually and through blood.
HIV infection is associated with progressive exhaustion of CD4+ T
cells due to their enhanced destruction and diminished production
[61]. With CD4+ T cells, HIV replication leads to cell death, syn-
cytium formation and persistent infection thus creating reservoirs
for the virus in many cells and tissues [58]. About 78 million people
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have suffered from HIV virus and 39 million have died since the
beginning of this epidemic [62]. It is a major cause of morbidity
and mortality in developing world. In 2002, the global prevalence
of HIV was 31 million which was increased to 35�3 million in
2012. About 1.5 million deaths were reported in 2013 but the inci-
dence is now decreasing due to expanded access to antiretroviral
therapy [61]. Since lastmanyyears patients ofHIVhavebeen treated
with cART (combined antiretroviral therapy) i.e., use of several
antiretroviral drugswhich suppress the replication of virus but virus
is not completely eradicated therefore, trends are now shifting
towards practice of immune based treatments. Other limitations
associated with combined antiretroviral therapy are transmission
of drug resistant HIV strains, emergence of multidrug resistance
and cART does not always restore normal CD4+ T cell counts [63].

9. Immuno-based treatment of HIV

More than 30 million people are suffering from HIV type-1, ini-
tially this condition was considered lethal whereas, the combina-
tion of immune-based therapeutics results in longer life span in
infected persons, decline viremia, limit HIV replication, inhibit dis-
ease progression, and trigger cytotoxic T lymphocyte mediated
clearance of infected cells. Human immunodeficiency virus-1
impedes activity of CD4+ T lymphocytes leading to exhaustion of
these cells and progressive immunodeficiency. Within initial three
months of infection, high concentration of antibodies is developed
against different viral proteins in HIV-1 infected patients and
recent studies unfolded that antibodies, CD8+ T cell activity, and
CD4+ helper responses lead to control of HIV virus. There are sev-
eral different immunotherapeutic approaches against HIV infection
that are currently being studied [64,65].

10. Vaccine development

There are several novel strategies that are being explored to dis-
cover preventive and therapeutic vaccines for prevention of HIV-1
infection. Current therapeutic vaccine approaches include adminis-
tration of single or multiple antigens of HIV as DNA, autologous
dendritic cells, inactivated whole HIV particle depleted of gp120
and viral vectors like poxviruses (ALVAC-HIV, vCP1433, vCP1452,
fowlpox, MVA) and adenovirus (Ad5) [66]. To date, RV144 is the
only vaccine that has shown some degree of efficacy [67]. Modest
efficacy against HIV acquisition was observed in Thai Phase III clin-
ical trial of RV144. Antibody responses against HIV-1 gp120 envel-
ope (Env) were observed in plasma obtained from HIV-1-
uninfected individuals administered with ALVAC-HIV (vCP1521)
prime and AIDSVAX B/E boost. Peptide microarray analysis from
six HIV-1 subtypes and group M consensus exhibited that vaccina-
tion triggered antibody responses to the V2 loop or second variable
of gp120 of multiple subtypes. V2 responses were further evalu-
ated by ELISA and surface plasmon resonance using linear and cyc-
lic V2 loop peptides. Antibody responses against cyclic V2 at
2 weeks postimmunization were noticed in about 97% of vacci-
nated individuals. RV144 vaccination triggered antibodies that tar-
geted a region of the second loop consisting of conserved epitopes.
Early transmission events of HIV-1 involve second loop interac-
tions and supports the evidence that in RV144 anti-V2 antibodies
may contribute to viral inhibition [68].

11. Preventive Vaccines

11.1. Initial HIV vaccines using recombinant envelope proteins

During 1980s and 1990s preventative vaccine directed against
HIV-1 infection was developed using 20 different recombinant
envelope proteins belonging to different strains, anticipating the
production of neutralizing antibodies for HIV. Two recombinant
gp120 vaccines bivalent subtype B/E and bivalent subtype B/B
were tested in phase 3 but none of these two vaccines proved effi-
cacious [69]. Both vaccines triggered production of neutralizing
and binding antibodies, but neutralizing antibodies were restricted
to the strain used in the vaccine [70], the narrow neutralizing
response is due to deletion and auto-reactivity of precursor B cells
which induce the development of broadly reactive neutralizing
antibodies [71]. Post hoc examination exhibited that individuals
carrying high concentration of binding and blocking antibodies
may develop considerable level of protection from acquisition [72].

11.2. Ad5 vector HIV vaccine

Non-efficacy of recombinant envelope vaccines shifted the
focus towards development of immune response having cross-
strain breadth. Early viral control is markedly influenced by
breadth and magnitude of early CD8+ T-cells therefore, CTL-
based vaccines or cytotoxic T lymphocyte vaccines were developed
primarily to target post-infection viremia, and prevention of HIV
acquisition was anticipated. Cytotoxic T lymphocyte responses
against HIV proteins are induced by inserting HIV genes into
recombinant viral vectors and shuttling these genes into Class I
antigen-presenting pathway [73].

Replication defective recombinant adenovirus 5 vector with
HIV-1 clade B nef/gag/pol inserts was the first T-cell vaccine that
underwent clinical efficacy trials and exhibited significant increase
in CD8+ T cell but these CD8+ immune responses targeted the vari-
able but not the conserved regions of virus. Therefore, an issue of
immune T cell breadth same as neutralizing antibody breadth
was still there [74]. However, the tolerability, safety, and efficacy
of conserved region Ad5 based vaccine has been registered under
ClinicalTrials.gov NCT01151319. Researchers designed distinctive
T-cell immunogen HIVconsv different from functionally conserved
regions of the HIV-1 proteome that encountered body’s immunity
using heterologous prime-boost combination of non-replicating
poxvirus and non-replicating simian (chimpanzee) adenovirus
ChAdV-63, modified vaccinia virus Ankara, and plasmid DNA
(ChAd63 vaccine). Administration of ChAdV63.HIVconsv combined
with other vaccines elicited high frequencies of HIV-1-specific T
cells capable of inhibiting HIV-1 replication and exhibited good tol-
erability and safety together with high immunogenicity [75].

11.3. Adenovirus 5 vector with DNA

This is another T-cell based approach in which adenovirus vec-
tor 5 is primed with DNA. To overcome T-cell and antibody breadth
problem, different strains belonging to all major HIV-1 clade were
used. The DNA vaccine (0, 1, 2 months) was a blend of six plasmids
expressing env proteins from clades A, B, and C whereas, gag, pol,
and nef from clade B followed by an adenovirus 5 vector boost dur-
ing (6th month) leading to expression of env glycoproteins from
clades A, B, and C along with gag-pol fusion protein from clade B
[76]. Clinical study demonstrated CD4+ T cells response towards
HIV-1 envelope, neutralizing antibodies and triggered antibodies
towards gp41 and HIV gp120 [77].

11.4. Pox-vector and protein vaccine combination

RV144 (2004–2009) provided sound proof of vaccine reducing
HIV acquisition exhibiting 60.5% efficacy at 1 year followed by
31.2% after 3.5 years with ALVAC-HIV (vCP1521) that is canarypox
vector prime which expresses clade E env along with clade B gag
and pro (0, 1, 3, 6 months) and protein boosts in association of
alum adjuvant, AIDS-VAX1 clades B/E gp120 (3, 6 months). V2
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region of HIV-1 is susceptible to be targeted by protective antibod-
ies associated with vaccine efficacy of the RV144 regimen [78].

11.5. Building on RV144

Immediately after demonstration of RV144 results, pox protein
public-private partnership (P5) collaborated to discover pox-
protein regimen for sub-Saharan Africa. The immunologic response
observed in people of South Africa was similar to responses
observed in Thailand.

ALVAC vector with clade C env insert was designed by P5 to
construct a bivalent clade C recombinant gp120. Currently, these
vaccines with two adjuvants ASO1B and MF591 are under clinical
trials in South African region to boost immunity. The results of
HVTN 100, phase 1/2 study, ALVAC/gp120/ are pending and sched-
uled for efficacy evaluation trial in late 2016 [79].

Efficacy trials of six candidate vaccines VAX004, VAX003, Step,
Phambili, RV144, and HVTN505 proved RV144 as the only HIV-1
vaccine trial that is effective against HIV acquisition. The antibod-
ies are produced in response to V1V2 region of gp120 specifically.
IgG1 and IgG3 subclass mediates ADCC (antibody-dependent
cell-mediated cytotoxicity) and accord protection against HIV-1
acquisition [80–82].

11.6. Therapeutic vaccines

Therapeutic vaccines are developed to ameliorate immune
response in order to ameliorate HIV infection. To date, there is
not even single therapeutic HIV vaccine that has been approved
by FDA. Instead, therapeutic vaccines directed against HIV
infections are under clinical trials to evaluate the efficacy.

11.7. Tat therapeutic HIV vaccine

The Italian National AIDS Center is developing a vaccine direc-
ted against HIV-1 Tat (transactivator of transcription) protein that
is a virulence factor and plays a significant role in HIV gene expres-
sion, progression and transmission of disease. Tat-specific antibod-
ies may prevent HIV acquisition and transmission. Phase 1 study
has proved Tat vaccination as immunogenic and safe. Phase II trial
proposed that Tat had induced restoration of CD4+ and CD8+ T cell
numbers, and memory cells. Considerable reduction in HIV-1 load
in blood was observed in response to Tat vaccine. Phase 3 trials are
being studied currently. Forty-eight long-term HIV-1 infected peo-
ple with suppressed viral loads because of antiretroviral therapy
(cART) were injected with Tat Oyi vaccine preparation. The clinical
outcome of this phase I/IIa trial showed decrease in the extent of
HIV RNA rebound after cART interruption. This study shows that
Tat vaccine protects and activates HIV-infected cell in vitro [83].
Combined treatment of Tat Oyi vaccine and cART has found to
increase CD4+ T-cell numbers. Phase III studies that has been con-
ducted in South Africa (Trial registration ClinicalTrials.gov
NCT01513135) unfolded that Tat vaccination induces cross-clade
neutralizing anti-Tat antibodies in patients with different infecting
viruses and belonging to different genetic backgrounds [84].

11.8. Adoptive T cell therapy

Adoptive T cell therapy is transfer of CD4+, CD8+ or autologous
antigen specific T lymphocyte cells to HIV infected patients [85].
HIV specific CTL (cytotoxic T lymphocyte) response plays an
important role in control of HIV infection. Researchers are finding
novel approaches to ameliorate HIV-specific cytotoxic T lympho-
cyte response in an attempt to achieve long-term viral clearance.
A research study based on hematopoietic stem progenitor cell
(HSPC) approach reported the use of protective CAR (chimeric
antigen receptor) to engineer immunity in HIV infected patients.
CAR-modified HSPCs cells (Chimeric antigen receptor modified
hematopoietic stem progenitor cell) differentiate into functional
T cells along with natural killer cells which were resistant to HIV
infection leading to cessation of HIV replication. Therefore, it has
been proved that stem cell-based gene therapy with chimeric
antigen receptor (CAR) is an effective and feasible strategy to treat
chronic HIV infection [86].

Modification of human HSPCs (hematopoietic stem progenitor
cells) with an HIV-specific CD4f CAR can differentiate HIV specific
T cells and cells of other lineages that are able to decrease viral
loads in vivo. This HSPC-based approach that use CAR has been
demonstrated safe and feasible in mice whereas, human based
multiple HSPC-based gene therapy that aims at protecting cells
from HIV infection are currently under trials [ClinicalTrials.gov
Identifiers: NCT01177059, NCT00569985, NCT01961063,
NCT01734850]. The potential toxicities and adverse events related
to the use of the CD4f CAR have not been studied yet therefore,
future research must address this subject [86]. The special features
present in CD4-10-17b CAR have made it a suitable candidate for
genetic modification of T cells from HIV-1-infected individuals.
The broad reactivity to genetically diverse HIV-1 isolates, minimal
immunogenic potential, freedom from HIV entry receptor activity,
and high potency of virus suppression all speak to the value of this
CAR design [87].

11.9. Cytokine therapy

HIV infection is associated with cytokine production. Such
cytokines influence viral replication and regulate immune system
thus, contribute towards the progression of acquired immunodefi-
ciency syndrome. Several cytokines involved in immune regulation
exert opposite effects, like some stimulate cellular immune func-
tion and others induce production of antibodies. AIDS is character-
ized by diverse disturbances and imbalances in the regulation of
cytokine expression. Different cytokines affect expression and
replication of HIV differently [88]. Production of T-helper type 1
(Th1) cytokines e.g., antiviral interferon- c, interleukin-2 (IL-2)
are decreased whereas T-helper type 2 (Th2) cytokines e.g.,
interleukin-1, IL4, IL6, IL8, IL10, tumor necrosis factor are
increased. IFN-a, IFN-b and IL-16, which inhibit HIV-1 replication
in T cells and MDM (monocyte derived macrophages), and IL-10
and IL-13, which inhibit HIV-1 in monocyte derived macrophage
act as HIV-suppressor cytokines. TNF-a, TNF-p, IL-1 and IL-6,
which trigger HIV-1 replication in MDM and T cells, macrophage-
colony stimulating factor, which stimulates HIV-1 in MDM and
IL2, IL-7 and IL-15 which provoke HIV-1 in T cells act as HIV-
inductive cytokines. IFN-c, IL-4 and granulocyte-macrophage
colony-stimulating factor act as bifunctional cytokines because of
both inhibitory and stimulatory impacts on HIV-1 infection
[89–91]. Therefore, cytokine therapy may suggest new ways to
prevent progression to AIDS. HIV-1 patients experience significant
decline in CD4+ T cells but IL-2 therapy has been shown to improve
CD4+ counts [92] the findings of this study were in contrast to pre-
vious studies which suggested that IL-2 had no supplementary
benefits in HIV-1 patients [93]. Levy et al. have also demonstrated
considerable rise in CD4 cells in HIV-1 infected individuals admin-
istered with IL-2 in combination with highly active antiretroviral
therapy. Naïve and memory CD4 cells count, natural killer cells,
lymphocyte expression of CD25 and CD28 was higher in IL-2 group
compared to controls [94]. Administration of IL-7 in HIV-1 infected
individuals led to expansion of CD4+, CD8+ T cells, and IL-7 receptor
alpha chain CD127+. rhIL-7 amplify the numbers of naïve and cen-
tral memory T cells [95]. Marked decrease in the production of
virus-induced interferon (IFN)-a [96] and interferon-a producing
cells (IPCs) has been observed in HIV patients. This study suggested
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a direct link of interferon-a producing cells (IPCs) with control of
HIV replication [97]. Phase II/III study showed lower rate of HIV
progression in 40 of 122 IFN-a vaccine recipients [98]. Another
study involving 34 patients of asymptomatic HIV infection admin-
istered with IFN-a showed decrease in HIV load. Of the 32 study
patients followed after study (range, 5–33 months), no patients
in the IFN-a group developed an AIDS compared with 5 patients
in the placebo group [99].
11.10. Monoclonal antibodies

Several researchers have characterized and isolated neutralizing
antibodies to target HIV-1 thus, introducing new ways in passive
immunization. Vaccine trials in animal models has demonstrated
that HIV-1 neutralizing antibodies are potent enough to suppress
HIV infection [100]. VRC01 is human monoclonal antibody which
targets CD4 binding site of human immunodeficiency virus gp120
[101]. Likewise, other monoclonal antibodies such as PGT121
[102], 3BNC117 [103], R1C7, A4F6, R5C4, R5F6 [104] CCR5 [103]
and 10-1074 [105] have been proved effective in suppression of
HIV infection in animal models. Monoclonal antibody A32 acts as a
potent mediator of ADCC (antibody dependent cellular toxicity)
activity and plays an important role in preventing HIV acquisition
[106]. Accumulating evidences suggest that administration of mon-
oclonal antibodies to humanized mice resulted in suppression of
viral load. Likewise, injection of cocktail of HIV-1-specific
monoclonal antibodies, aswell as the single glycan-dependentmon-
oclonal antibody PGT121 caused dramatic decline of plasma virae-
mia in rhesus monkey chronically infected with simian-human-
immuno-deficiency virus [107]. Human monoclonal antibody F105
has successfully passed through phase I clinical trials (ClinicalTri-
als.gov Identifier: NCT00001105). F105 binds with CD4 binding site
of HIV-1 gp120 and neutralizes laboratory and clinical HIV isolates
[108]. Recently another antibody 3BNC117 has been reported to
boost up humoral immunity against HIV-1 in animals and humans
[109]. Human based follow up clinical studies and the complete
evaluation of therapeutic potential of these monoclonal antibodies
is currently under way.
11.11. Dendritic cell immunotherapy

Number of dendritic cells in blood reduces in case of HIV-1
infection and this can be reversed by dendritic cell therapy [110].
Several evidences suggest that development of dendritic cell based
vaccines is a promising approach against HIV-1 infection. A signif-
icant decrease in viral load had been observed when HIV-1 infected
individuals were treated with dendritic cell based vaccination
[111]. Dendritic cell based therapy controls HIV replication by elic-
iting T-cell response [112]. Therefore, therapeutic vaccination
based on monocyte-derived dendritic cells is feasible, safe and
effective to control HIV infection [113].
11.12. Gc protein derived macrophage activating factor

Vitamin D3 binding protein or serum Gc protein acts as precur-
sor of principal macrophage activating factor (MAF). MAF precur-
sor activity or serum Gc protein is either lost or diminished in
HIV infected individuals because of deglycosylation of Gc protein
by alpha-N-acetylgalactosaminidase produced by HIV-infected
cells. Thus, in HIV infected patients macrophages with deglycosy-
lated Gc protein are inactivated and cause immunsuppression.
Infusion of GcMAF into HIV infected individuals is an effective
immunization strategy because it leads to complete elimination
of virus [114].
11.13. Human papillomaviruses (HPVs)

Human papillomaviruses (HPVs) are DNA viruses which cause
human neoplasias like warts and cancers. About 40 out of more
than 100 human papillomavirus types infect anogenital region
HPV infection is most prevalent sexually transmitted infection
[115]. The most common types worldwide are HPV-16, HPV-18,
HPV-52, HPV-31, HPV-45 and HPV-58 [116,117]. HPV can cause
number of cancers such as cervical cancer [118], oropharyngeal
cancer, anal cancer, vulval, vaginal and penile cancer [119]. There
is no drug available that directly eliminates HPV but treatments
are available for HPV associated health problems like gential warts,
cervical change, cervical cancer etc. Scientists are looking for new
opportunities to develop immune-based treatments to reduce the
HPV associated cancer upsurge.

11.14. Immuno-based treatment of HPV

Besides chemotherapy, surgery or radiation, immunotherapeu-
tic approaches and vaccines are an exciting addition to control pre-
cancerous diseases and cancer. Clinical and epidemiological data
reveal that induction of T-cell responses correlates with clearance
of HPV-associated lesions, induction of Th1- biased immune
responses are known to be crucial for immunotherapy, HPV regu-
latory proteins E6 and E7 that are targeted as viral antigens and
development of more potent Th-1 directed vaccine platform form
the basis of HPV immune-based treatment especially efficacious
vaccine development.

11.15. Vaccination

Viruses like particles (VLP) of HPV are used as vaccine directed
against HPV associated cancer by activating natural killer cells
which in association with dendritic cells induce immune response
against viral infections and tumors. In the presence of HPV-VLP,
natural killer cells increase maturation of dendritic cells by upreg-
ulating CD86, HLA-DR and IL-12p70. An increase in secretion of
IFN- c and cytotoxic activity against HPV ameliorates function of
natural killer cell. Therefore, virus-like particle vaccine has been
proved as best candidate to control HPV-associated malignancies
[120]. Food and drug administration has approved three prophy-
lactic vaccines Gardasil (quadrivalent HPV), Gardasil-9, and Cer-
varix, which are highly immunogenic and reduce the risk of HPV
infections [121]. Vaccines formulation is based on use of virus-
like particles originated from L1 proteins that resemble HPV but
cannot multiply due to absence of genetic material [122]. HPV vac-
cines are potent enough to eradicate malignant tumors and pre-
existing lesions by inducing cellular immunity directed against
HPV-infected cells which express early viral proteins like E6 and
E7 [123]. The vaccines raise the titer of serum immunoglobulin G
antibody directed against different HPV types, secreted in
cervico-vaginal region or discharged from micro-abrasions in
epithelium directed against different HPV types [124].

11.16. Gardasil

Gardasil� is human papillomavirus quadrivalent recombinant
vaccine composed of virus-like particles obtained from L1 capsid
proteins belonging to HPV type 6, 11, 16 and 18. The vaccine was
manufactured by Merck & Co and approved in 2006. This vaccine
is effective against genital warts and precancerous lesions, vaginal
pre-cancer and cancer, vulvar and cervical cancer in young women
and adolescents. Individuals are treated with intramascular injec-
tion of three dose regimen. This vaccine proved highly immuno-
genic instigating persistent and high-HPV antibody titer. Phase III
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trials has proved the efficacy of Gardasil in young women and male
and female adolescents.

11.17. Gardasil 9

Gardasil 9 is a second generation of Merck’s cervical cancer vac-
cine that has been approved by food and drug administration that
will protect against anal, vaginal, and cervical cancers. The vaccine
is effective against cancers associated with HPV types 16, 18, 31,
33, 45, 52, and 58 and genital warts associated with HPV types 6
and 11 [125]. A 3rd generation vaccine is still needed to achieve
complete protection against all HPV types which cause cervical
cancers [126,127].

11.18. Cervarix

CervarixTM manufactured by GlaxoSmithKline is bivalent L1
virus-like particle vaccine effective against HPV types 16 and 18
both responsible for 70% of all cervical cancers [128]. This vaccine
was developed by using insect cells infected with recombinant
baculovirus and an adjuvant ASO4 consisting of alum combined
with a TLR4 ligand, MPL (3-Odesacyl-40-monophosphoryl lipid A).
The efficacy trials have demonstrated that vaccines are immuno-
genic, 90.4% efficacious and increase the neutralizing antibody titer
thus providing protection against CIN2 (cervical intraepithelial
neoplasia) lesions and cancers caused by HPV16 and HPV18 [129].

11.19. Dendritic cell based vaccine

Dendritic cell based vaccination is another novel therapeutic
paradigm to cure HPV- associated cancers. Dendritic cells are recog-
nized as potent antigen presenting cells and lead to induction of T
cell responses in vitro and in vivoprovidingnewways to treat several
human malignancies. Autologous dendritic cell loaded with
HPV16/18 E7 proteins may stimulate T and B cell responses in
patients unresponsive to standard treatments. DC based vaccine is
efficacious in only those cancerpatientswhoare immunocompetent
or at early stages of disease and have low tumor burden [130,131].

11.20. Other therapeutic vaccines

Several other therapeutic cancer vaccines mainly targeting HPV
oncoproteins E6 and E7 are under clinical trials that stimulate T
cell immune response against tumor specific antigen, thereby trig-
gering the immunity to target cancer cells such as ADXS11-001
Table 2
Different forms of HPV therapeutic vaccines that are under clinical trials.

Recent Therapeutic HPV Vaccine Clinical Trials Using Different Forms of Vaccines
Bacterial vector based Lm-LLoE7 (A
Viral vector based TG4001, MVA
Protein/peptide based HPV16- SLP,
Nucleotide based pNGVL 4asig
Whole cell based DC + KLH, DC

Currently Ongoing Therapeutic HPV Vaccine Clinical Trials for Different HPV associated D
Persistent HPV Infection and Low-Grade Squamous Intraepithelial

Lesion
PDS0101, Pro

Cervical Intraepithelial Neoplasia (CIN)/High-Grade Squamous
Intraepithelial Lesion

GX-188E, pN
TVGV-1 + GP

Anal Intraepithelial Neoplasia (AIN) ISA101 (SLP-
HPV-Associated Incurable Solid Tumors ISA101 (SLP-
Head and Neck Cancer ADXS11-001
Cervical Cancer INO-3112 (V

(SLP-HPV-01

LL-LLOE7 (Listeria monocytogenes – listeriolysin O envelope 7); TG (transgene); MVA (Mo
Antigen – Cervical Intraepithelial Neoplasia); TAHPV (Tissue antigen Human Papilloma vi
(Glycosylphosphatidylinositols); INO (inovio); AGX (Agenix); HSP (heat shock protein; A
vaccine directed against HPV E7 protein to cure anal and cervical
cancer [132], DNA construct INO-9012 that triggers production of
interleukins to treat cervical cancer [133], VGX-3100 against HPV
type 16 and 18 [134], TVGV-1 vaccine against HPV associated cer-
vical pre-cancer, pNGVL4a/E7 (Detox)/HSP70 DNA vaccine provide
protection against HPV-16 cervical intraepithelial neoplasia
(Table 2) [135].

11.21. Immune modulators

Immunomodulators include both immunosuppressive and
immunostimulatory agents that trigger secretion of cytokines from
macrophages (IL-12, IFN-12, TNF- a) leading to increased Th1
response, antibody production in response to improved antigen pre-
sentation by dendritic cells, and cell-mediated immunity which is
being used clinically to cure viral infections like herpes simplex
virus, humanpapillomavirus and cancerous lesions in immunocom-
promised individuals [136]. PD-1 antibodies nivolumab (Opdivo�)
and pembrolizumab (Keytruda�) against vaginal, vulvar and
cervical cancer [137,138], anti-PD-L1 antibody durvalumab
(MEDI4736) [139] in combination with tremelimumab against six
cancer including cervical cancer and anti-CTLA-4 antibody
ipilimumab (Yervoy�) [140] against cervical cancer are under
clinical trials.

11.22. Monoclonal antibodies development against HPV associated
cancer

The development of monoclonal antibodies is an emerging ther-
apeutic strategy to cure cancer and viral infections because of low
toxicity, high specificity and activation of immune system. A study
elucidated that monoclonal antibodies 1G10.1C and 2C5.1C, AE3
and AG7 may form the basis of effective development of
immunotherapy against HPV infections [141,142]. Several other
monoclonal antibodies are under clinical trials such as bevacizumab
(Avastin�) which is humanized anti–vascular endothelial growth
factor monoclonal antibody against cervical and ovarian cancer
[143,144], HuMax�-TF-ADC [145] and IMMU-132 are antibody drug
conjugateswhich are being studied in phase I/II trial in an attempt to
cure advanced cancers including cervical cancers [146].

11.23. Cytokines and adoptive T-cell therapy

Immunotherapeutic treatment based on infusion of cytokines
and insertion of immunostimulatory genes in the tumor cell
DXS1 1–001; ADXSHPV)
E2

GL- 0810, TA-CIN, TA-CIN + TAHPV
/E7(d etox)/HSP70 + TA-HPV, GX- 188E, VGX- 3100,

iseases
Cervix,

GVL4asig/E7(detox)/ HSP70 + TA-HPV, pNGVL4aCRT/E7(detox), Pepcan + Candin,
I-0100
HPV-01; HPV16-SLP)
HPV-01; HPV16-SLP)
(Lm-LLo-E7), INO-3112 (VGX-3100 + INO-9012)
GX-3100 + INO-9012), ADXS11-001 (Lm-LLo-E7), TA-CIN + GPI-0100, ISA101
; HPV16-SLP)

dified Vaccinia Ankara); SLP (synthetic long peptide); GL (glycoprotein); TA-CIN (Tissue
rus); NGVL (National Gene Vector Laboratory); KLH (Keyhole limpet hemocyanin); GPI
DXS (advaxis); DC (dendritic cells).
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genome followed by cytokine based vaccination represents novel
approach for therapy of HPV associated cancers. Researchers have
recently proposed that tumor cells caused by HPV-16 can be genet-
ically modified with DNA encoding immunostimulatory molecules
specifically cytokines (IL-2, IL-12, GM-CSF) used for vaccination,
and impede tumor growth. In order to ameliorate the antigen pre-
sentation in tumor bearing patients, dendritic cell-based vaccines
loaded with hybrids of the dendritic and tumor cells or HPV 16
E6/E7 DNA have also been successfully employed. These encourag-
ing approaches are still being studied [147]. Another study sug-
gested that targeting HPV E6 and E7 oncoprotein with adoptive
T-cell therapy could be an efficacious strategy against
HPV-related cancers such as vagina, penis, vulva, cervical, anal,
and oropharynx [148].

11.24. Herpes simplex viruses (HSV)

Herpes simplex viruses are enveloped, double stranded DNA
viruses having two serotypes: HSV-1 infecting orofacial region
and HSV-2 in the genital region [149]. Infections caused by herpes
simplex virus are prevalent worldwide. Significant rate of neonatal
morbidity and mortality is attributed to herpes labialis caused by
HSV-1 [150] and herpes vulvovaginitis caused by HSV-2 [151].
Incidence rate of HSV infections in neonates is 1 per 3000–
20,000 live births [152]. HSV cause number of infections such as
labialis, conjunctivitis/keratitis, gingivostomatitis, herpetic
whitlow, eczema herpeticum, herpes gladiatorum, encephalitis,
balanitis, urethritis, vulvovaginitis, and external dysuria [153].
HSV infections can be treated with antiviral agents like acyclovir
[154] but drug therapy is associated with toxic side effects, emer-
gence of drug resistance strains, narrow spectrum, and drug treat-
ment is effective only during initial stages of infection [155].
People infected with HSV-1 infection are at lesser risk of acquiring
it again but they can still be infected with HSV-2 genital infection.
HSV-2 also increases the risk of HIV infection [156].

11.25. Immuno-based treatment of HSV

The immunobiology of herpes simplex virus associated infec-
tions is complicated. Both humoral and cell mediated immunity
are of paramount importance in immunologic responses against
HSV infections, due to plethora of evolutionary changes virus
evades the immune system, maintains the latency and cause
intermittent reactivation of disease. These facts limit the utility
of passive immunization to control HSV infections. Therefore, the
subject of development of immunotherapeutic strategies against
HSV infections is still being studied and need more research in
the coming episodes.

11.26. Vaccination

The development of efficacious therapeutic and prophylactic
vaccine against herpes virus infections has proven complicated
due to complex life cycle (latency) of herpes simplex and poorly
understood mechanism of immune control at primary and
recurrent stage of disease. Previous studies have described that
activated innate immunity and virus-specific T helper 1 (Th1)
cytokines (like gamma interferon) prevent recurrent disease.
Whereas, regulatory (suppressor) T cells and Th2 cytokines (e.g.,
interleukin-10 [IL-10]) down regulate this immune profile thereby,
allowing the establishment of recurrent disease and replication of
reactivated virus. Therefore, an efficacious vaccine must stimulate
Th1 immunity and be defective in Th2 cytokine production espe-
cially IL-10 [157]. Gylcoprotiens gD and gB activate CD4+ T cells
and ICP27 activate CD8+ T cells [158]. These facts form the basis
of development of herpes simplex virus type 2 (HSV-2)
glycoprotein-D-subunit vaccine with adjuvant alum and 3-O-
deacylated-monophosphoryl lipid A which induce helper T cells
Th1. The results of clinical trials phase I/II exhibited that glycopro-
tein D vaccine was efficacious against genital herpes in HSV-1 and
HSV-2 sero-negative females whereas, not effective in men and
those women who were HSV-1 sero-positive and HSV-2 sero-
neagtive [159]. Another study suggested secreted glycoprotein G
of HSV-2 as highly efficacious novel agent for development of
prophylactic vaccine to control HSV-2 associated infections [160].
In an experiment carried out in guinea pigs, recombinant HSV-1
glycoproteins gB and gD formulated with an adjuvant were used
as immunotherapeutic agents in order to control recurrent genital
herpes and resulting increase in antibody titer supported the fact
that gBgD immunotherapy could be effective against HSV associ-
ated genital infections [161].

An attenuated virus R7020 has been designed and provided
immunogenicity against infections caused by HSV-1 and HSV-2
in mice and guinea pigs [162]. However, the area of HSV vaccine
development needs further research.
11.27. Monoclonal antibodies

Though the mechanism of antibody treatment in HSV-1 or HSV-
2 infections has not completely elucidated but passive immuniza-
tion via antibodies is emerging as promising technology for con-
trolling HSV infections however, experimental study in humans
have yet to be performed [152]. Several evidences have suggested
that passively transferred serum hyperimmune may effectively
inhibit HSV-1 and HSV-2 spread and significantly reduce the
severity of infection caused by these viruses [163]. In vitro studies
have defined several mechanisms, including antibody-dependent
cell-mediated cytotoxicity whereby antibody may participate in
the destruction of virus infected cells [164].

Monoclonal antibodies HC1 and HD1 directed against HSV-1
glycoproteins gC and gD had been tested because of their ability
to passively immunize mice in order to target acute virus-
induced neurological disease and the study later on revealed that
passive immunization of monoclonal antibody in mouse decreased
the severity of disease and pathogen spread [165]. Likewise, nine
other monoclonal antibodies aiming against HPS glycoproteins
gB, gC, gD, gE had also been evaluated in mice and lead to blockage
of HSV virus dissemination [166].

Monoclonal antibody hu2c holds promise for future develop-
ment as a novel approach for the treatment of HSV infections.
Humanized monoclonal antibody mAb hu2c were administered
in mice and resulted in inhibition of cell-to-cell viral transmission
a key mechanism by which HSV-1/2 escapes humoral immune
surveillance. mAb hu2c was found to neutralize HSV fully indepen-
dent of complement or/and recruit immune effector cell in a highly
efficient manner [167,168]. These features guarantee the clinical
development of mAb hu2c for treatment of HSV infections in
drug-resistant and immunocompromised patients.
11.28. Adoptive immunotherapy

Components of innate immunity such as interferon, natural
killer cells, and macrophages provide protection against HSV infec-
tions [169] but, T cells specifically CTLs (CD8+ cytotoxic T cells) are
dominant determinants of protective immunity [170].

Fusion protein tgD-IL-2 consisting of human interleukin-2 and
truncated HSV-1 glycoprotein D has been proved as efficacious
immunotherapeutic agent that can elicit immune system against
HSV associated genital infection [171]. Another experimental
protocol demonstrated the role of dendritic cells in generation of
protective immunity [172,173].
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Adoptive transfer of virus-specific cytotoxic T lymphocytes has
proven efficacious and safe at preventing and controlling viral
infections, but there is room to explore expansion and activation
protocols utilized to generate virus-specific CTL (cytotoxic T lym-
phocyte) lines in minimum possible time [174].

11.29. Future perspectives

Successful outcomes of CAR- T cells provide strong hope for
control of infectious diseases. It is anticipated that immunizations
with promising clinical outcomes will be available for myriad of
infectious diseases and cancers. Development of polyclonal and
monoclonal antibody therapies for severe neglected tropical wide-
spread diseases is currently under investigation. Clinical data and
pre-clinical studies highlight the potential of immunotherapies
against HPV, HSV, and HIV thus, providing baseline data for future
research.

12. Conclusion

Infectious diseases are major cause of morbidity and mortality
thus, posing serious threats to lives. Drug therapy is associated
with serious consequences such as emergence of drug-resistant
strains and toxic side-effects. Therefore, trends are now shifting
towards immune-based therapies that reawaken and harness the
power of immune system to provide long-lasting protection. Ther-
apeutic vaccines, adoptive T cell therapy, gm-csf therapy, cytokine
therapy and monoclonal antibodies are being explored and getting
popular for treatment of HIV and HPV associated infections in
immunocompromised hosts. Although, the specific immunization
strategy for HSV has not yet been developed but the overall pro-
gress made by researchers has increased understanding towards
complexity of infections caused by HSV-1 and HSV-2 and described
lot of issues that can now be explored and addressed.
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