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Abstract

Infectious disease management relies on accurate characterization of disease progression

so that transmission can be prevented. Slowly progressing infectious diseases can be diffi-

cult to characterize because of a latency period between the time an individual is infected

and when they show clinical signs of disease. The introduction of Mycobacterium avium

ssp. paratuberculosis (MAP), the cause of Johne’s disease, onto a dairy farm could be

undetected by farmers for years before any animal shows clinical signs of disease. In this

time period infected animals may shed thousands of colony forming units. Parameterizing

trajectories through disease states from infection to clinical disease can help farmers to

develop control programs based on targeting individual disease state, potentially reducing

both transmission and production losses due to disease. We suspect that there are two dis-

tinct progression pathways; one where animals progress to a high-shedding disease state,

and another where animals maintain a low-level of shedding without clinical disease. We fit

continuous-time hidden Markov models to multi-year longitudinal fecal sampling data from

three US dairy farms, and estimated model parameters using a modified Baum-Welch

expectation maximization algorithm. Using posterior decoding, we observed two distinct

shedding patterns: cows that had observations associated with a high-shedding disease

state, and cows that did not. This model framework can be employed prospectively to deter-

mine which cows are likely to progress to clinical disease and may be applied to characterize

disease progression of other slowly progressing infectious diseases.

1. Introduction

Slowly progressing infectious diseases, like tuberculosis in humans and animals, HIV/AIDS in

humans, and Johne’s disease in cattle, are difficult to characterize because they are often associ-

ated with a latency period between the time an individual is infected and when they show clini-

cal signs or symptoms of disease. Treatment efficacy and transmission dynamics are

dependent on the state of infection, and understanding an individual’s infection state, and
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probability of transitioning among infectious states at the population level, can help provide

better treatment protocols and targeted epidemiologic interventions. For example, only

patients with active tuberculosis infections are likely to transmit Mycobacterium tuberculosis to

others; however, targeting latently infected individuals that have a high probability to progress

to active disease with preventative therapeutics could prevent transmission from occurring [1].

Johne’s disease is caused by Mycobacterium avium subsp. paratuberculosis (MAP) and is

characterized by a chronic granulomatous enteritis leading to diarrhea, wasting and eventually

death. Johne’s disease is considered an important production disease, especially in the dairy

industry, and is estimated to cost 200 million dollars per year in production losses and early

culling in the United States [2]. MAP has also been implicated as a possible cause or contribut-

ing factor to Crohn’s disease in humans; therefore, zoonotic MAP transmission may be rele-

vant to public health [3]. Johne’s Disease is pervasive in dairy farms in the United States. In

2007, 68 percent of dairy operations tested positive for MAP in at least one environmental

sample [4]. MAP is mainly transmitted among cattle through the fecal-oral route and animals

can become infected by eating contaminated material from their environment [5]. Calves are

more susceptible than other age groups, and often become infected either in-utero or soon

after birth; however, they may not show clinical signs of disease for 2–5 years [5–7]. MAP can

also survive for up to a year in certain environmental conditions, which could allow new infec-

tions even after an infected animal is removed from the herd [5,8]. Due to, among other rea-

sons, persistence in the environment and a long latency period before infected animals show

clinical signs, Johne’s disease is very difficult to control.

In order to effectively control Johne’s disease, it is essential to understand how the infection

progresses. It is currently hypothesized that animals in certain disease states transiently shed

MAP in their feces, and it is known that some animals shed much more MAP than others [9].

Schukken et al. observed two distinct patterns of disease progression among infected animals

[10]; animals that progressed to a high shedding disease state, and those that controlled infec-

tion. Furthermore, Mitchell et al. observed that most animals that shed MAP intermittently

never progress to a high shedding state, but those that do progress maintain a consistent high

level of shedding [11].

Johne’s disease infection dynamics have been studied extensively using compartmental and

agent-based models [12–14]; however, these models contain a large number of parameters,

and it is sometimes necessary to rely on assumptions instead of data in order to fully parame-

terize the model. In order to study Johne’s and other disease dynamics it is usually necessary

for the investigator to divide disease progression into a series of discrete states and determine

reasonable rates of movement between the states to parameterize the model. Some model

parameters can be estimated using field data, but parameters regarding transition among dis-

ease states are less obviously estimable, especially in the case of Johne’s disease, where animals

can maintain an infectious state for years without any visible signs of disease. With slowly pro-

gressing diseases like Johne’s, it may be difficult or in many animals impossible to observe

direct signs of subclinical disease states, so determining parameters for rates of transition

among disease states is non-trivial. Hidden Markov models (HMMs) offer one solution to the

problem of estimating these parameters by using unsupervised machine learning to estimate

model parameters including disease state transition rates. A validated HMM can also be used

as a diagnostic to predict disease progression outcomes in infected cows.

We constructed sequences of MAP fecal culture results from repeated samples of individual

animals sampled biannually up to 6 years from three Northeast US dairy herds, and used these

sequences to infer the underlying hidden Johne’s disease states in a HMM framework. Our

objectives were to estimate disease state and transition parameters among infected cows, and

to determine if two or more types of disease progression existed. We hypothesized that the
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most probable path through hidden states identified by posterior decoding would show two

distinct most probable state progression paths that represent separate MAP infection progres-

sion types.

2. Methods

2.1 Data description

Fecal samples were taken from all adult animals on three northeastern farms between 2004

and 2009 biannually, totaling 6530 samples from 1714 cows as part of the Regional Dairy Qual-

ity Alliance Management (RDQMA) program [15]. The overall period prevalence was 5.9%,

and fecal shedding was variable among infected cows ranging from 0 to 6360 colony forming

units (CFU). Cows were sampled between 2 and 11 times with only one cow sampled 11 times

over 5.5 years. Fecal samples from each cow were placed in four 15 ml solid medium slant

tubes, and were processed and cultured as described previously [15,16]. The sum of CFU cul-

tured from the four tubes was multiplied by 5.3 to account for dilutions, and the log base 10 of

the resulting quantity was used as the observed CFU count for model fitting. Positive samples

were defined as greater than 0 CFU in a fecal sample. Samples were taken on average 15 weeks

apart with a median of 14 weeks apart; however, sampling intervals ranged from 1 to 40 weeks.

To avoid misclassification of healthy cows as infected, we only included cows that had at least

two positive fecal culture samples out of three consecutive samples. Samples that were not

readable due to contamination with other bacterial growth or fungal growth were removed

from the analysis. After removing samples that did not meet inclusion criteria, we were left

with 129 observations. Fecal shedding patterns of seven representative cows are shown in

Fig 1.

2.2 Model description

A HMM is a probabilistic model which describes the transition through unobserved states in a

Markovian system. Although the hidden state of the system cannot be observed directly, infor-

mation about the state can be inferred indirectly through model emissions. This framework is

useful for modeling MAP infection progression because the underlying disease state is not

readily observable, but MAP shedding in feces can be easily measured and can be used in the

HMM framework as model emissions. We developed four candidate continuous time HMMs

to model MAP infection progression in dairy cows. Since samples were taken at irregular

intervals, we chose to model disease progression using a continuous time HMM framework as

opposed to a discrete time framework. In a continuous time HMM, both the hidden state at

the time a sample was taken and the number and types of transitions between hidden states

between two consecutive observations are unknown [17]. Continuous time HMMs are defined

by a vector of initial hidden state probabilities, π0 that define the probability of being in each

state at time 0, a state transition rate matrix Q that defines the rate of transition among hidden

states, and emission probability distributions, E. The emission probability distributions, which

are defined as the probability of observing a log10 CFU given an underlying hidden disease

state k, were modeled using gamma distributions, Ek~Gamma(αk,θk), where αk and θk are

gamma distribution shape and scale parameters, respectively. The probability of transitioning

from state j to state k depends on the interval of time t and is defined as Pjk(t) = eQt.
The number of true disease states is unknown, but models with very large state spaces may

not provide a useful representation of MAP infection from veterinary standpoint since as the

number of states increases the differences in disease phenotype between states may diminish,

and states without a remarkable associated change in disease phenotype do not have obvious

clinical relevance. Additionally, the potential model state space that can be explored is limited
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by our relatively low sample size of cows with MAP infection. Therefore, we chose to create a

candidate model set including models with two to five hidden states to capture clinically rele-

vant HMM structures. A graphical description of an example three hidden state model is

shown in Fig 2. In Fig 2, the state labels “0”, “1” and “2” represent disease states associated with

low, moderate, and high CFU counts, respectively.

2.3 Parameter learning

Maximum likelihood estimates for model parameters, π0, Q, α, θ, were computed using a mod-

ified Baum-Welch expectation maximization (EM) algorithm developed for continuous time

HMMs by Liu et al. [17]. We used the “Expm” method, which relies on the matrix exponential

of an auxiliary matrix A to calculate EM estimates of model parameters. The auxiliary matrix,

A ¼
Q B

0 Q

 !

; was calculated for each state i, and edge i,j. B is a square matrix with the same

dimensions of Q and has 1 in the (i,j) position and 0 elsewhere. This method was determined

to be the most robust EM algorithm of the three presented by Liu et al. At each iteration of

Expm EM, gamma shape and scale parameters were updated using the Newton-Raphson

Fig 1. MAP fecal shedding patterns from five seven cows. Shedding patterns were variable among individuals. The number of samples taken from each cow was also

variable, ranging from 2 to 11 samples. The variation in both CFU count and number of samples may be related to disease progression, as animals with high CFU counts

may be culled early due to clinical MAP infection related production losses.

https://doi.org/10.1371/journal.pone.0242683.g001
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Fig 2. Diagram of hidden Markov model 1. This diagram represents a hidden Markov model with three hidden states labeled 0, 1, and 2. The model is shown with

initial state probabilities, π0, time dependent transition probabilities, P and emissions, E, which have gamma distributions.

https://doi.org/10.1371/journal.pone.0242683.g002
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method, which is further described in the S1 File. The algorithm guarantees an increase in

model likelihood with each iteration, and was terminated when the change in likelihood was

less than 0.001. All algorithms were implemented in Python 3.7.0 using open source libraries:

Scipy [18], NumPy [19], and pandas [20].

2.4 Initial parameterization and model selection

Each model was initialized with 250 sets of parameter values drawn from uniform distribu-

tions shown in Table 1. Initial state probabilities π0 were normalized such that each set of ini-

tial state probabilities summed to 1. The fit of each model state structure was assessed using

Akaike’s information criterion (AIC) calculated as 2p−2log(L), where L is the model likelihood

and p is the number of parameters estimated in a specific model.

2.5 Bootstrap confidence intervals

The CFU shedding dataset of 129 cows was sampled with replacement to generate 1000 boot-

strap samples of the same size as the original dataset using the resample function from sklearn

[21]. Model transition and emission parameters were estimated for each sample using the ini-

tialization parameter combination that produced the lowest AIC score. 95% confidence inter-

vals were calculated for each transition and emission probability using the 2.5 and 97.5

percentiles of the parameter values generated using the bootstrap samples.

3. Results and discussion

3.1 Model likelihood and AIC

The AIC values for each model type (two, three, four, five states) is shown in Table 2.

The three state model had the lowest AIC and had the largest AIC weight so it was deter-

mined to be the best fitting model out of the four types tested to minimize information loss.

This suggests that the three state model fits the data best with our limited sample size, but it is

possible that with a larger dataset a different state structure would be preferred. For example, if

there were more consecutive samples taken for each cow over a longer period of time, there

may be stronger support for a model with a larger number of states as this dataset may contain

finer scale changes in shedding patterns that were not evident in our comparatively sparse

dataset. On the other hand, factors such as individual heterogeneity and outliers may lead AIC

to favor models with larger state spaces when smaller state spaces are more biologically realistic

[22]. Although the three state model had the lowest AIC, since AIC may favor larger state

spaces, and since both the two and three state models had AIC weights greater than zero, for

Table 1. Descriptions and initial values of parameters in three hidden state models.

Parameter Description Initial Value
p0k

Probability of starting in each hidden state k Unif(0,1)

αk Gamma distribution shape parameter for state k Unif(1,20)

θk Gamma distribution scale parameter for state k Unif(0.01, 1)

qjk Transition rate from state j to state k Unif(0.01,5)

Four hidden Markov model structures with two, three, four or five hidden states were initialized with 250 sets of

random parameter values drawn from uniform distributions. We chose parameter values for transition rates and

emission distributions that would produce reasonable state transition probabilities and gamma distributions to fit the

observed CFU values. We allowed the initial state probabilities to range from 0 to 1 reflecting our limited knowledge

on the proportion of animals in each underlying disease state.

https://doi.org/10.1371/journal.pone.0242683.t001
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the remainder of this paper will focus on results for both the two and three state models. The

initial parameter combination that produced the lowest AIC value for the two, three, four and

five state models are shown in S1 Table. Parameter estimates for the four and five state models

are shown in S2 Table.

3.2 Parameter estimates

EM estimates for two and three hidden state model parameters are shown in Table 3.

Transient distributions of the Markov chain are shown in Fig 3A. A histogram of the trans-

formed CFU data is shown in Fig 3B and fitted emission distributions for the two and three state

models are shown in Fig 3C. The CFU count data shows a large number of low CFU observations,

fewer mid-range CFU counts between 3 and 5 CFU and a larger number of observations between

5 and 9 CFU. The CFU count data are well approximated by the fitted gamma emissions, which

show higher densities for low and high CFU counts than for mid-range CFU counts.

The stationary distributions πs are calculated by solving πsQ = 0, and can be approximated

by the equilibrium distribution shown in Fig 3A, where for large t, p� Qt0 � ps. The stationary

distribution for the two state model was πs = [0.07,0.93], and for the three state model was πs =

[0.09,0.09,0.81]. For both the stationary distributions in the two and three state models, there

was a very high probability of being in the highest disease state (state 1 in the two state model

and state 2 in the three state model). Thus, the majority of cows are expected to reach a disease

state associated with high CFU shedding; however, a minority of cows are expected to have

observations associated with a low-shedding disease state.

The sojourn time before transitioning between hidden states is exponentially distributed

with parameter -qii, where qii is a diagonal element of the Q matrix. In both the two and three

state models, the probability of remaining within a state is much higher than transitioning

between states. The average sojourn time for state 0 in the two state model was 37.7 weeks, and

the average sojourn time in the three state model was 38.3 weeks for state 0 and 37.8 weeks for

state 2; therefore, on average cows remained in a low CFU-emitting disease hidden state for

about 38 weeks before transitioning to a higher CFU-emitting disease state. Unlike the two

state model, the three state model contains an intermediate state (state 1) that is associated

with a moderate level of MAP shedding. In the three state model, the transition rate from state

0 to 1 is much higher than the transition rate from state 2 to 1, and the transition rate from

state 1 to 2 is much higher than the transition rate from state 1 to 0. Similarly, in both the two

and three state models, the transition rate between lowest shedding disease states to the highest

shedding disease state was much higher that the transition rate from a high shedding disease

state to lower shedding disease states. Together, this indicates that transition from any higher

shedding state to a lower shedding state is less likely than either remaining in the current state

Table 2. Model comparison using AIC.

Model pi log(Li) AICi Rel. Li w(AIC)i
3 State 14 -95.83 219.66 1 0.993

2 State 7 -107.86 229.72 6.5 E -3 0.006

4 State 23 -106.24 258.48 3.7 E -9 3.7 E -9

5 State 34 -104.38 276.76 4.0 E -13 4.0 E -13

Rel. Li represents the relative log likelihood for model i and is calculated as exp AICmin � AICi
2

� �
where is AICmin the

minimum AIC value in the candidate set. w(AIC)i is the AIC weight for model i and is calculated as
Rel:LiP
k
Rel Lk

. pi is the

number of parameters in model i, and log(Li) is the log likelihood for model i.

https://doi.org/10.1371/journal.pone.0242683.t002
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or transitioning to a higher shedding disease state, which is consistent with the known progres-

sion of MAP infection from subclinical infection associated with low MAP shedding to clinical

Johne’s disease associated with high MAP shedding. In addition to transitioning from low

shedding to high shedding states, transition rate estimates in the three state model suggest that

it is possible to transition from state 2 to state 0, and that this transition is more likely than

transitioning from state 2 to 1. This type of transition may exist in an intermittent high shed-

ding progression pattern, where cows have observations associated with a high shedding dis-

ease state flanked by observations associated with a low shedding disease state; however, this

pattern is only clearly demonstrated by one cow, C_106, shown in Fig 4B, where between 50

and 65 weeks there is a transition from state 2 to state 0.

The maximum posterior probabilities of a cow being in a particular disease state at each

sampling time were constructed to visualize progression patterns of individual cows, and these

individual progression patterns are shown in Fig 4A. The observed and predicted log(CFU)

MAP values for representative cows is shown in Fig 4B. The predicted log(CFU) MAP values

were generated by taking 1000 random samples from the fitted gamma emission distributions

Table 3. Transition and emission probability estimates.

Parameter Description Estimate 95% CI
Two state models

π0 Probability of starting in state 0 0.45 (0.30, 0.64)

α0 Gamma distribution shape parameter for state 0 17.56 (4.81, 26.33)

α1 Gamma distribution shape parameter for state 1 17.86 (13.86, 184.37)

θ0 Gamma distribution scale parameter for state 0 0.14 (0.09, 0.82)

θ1 Gamma distribution scale parameter for state 1 0.39 (0.04, 0.48)

α0θ0 Gamma distribution mean for state 0 2.44 (2.30, 3.95)

α1θ1 Gamma distribution mean for state 1 6.87 (6.49, 8.03)

q01 Transition rate from state 0 to 1 0.03 (0.01, 2.90)

q10 Transition rate from state 1 to 0 2.00e-3 (1.22e-07, 1.02)

Three state models

π0 Probability of starting in state 0 0.43 (0.29, 0.62)

π1 Probability of starting in state 1 0.21 (4.11e-36, 0.39)

α0 Gamma distribution shape parameter for state 0 19.41 (4.79, 30.07)

α1 Gamma distribution shape parameter for state 1 16.24 (12.29, 15307.72)

α2 Gamma distribution shape parameter for state 2 173.20 (36.00, 239.35)

θ0 Gamma distribution scale parameter for state 0 0.12 (0.08, 0.78)

θ1 Gamma distribution scale parameter for state 1 0.35 (3.27e-4,0.39)

θ2 Gamma distribution scale parameter for state 2 0.05 (0.03, 0.20)

α0θ0 Gamma distribution mean for state 0 2.40 (2.17, 3.75)

α1θ1 Gamma distribution mean for state 1 5.64 (3.83, 6.18)

α2θ2 Gamma distribution mean for state 2 7.80 (7.14, 8.12)

q01 Transition rate from state 0 to 1 0.03 (0.01, 0.98)

q02 Transition rate from state 0 to 2 1.13e-40 (1.89e-46, 0.48)

q10 Transition rate from state 1 to 0 4.65e-39 (1.86e-131, 1.46)

q12 Transition rate from state 1 to 2 0.03 (0.02, 6.15)

q20 Transition rate from state 2 to 0 3.00e-3 (5.12e-143, 0.60)

q21 Transition rate from state 2 to 1 1.50e-06 (1.50e-8, 1.49)

Parameter estimates for the two and three hidden disease models were generated using the modified Baum-Welch Expectation Maximization algorithm and bootstrap

confidence intervals, using initial values in S1 Table.

https://doi.org/10.1371/journal.pone.0242683.t003
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from the state with the highest posterior probability for each observation. The majority of the

predicted log(MAP) 10–90 percentiles overlapped the observed log(MAP) values; however, the

three state model 10–90 percentile range predictions were narrower and overlapped observed

values more often than the two state model predictions indicating that the three state model fit

the data better, especially for intermediate log(CFU) values.

In both the two and three state model structures, the majority of cows had increasing fecal

CFU counts over the sampling period; however, a small group of cows maintained a low CFU

count. This group, labeled as having an observation at the last sampling interval in the lowest

disease state in Fig 4A, represents the proportion of cows with consecutive low CFU counts

that did not progress to a high-shedding disease state. The stationary distributions of the Mar-

kov chains and the differential posterior decoded patterns demonstrate that there are at least

two types of MAP infection progression patterns, where most cows progress to a disease state

associated with higher MAP shedding in both the two and three state models. These “progres-

sors” shed higher MAP loads over the course of their infection than “non-progressors” that

remain in lower CFU-emitting disease states. This suggests that there may be a minority of

infected cattle that do not shed large amounts of MAP, and thus may play a smaller role in the

transmission chain within a farm. If these animals are high producers, it may be reasonable to

keep them on the farm despite their positive MAP infection status.

Fig 3. Transient distributions and emission distributions in two and three hidden state models. The transient distribution for each Markov chain was calculated

for time t = 0,..,300 weeks (A). Fitted emission distributions are shown in (C), and the observed data are shown in grey (B). The number of random samples used to

create each plotted state emission distribution was proportional to the stationary distribution value for that hidden state.

https://doi.org/10.1371/journal.pone.0242683.g003
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3.3 Potential factors related to disease progression path

Our study provides additional evidence to support that at least two progression patterns exist

among cows infected with MAP. Previous studies have suggested that age at time of infection

plays a role in disease progression type [11]; however, we were not able to determine the age at

the time of infection since all animals were infected naturally, and we only had samples from

adult animals. There is also evidence that host immune factors are related to Johne’s disease

progression in cattle and other species. De Silva et al. found that high fecal MAP DNA quantity

and lower interferon gamma response early in life were positively associated with progressing

to clinical disease in sheep, suggesting that early immune response may play a role in disease

progression path [23]. Koets et al. found that cows with mutations in the Toll-like receptor 2

gene may show an increased macrophage activity, increased T cell activation and reduced sus-

ceptibility to MAP infection [24]. Future research incorporating disease path progression

using HMM and immune monitoring could lead to breeding cattle that are resistant to pro-

gression to the state of high shedding.

3.4 Future directions and conclusions

Mathematical modeling has been an important tool to study Johne’s disease control due to the

complex nature of the slowly progressing disease dynamics and farm dynamics. Some previous

modeling studies have included non-progressing and progressing patterns through discrete

disease states [13,25]; however no study has estimated probabilities of transition among those

disease states, or the probability of shedding CFU count given membership in a specific disease

state. The addition of state transition probabilities from our model can improve the accuracy

of predicted progression patterns in mathematical models, and the addition of emission proba-

bility estimates to simulation models can more accurately model disease transmission dynam-

ics. In addition to the utility of our model estimates in simulation studies, our HMM can also

be used for disease progression path prediction on infected farms. After validation in an exter-

nal population, the model can be incorporated into Johne’s disease control programs to predict

which progression paths are more likely given a series of fecal culture samples from individual

cows. With this knowledge, and with knowledge from future simulation studies that take

advantage of a multi-progression path disease structure, farmers can make more informed

decisions on which animals to cull depending on their predicted disease paths.

The proposed model includes simplifying assumptions that do not fully characterize the

complex nature of disease progression. One such simplification is creating discrete disease

states and fecal shedding states, where in reality disease progression is a continuous process

through many possible disease states. Our ability to resolve fine-scale differences between dis-

ease states is limited by the intervals between samples, and by the number of samples taken

from each cow. It is possible that including covariates such as milk production data or sam-

pling cows more frequently and over a longer period of time could provide a more accurate

description of disease progression. Our analysis may also underestimate the true prevalence of

MAP infected cows at each sampling interval because some positive animals may not have

been identified using fecal culture. Other diagnostic tests exist relying on serological data, but

Fig 4. Progression patterns through disease states. Progression patterns of individual cows through disease states estimated using

posterior decoding are shown for both the two state and the three state models (A). The color of the line indicates the state with the highest

posterior probability at the last observation. The lines were jittered vertically so that overlapping lines could be distinguished. The empirical

and predicted log(CFU) MAP value from seven representative cows shows variability in fecal shedding over the sampling period, with some

cows shedding very high CFU counts over the sampling period and others maintaining a lower CFU count (B) The median, and 10–90

percentile range for the predicted log(CFU) distributions are shown as points and bars, respectively. The predicted CFU values are colored

according to the fitted state emission distribution for each sample. The empirical log(MAP) CFU counts are shown in black.

https://doi.org/10.1371/journal.pone.0242683.g004

PLOS ONE Characterizing infectious disease progression using hidden Markov models

PLOS ONE | https://doi.org/10.1371/journal.pone.0242683 November 20, 2020 11 / 14

https://doi.org/10.1371/journal.pone.0242683.g004
https://doi.org/10.1371/journal.pone.0242683


fecal culture may be the most reliable marker for disease progression [26]. Another potential

limitation is that expectation maximization may identify local maxima, and may not find

global maxima; however, initializing the model with a range of parameter values allowed us to

explore a variety of potential maxima. Additionally, our analysis may be influenced by survival

bias because cows with more advanced MAP infection may produce less milk than cows with

subclinical infection, which results in higher culling rates in lower producing cows. This could

result in an underrepresentation of severe cases with higher MAP CFU counts than would be

expected if no culling decisions were related to MAP infection stage. Although we expect this

survival bias to reduce the expected sojourn time of the hidden states associated with higher

CFU counts, we believe our data are representative of MAP infection patterns on typical dairy

farms that make culling decisions based on milk production statistics. Lastly, the parameter

estimates generated by the model reflect progression patterns among cows included in our

study, and the model needs to be validated in an external population to determine if the pro-

gression patterns are true of all infected animals.

Johne’s disease is difficult to control due to a number of factors including its slow progres-

sion and is extremely difficult to eliminate from a farm due to environmental persistence. We

determined that there are at least two distinct progressing patterns, non-progressing and pro-

gressing, among infected animals in the three herds studied. Non-progressors are likely to

have low fecal MAP CFU counts associated with a low-shedding disease state, whereas pro-

gressors are more likely to transition from low to high disease state, which is associated with a

high (> 600) CFU count. Parameters from this model can be used to inform disease simulation

models to test control strategies that include methods targeted at managing progressors. After

model validation, this model can also be used on infected farms to predict future disease states

after a relatively small number of observed fecal culture counts. This modeling framework can

be used to classify progression in other slowly progressing infectious diseases.
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Project administration: Yrjö T. Gröhn.
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