
7:5 673–680A C G van Baar et al. Duodenal L cell density in 
metabolic syndrome

RESEARCH

Duodenal L cell density correlates with features 
of metabolic syndrome and plasma metabolites
Annieke C G van Baar1, Andrei Prodan2, Camilla D Wahlgren3, Steen S Poulsen4,5, Filip K Knop3,5,6, 
Albert K Groen2,7, Jacques J Bergman1, Max Nieuwdorp2,8,9 and Evgeni Levin2,10

1Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, the Netherlands
2Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
3Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
4Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
5Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 
Copenhagen, Denmark
6Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
7Department of Laboratory Medicine, University of Groningen, University Medical Center, Groningen, the Netherlands
8Department of Internal Medicine, VUMC Free University, Amsterdam, the Netherlands
9Wallenberg Laboratory, Sahlgrenska Hospital, University of Gothenburg, Gothenburg, Sweden
10Horaizon BV, Delft, the Netherlands

Correspondence should be addressed to A C G van Baar: a.c.vanbaar@amc.nl

Abstract

Background: Enteroendocrine cells are essential for the regulation of glucose 

metabolism, but it is unknown whether they are associated with clinical features of 

metabolic syndrome (MetS) and fasting plasma metabolites.

Objective: We aimed to identify fasting plasma metabolites that associate with duodenal 

L cell, K cell and delta cell densities in subjects with MetS with ranging levels of insulin 

resistance.

Research design and methods: In this cross-sectional study, we evaluated L, K and delta 

cell density in duodenal biopsies from treatment-naïve males with MetS using machine-

learning methodology.

Results: We identified specific clinical biomarkers and plasma metabolites associated 

with L cell and delta cell density. L cell density was associated with increased plasma 

metabolite levels including symmetrical dimethylarginine, 3-aminoisobutyric acid, 

kynurenine and glycine. In turn, these L cell-linked fasting plasma metabolites correlated 

with clinical features of MetS.

Conclusions: Our results indicate a link between duodenal L cells, plasma metabolites 

and clinical characteristics of MetS. We conclude that duodenal L cells associate 

with plasma metabolites that have been implicated in human glucose metabolism 

homeostasis. Disentangling the causal relation between L cells and these metabolites 

might help to improve the (small intestinal-driven) pathophysiology behind insulin 

resistance in human obesity.

Introduction

The small intestinal mucosa orchestrates a complex 
response to a range of internal and external stimuli. A 
pivotal role is played by enteroendocrine cells, whose 

dysfunction has been linked to metabolic diseases 
such as obesity, metabolic syndrome (MetS) and type 2 
diabetes (1). The gut incretin hormones, glucagon-like 
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peptide-1 (GLP-1) and glucose-dependent insulinotropic 
polypeptide (GIP), produced by enteroendocrine L cells 
and K cells, respectively, are intimately involved in the 
regulation of glucose homeostasis (2). The early phase of 
postprandial GLP-1 secretion is likely mediated by the 
duodenal L cell population (3, 4). GLP-1 has an important 
glucoregulatory function and, notably, the incretin effect 
is reduced in subjects with type 2 diabetes (5). Rerouting 
of nutrients to L cell-rich parts of the gastrointestinal 
tract, as seen after gastric bypass surgery, enhances the 
postprandial GLP-1 responses (6), which in turn – like 
exogenous administration of GLP-1 receptor agonists (7) 
– improves glucose tolerance dramatically. L cells have 
a predominant location in the ileum but are present 
throughout the small intestine, whereas K cells are 
primarily located in the duodenum and proximal jejunum 
(8). On the other hand, somatostatin is produced by delta 
cells (D cells) in the gastrointestinal tract. Somatostatin 
reduces gastric acid production and slows down the 
digestive process by suppressing the release of GIP, insulin 
and glucagon. To date, it is not clear whether and how the 
densities of L, K and D cells, respectively, are involved in 
the regulation of MetS features.

In this cross-sectional study, we aimed to identify 
plasma metabolites that associate with duodenal L 
cell, K cell and D cell densities in 38 subjects with 
MetS. To this end, we used recently published state-
of-the-art statistical machine-learning methodology 
using an adapted version of the elastic net algorithm 
(9), specifically tailored for identification of the most 
relevant metabolite biomarkers (10).

Materials and methods

Subjects

We included 38 treatment-naïve obese male subjects 
with MetS (defined as ≥3 out of 5 National Cholesterol 
Education Program criteria for MetS: fasting plasma 
glucose ≥5.6 mmol/L; triglycerides ≥1.7 mmol/L; waist 
circumference >102 cm; high-density cholesterol 
<1.03 mmol/L and blood pressure ≥130/85 mmHg). 
Potential subjects who had a history of cholecystectomy, 
used a proton pump inhibitor, probiotics or antibiotics in 
the past 3 months were excluded. The study was approved 
by the Medical Ethical Committee of the Academic 
Medical Center Amsterdam in accordance with the 
Declaration of Helsinki. Written informed consent was 
obtained from all subjects preceding the screening visit 
to assess eligibility. During the screening visit, physical 

examination was performed to assess height, body weight, 
waist and hip circumference and blood pressure. Blood 
was analyzed for hematology parameters, inflammatory 
markers, liver and kidney function, enzymes, lipids, short-
chain fatty acids, gut hormones, glycemic parameters and 
glucose regulatory hormones. In eligible subjects, a mixed 
meal test was conducted and on a separate day, a gastro-
duodenoscopy was performed where duodenal biopsies 
were taken. These assessments were performed after an 
overnight fast.

Mixed meal tolerance test and metabolites

On the morning of admittance, a catheter was inserted 
into a forearm vein to obtain blood samples during the 
mixed meal tolerance test. A baseline (fasting) blood 
sample was taken first. Then, subjects ingested a liquid 
meal containing 616 kcal/2.6 MJ, containing 61% fat, 
33% carbohydrate and protein 6% (11). Blood was 
sampled for postprandial metabolism at every 30 min 
for 4 h. These samples were analyzed for glucose, total 
GLP-1, GIP, peptide YY (PYY), primary and secondary 
bile acids and triglycerides. The area under the curve 
and incremental area under the curve were calculated 
for these parameters for up to 4 h after ingestion of 
the standardized meal. At baseline, plasma metabolites 
were determined by liquid chromatography–mass 
spectrometry for a panel of 96 metabolites containing 
either amines, oxidative stressors or lipids as previously 
described (9, 12, 13, 14).

Duodenal biopsy samples

A gastroenterologist at the Academic Medical Center 
Amsterdam performed a gastro-duodenoscopy to obtain 
postpapillary duodenal mucosal samples using a biopsy 
forceps. Biopsy material was immediately fixed in 4% 
buffered formaldehyde and immersed in this fixative for 
at least 18 h. After fixation the tissues were embedded 
in paraffin. These samples were analyzed for histology 
to exclude structural abnormalities or pathology of the 
duodenal mucosa. The samples were cut in to sections 
of 5 µm and dewaxed through xylene, alcohol and tap 
water. To retrieve antigens, sections were placed in a 
10 mM citrate buffer of pH 6 and boiled in a microwave 
oven for 15 min. Next, 10-min preincubation in 
2% bovine serum albumin was performed ahead of 
overnight incubation at 4°C with a primary antibody. 
The following antibodies (mentioned in parentheses) 
were used for GLP-1 (GLPa, 1F5, 6-2-2006, ‘in-house’ 
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mouse monoclonal, diluted 1:1500), GIP ((1-30)NH2 
(95234-3), 10-4-96 ‘in-house’, rabbit polyclonal, diluted 
1:50,000) and somatostatin (somatostatin (1749-6), 
rabbit, diluted 1:30,000). The sections were incubated for 
40 min with a second layer of antibodies to amplify the 
reaction. Biotinylated secondary immunoglobulins were 
used (goat anti-rabbit: BA-1000 (Vector Laboratories, 
Burlingame, CA, USA) for GIP and somatostatin and 
horse anti-mouse: BA-2000 (Vector Laboratories) for 
GLP-1; all diluted 1:200). Next, hydrogenperoxide 3% 
was added to block endogenous peroxidase. The third 
layer consists of a preformed avidin and biotinylated 
horseradish peroxidase macromolecular complex 
(Vector Laboratories, code nr. PK-4000) and was 
incubated for 30 min. The reaction was developed by the 
use of 3.3-diaminobenzidine (KEM-EN-TEC Diagnostics, 
Taastrup, Denmark, cat. no. 4170) for 15 min, followed 
by 2-min incubation in 0.5% copper sulfate (Merck, art. 
no. 2790) diluted in Tris buffer 0.05% with Tween 20 
(DAKO, S1966). Finally, counterstaining with Mayers 
Hemalum (Merck) was performed.

The distribution of enteroendocrine cells was 
evaluated from biopsy slide sections based on 
immunohistochemical staining (Fig.  1). Digital images 
of biopsy slides were obtained using Aperio ScanScope 
scanner with a 20× objective. The newCAST system 
(Visiopharm, Hørsholm, Denmark) was used to estimate 
enteroendocrine cell density within the complete 
individual biopsy slide sections containing both villi and 
crypts. The size of epithelium and total biopsy area were 
obtained using a prespecified grid and point-counting 
technique; the number of + points ‘hitting’ a structure of 
interest was multiplied with the area per + point yielding 
the total area. Next, the number of all immunopositive 
(stained) cells within the epithelium was counted and 
divided by the size of the epithelium, thus providing an 
estimation of cell density.

Statistical analysis

SPSS, version 23 was used to summarize the baseline 
characteristics of both the subjects and to describe the 
duodenal biopsies. Continuous variables are summarized 
utilizing descriptive statistics. An elastic net regularized 
regression model (15) with stability selection (16) was 
implemented in Python 2.7 (www.python.org) as a 
feature selection tool. All data (predictor features as 
well as the predicted variable) were scaled to zero mean 
and unit variance. To train each model, the two hyper-
parameters (the alpha – the size of the regularization 
penalty and the L1 ratio – the ratio of L1-norm/L2-norm 
in the model penalty) were optimized using a 5-fold cross-
validation procedure on a subset comprising 80% of the 
data. The model was then tested on the remaining 20% 
of the data not used in the training. This procedure was 
repeated 100 times per analysis, each time using different 
random splitting of the data into training and test subsets. 
The stability of each feature was calculated as the number 
of times (out of 100) the respective feature was kept by 
the model (i.e. the number of times out of 100 runs that 
the feature had a non-zero regression coefficient. See the 
architecture of the elastic net model with stability selection 
workflow in Fig. 2). For each analysis, the top four features 
with the highest stabilities were selected, providing their 
stability coefficient was higher than a preset threshold. 
Stability thresholds were 60% for models using baseline 
metabolites to predict L cell/K cell/D cell density 
(‘primary models’) and 33% for models using fasting 
plasma measurements and other clinical measurements 
to predict L cell-linked metabolites (‘secondary models’). 
Permutation testing (1000 permutations) (17) was 
performed to assess the significance of the link of the 
selected feature/feature set with the respective predicted 
variable. Permutation testing was performed by rerunning 
the model with only the selected features on a random 

Figure 1
Immunopositive cells stained for (A) GIP (K cells), (B) GLP-1 (L cells) and (C) somatostatin (D cells). GIP, glucose-dependent insulinotropic polypeptide; 
GLP-1, glucagon-like peptide-1. Scale bar included in each panel separately.
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train/test data split, and comparing the resulting (true) 
model R2 with the (permuted) model R2’s of 1000 models 
trained and tested on the same train/test data subsets, 
with the same hyperparameter ranges as the real model, 
but with randomly shuffled labels of the predicted variable 
prior to training. For selected features, the Spearman 
correlation was calculated between the respective feature 
and its predicted variable. The detailed architecture of 
the elastic net model with stability selection workflow is 
schematically displayed in Fig. 2.

Results

In total, 38 male MetS subjects were included from our 
previously published study (9) in which we collected 
duodenal biopsies. All biopsies showed normal histology. 
Baseline characteristics are shown in Table 1. On average, 
the mean epithelial area of the duodenal biopsies was 
0.66 ± 0.30 mm2 and the total area of the biopsies was 
1.65 ± 0.63 mm2. Mean cell density of K, L and D cells are 
shown in Table 2. Results of the mixed meal tolerance test 
(glucose, GLP-1, GIP and PYY) can be appreciated from 
Supplementary Fig. 1 (see section on supplementary data 
given at the end of this article).

Upon multivariate modeling using the elastic net 
model, we found that duodenal L cell density was 
associated with increased fasting plasma metabolite 
levels of symmetrical dimethylarginine (SDMA), 

Figure 2
Elastic net flowchart.

Table 1 Subject baseline characteristics.

 
 
Subject characteristics

 
 

Mean

 
 

s.d.

 
 

Median

Inter 
quartile 
range

Age (years) 54 7 54 8
BMI (kg/m2) 35 3.6 34.2 5.2
Waist circumference (cm) 121 9 120 14
Systolic blood pressure 
(mmHg)

145 18 142 23

Diastolic blood pressure 
(mmHg)

90 12 91 18

HbA1c (mmol/mol) 40 7 40 7
HbA1c (%) 5.8 0.6 5.8 0.6
Fasting glucose (mmol/L) 5.9 0.9 5.6 0.9
Fasting insulin (pmol/L) 121 48 117 46
Total cholesterol (mmol/L) 5.65 1.08 5.48 2.07
HDL cholesterol (mmol/L) 1.15 0.26 1.06 0.36
LDL cholesterol (mmol/L) 3.88 0.94 3.80 1.75
Triglycerides (mmol/L) 1.45 0.65 1.25 0.69
HOMA-IR 4.53 1.95 4.36 2.18

BMI, body mass index; HbA1c, glycated hemoglobin A1c; HDL, high-
density lipoprotein; HOMA-IR, homeostatic model assessment-insulin 
resistance; LDL, low-density lipoprotein.
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3-aminoisobutyric acid (BAIBA), kynurenine and glycine 
(model R2 = 0.294, P = 0.017). The plasma metabolite 
SDMA correlated most significantly with L cell density 
(stability 94%) followed by BAIBA (stability 78%). These 
plasma metabolites were also significantly associated 

with the L cell density individually (Fig. 3). We did not 
find a significant direct correlation between duodenal 
L cell density and postprandial GLP-1 levels or clinical 
MetS features. D cells were linked to fasting BAIBA levels 
(Spearman correlation 0.38, P = 0.0499, stability 62%). In 
contrast, we found no associations between duodenal K 
cell density and circulating metabolites.

We subsequently divided our study subjects based on 
duodenal L cell density tertiles and found that indeed the 
upper tertile displayed the strongest correlation with the 
abovementioned metabolites (Fig. 3).

We then studied the relation between the discovered 
biomarker plasma metabolites (SDMA, BAIBA, kynurenine 
and glycine) and duodenal incretin-producing cells and 
clinical markers. SDMA correlated significantly with 
plasma creatinine levels (model R2 = 0.224, P = 0.019). 
We found a negative correlation between kynurenine 

Table 2 Characteristics duodenal biopsies.

 
Duodenal biopsy 
characteristics

 
 

Mean

 
 

s.d.

 
 

Median

Inter 
quartile 
range

Length (mm) 3.47 0.84 3.30 1.08
Area epithelium (mm2) 0.66 0.30 0.50 0.42
Total area biopsy (mm2) 1.65 0.63 1.60 1.01
L cell density (cells/mm2 
epithelium)

10 8 10 13

K cell density (cells/mm2 
epithelium)

57 26 56 34

D cell density (cells/mm2 
epithelium)

60 35 55 27 

Figure 3
L cell-linked metabolites. Scatterplots with L cell density (cells/mm2 epithelium) on x-axis and metabolite quantification on y-axis with depicted below 
the boxplots with classification by L cell density tertiles and metabolite quantification on y-axis.
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and glucagon and glycated hemoglobin (HbA1c), but 
a positive correlation with kynurenine and creatinine 
(overall model R2 = 0.353, P = 0.004). Glycine was 
negatively associated with hemoglobin, butyrate and 
waist–hip ratio. The postprandial GLP-1 response 
(incremental area under the curve) correlated with 
glycine with 85% stability (model R2 = 0.514, P = 0.024). 
We found no significant correlation with BAIBA and 
clinical characteristics. These links are schematically 
represented in Fig. 4. Except GLP-1, we found no other 
links between postprandial hormone levels and the 
discovered biomarker plasma metabolites.

Discussion

In this study, we show that enteroendocrine cell density 
in the epithelium of the duodenal mucosal varies between 
subjects with MetS and associates with specific fasting 
plasma metabolites and markers of glucose homeostasis. 
In turn, L cell-linked metabolites correlate with clinical 
features of MetS in our study population. Despite being 
much more numerous in the duodenum, we found 
only a single metabolite correlating with D cells and 
no correlation between K cells and plasma metabolites. 
Analysis describing duodenal L, K and D cell density 
indices and correlating these to circulating metabolites 

and features of MetS have never been published before 
to our knowledge. Our findings indicate a link between 
duodenal L cells and metabolites and clinical features of 
MetS. We discover that SDMA, BAIBA, kynurenine and 
glycine together are linked to L cell density, as shown 
by rigorous multivariate analysis of the data. Below, we 
hypothesize on mechanisms relating L cell density to 
the observed clinical and metabolite parameters in MetS 
(links in Fig. 4).

L cell density correlated strongest with SDMA. This 
metabolite was reported to decrease in subjects with poor 
glycemic control (18). In our study, we found a positive 
correlation between SDMA and duodenal L cell density, 
which indicates that both SDMA and duodenal L cell 
density increase in subjects with improved glycemic 
control. SDMA is eliminated via the kidneys (18), which 
explains the correlation with plasma creatinine levels 
observed in our study.

Similarly to SDMA, BAIBA is also associated with 
improved glycemic control since BAIBA administration 
improves glucose tolerance (19). We found higher fasting 
plasma levels of BAIBA in subjects with higher L cell and 
D cell density but, in contrast to earlier reports, we found 
no association between clinical features of MetS and 
BAIBA levels.

Circulating glycine levels are inversely associated with 
type 2 diabetes risk (19) and plasma glycine levels rise 
with improved glucose homeostasis (20). As in the case 
of SDMA and BAIBA, subjects with high glycine levels are 
metabolically healthier than subjects in which levels of 
this metabolite are low. Since SDMA, BAIBA and glycine 
correlated with L cell density, a higher L cell density may 
be associated with ameliorated glycemic control. At the 
same time, the hypothetical possibility of dysfunctional L 
cells cannot be ignored.

We found a negative association between glycine 
and hemoglobin and waist–hip ratio. Subjects with type 
2 diabetes and MetS have higher hemoglobin levels 
due to increased iron absorption (21). Higher L cell 
density and higher glycine levels indicate a healthier 
phenotype, supported by lower hemoglobin levels and 
lower waist–hip ratio. The postprandial GLP-1 response 
was linked to glycine, which in turn correlated with L 
cell density. This finding supports the importance of L 
cells, especially in subjects with MetS. Interestingly, we 
found a negative correlation between plasma glycine 
and butyrate levels. Plasma butyrate levels are usually 
decreased in MetS subjects due to a lower amount of 
intestinal butyrate production (22). Since the L cell 
density-linked metabolite glycine is reported to be 

Figure 4
Correlation network with L cells (green), clinical MetS characteristics 
(pink) and plasma metabolites (blue). Red lines indicate a negative 
correlation between the two connecting variables. Green lines indicate a 
positive correlation. BAIBA, 3-aminoisobutyric acid; SDMA, symmetrical 
dimethylarginine; iAUC, incremental area under the curve; GLP-1, 
glucagon-like peptide-1; HbA1c, glycated hemoglobin A1c.
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higher in subjects with improved glucose homeostasis, 
we suggest that the duodenal L cell density increases 
to compensate for MetS metabolic impairment, as 
reflected by a decreased butyrate level. This might in 
turn cause a rise in SDMA, BAIBA and glycine levels, the 
aforementioned markers of improved glycemic control. 
We did not find direct links between L cell density and 
postprandial GLP-1 levels or L cell density and clinical 
MetS characteristics. This is possibly attributable to the 
relatively small and homogeneous study population 
and the cross-sectional nature of this study. Although 
we did not demonstrate such links with L cell density 
in our cross-sectional study, it is still possible that L cell 
density increases following deterioration of MetS, which 
can in turn improve glycemic control. However, such a 
series of events can only be detected by taking multiple 
duodenal biopsies in the course of deterioration (or 
improvement) of MetS.

Kynurenine was previously found to be increased in 
subjects with obesity and type 2 diabetes. Kynurenine 
overproduction is induced by chronic inflammation, one 
of the mechanisms promoting development of type 2 
diabetes (23). We found a positive correlation between 
duodenal L cell density and kynurenine. Proliferation of 
L cells may be a physiological response to compensate for 
the disadvantageous effects of chronic inflammation, as 
indicated by the correlation between L cell density and 
kynurenine levels in our study. The negative correlation 
between kynurenine and HbA1c and glucagon in this 
study can be due to a kynurenine-driven induction of 
L cell proliferation, which could potentially improve 
glycemic control (23). Moreover, it would be interesting 
to be able to increase the duodenal L cell density or to 
amplify L cell activation (4) in vivo (e.g. using organoids) 
with the aim of improving glucose regulation. This might 
also include procedures aimed at specific activation of the 
duodenal mucosa (24). Such a procedure would allow us 
to investigate the causal relationship between duodenal 
L, K and D cell density, metabolites and improvement or 
deterioration of MetS and type 2 diabetes. Until then, we 
conclude that small intestinal incretin-producing cells 
are involved in human glucose metabolism homeostasis 
via specific plasma metabolites. Disentangling such 
relations might help to improve the (small intestinal-
driven) pathophysiology behind insulin resistance in 
human obesity.

Supplementary data
This is linked to the online version of the paper at https://doi.org/10.1530/
EC-18-0094.
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