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Abstract

Sensorimotor coordination requires orchestrated network activity in the brain, medi-

ated by inter- and intra-hemispheric interactions that may be affected by aging-

related changes. We adopted a theoretical model, according to which intra-

hemispheric inhibition from premotor to primary motor cortex is mandatory to com-

pensate for inter-hemispheric excitation through the corpus callosum. To test this as

a function of age we acquired electroencephalography (EEG) simultaneously with

functional magnetic resonance imaging (fMRI) in two groups of healthy adults (youn-

ger N = 13: 20–25 year and older N = 14: 59–70 year) while learning a unimanual

motor task. On average, quality of performance of older participants stayed signifi-

cantly below that of the younger ones. Accompanying decreases in motor-event-

related EEG β-activity were lateralized toward contralateral motor regions, albeit

more so in younger participants. In this younger group, the mean β-power during

motor task execution was significantly higher in bilateral premotor areas compared to

the older adults. In both groups, fMRI blood oxygen level dependent (BOLD) signals

were positively correlated with source-reconstructed β-amplitudes: positive in pri-

mary motor and negative in premotor cortex. This suggests that β-amplitude modula-

tion is associated with primary motor cortex “activation” (positive BOLD response)

and premotor “deactivation” (negative BOLD response). Although the latter results

did not discriminate between age groups, they underscore that enhanced modulation

in primary motor cortex may be explained by a β-associated excitatory crosstalk

between hemispheres.
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1 | INTRODUCTION

Motor coordination requires a fine-tuned interplay of activities across

the sensorimotor network. It involves entraining motor commands to

integrate sensory information to produce functionally meaningful out-

put. The interplay may be altered by aging-related neurodegeneration

(Holtrop, Loucks, Sosnoff, & Sutton, 2014; Sullivan &

Pfefferbaum, 2006). Even in seemingly simple tasks like repetitive fin-

ger tapping, motor performance is known to decline with increasing

age (Shimoyama, Ninchoji, & Uemura, 1990). And, the decline appears

more pronounced when motor timing is more demanding or when

movements are visually guided (Houx & Jolles, 1993; Kauranen &

Vanharanta, 1996; Smith et al., 1999; Ward & Frackowiak, 2003). It

might be that in older adults proper motor control comes at the price

of widespread involvement of brain regions. Seidler et al. (2010)

highlighted an increased engagement of prefrontal cortex and basal

ganglia, which both are part of the motor network and are known to

be affected by aging-related alterations. Over the years, several stud-

ies addressed the effect of aging on the sensorimotor network activ-

ity, primarily in (bilateral) primary and premotor areas (Fujiyama

et al., 2016; Maes, Gooijers, de Xivry, Swinnen, & Soisgontier, 2017;

Seidler et al., 2010; Swinnen & Wenderoth, 2004; Tscherpel

et al., 2020). The blood-oxygen-level-dependent (BOLD) contrast

from functional magnetic resonance imaging (fMRI) indicated aging to

be accompanied by less deactivation of ipsilateral primary motor

areas. This suggests a reduced inter-hemispheric inhibition during

unimanual movements (Coxon et al., 2010; Goble et al., 2010; Hinder,

Fujiyama, & Summers, 2012; Levin, Fujiyama, Boisgontier, Swinnen, &

Summers, 2014; Van Impe, Coxon, Goble, Wenderoth, &

Swinnen, 2009), which may impair motor control (suppression) of

homologous end-effectors (Hutchinson et al., 2002; Newton, Sunder-

land, & Gowland, 2005; Ward & Frackowiak, 2003).

Inter-limb coordination is a particular form of motor coordination,

where different parts of the motor network have to orchestrate their

activities. Coordinated movements of the upper extremities are

accompanied by bilateral (left/right) cortical activities, even if the

motor output is unimanual (Chettouf, Rueda-Delgado, de Vries,

Ritter, & Daffertshofer, 2020). The prime interface for left/right inter-

actions is the corpus callosum (CC), which is known for its aging-

related changes (Frederiksen & Waldemar, 2012; Langan et al., 2010;

Sullivan et al., 2001; Sullivan & Pfefferbaum, 2006). Deterioration of

the CC may affect unimanual motor control, as there is accumulating

evidence that proper unimanual performance entails the inhibition of

ipsilateral motor areas (Daffertshofer, Peper, & Beek, 2005; Ghacibeh

et al., 2007; Gross et al., 2005; van Wijk, Beek, & Daffertshofer, 2012;

Vercauteren, Pleysier, Van Belle, Swinnen, & Wenderoth, 2008).

Trans-callosal pathways are both inhibitory and excitatory

(Daffertshofer et al., 2005; Swinnen, 2002). In particular the excit-

atory ones may cause inter-hemispheric crosstalk that might be visible

in the form of (unwanted) mirror movements (Carson, 2005).

Suppressing this crosstalk might be realized through intra-hemispheric

inhibition in the hemisphere that is supposed to stay inactive. Yet, that

inhibition needs to be precisely timed. This process seems to involve

supplementary motor and/or premotor areas (SMA and PM1,

respectively) as suggested by studies using transcranial magnetic stim-

ulation (Stinear & Byblow, 2002). In a recent review we outlined a

candidate scheme (Figure 1) for the corresponding circuitry (Chettouf

et al., 2020). In brief, during unimanual movements the contralateral

M1 projects through the CC and excites ipsilateral M1. The same con-

tralateral M1 also projects to ipsilateral PM1, see also Carson (2020).

The latter has inhibitory cortico-cortical projections to M1 in the same

hemisphere and, if properly timed, suppresses its activity stemming

from contralateral M1. Disruption of PM1 activity by, for example,

neurodegeneration either in that area or in the CC, may impede this

effective inter-hemispheric inhibition, hampering unimanual perfor-

mance and/or causing activation of homologous muscles

(Daffertshofer et al. (2005). In the bimanual case, improper

PM1 ! M1 inhibition may lead to instabilities of the planned motor

action (Houweling, Beek, & Daffertshofer, 2010).

With the current study we sought to investigate the proposed

imbalance of the effective inter-hemispheric inhibition in the aging

brain. This imbalance is expected to be particularly visible during

learning a motor task with distinct timing requirements that we here

used to contrast groups of younger and older healthy adults.

The fMRI-BOLD response is the result of a mixture of processes.

It hence should be viewed as an indirect measure of neuronal func-

tion. Interpreting BOLD response can be a challenge. So-called fMRI

“deactivations” and “activations”, that is, task or regressor correla-

tions with fMRI-BOLD can reflect both neuronal inhibition and excita-

tion, irrespective of whether the correlations are positive or negative

(Ritter & Villringer, 2002). In encephalographic assessments, by con-

trast, phenomena like motor-related (de-)synchronization in, for exam-

ple, M1 can be clearly assigned to distinct parts of the motor control

loop. As said, fMRI-BOLD is an indirect measure as it relies on the

assessment of large-scale metabolic and hemodynamic changes. The

changes are typically slow (�seconds). They do not capture neuronal

(spiking) activity but are rather a consequence of it (Logothetis, 2008).

F IGURE 1 From Chettouf et al. (2020). Theoretical model that
may account for bilateral cortical activation during unimanual
performance. Left M1 activation causes a crosstalk through the
corpus callosum in both, right M1 and right PM/SMA, with the latter
inhibiting the first to prevent motor outflow to the left (homologous)
end-effector
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Encephalography allows for identifying incidences of activity to milli-

second accuracy and can thus provide insight into the dynamics of, in

our case, motor control at high-temporal resolution. In particular, (de-)

synchronization in and between neural populations is thought to

mediate the functional coupling of the motor network. First and fore-

most the β-rhythm (around 15–30 Hz) is prominently present in sen-

sorimotor regions (Pfurtscheller, 1981) and the so-called β-rebound

(elevated β-power exceeding that of β-activity at rest) is a marker of

movement termination. Here we consider motor learning rather than

steady motor performance. During motor learning the mean β-activity

is known to decrease and, at the same time, motor-related

β-modulation increases and synchronization/de-synchronization vol-

leys become more pronounced (Boonstra, Daffertshofer,

Breakspear, & Beek, 2007; Houweling, van Dijk, Beek, &

Daffertshofer, 2010). As such it is and excellent paradigm for studying

the oscillation-based spatiotemporal reorganization across the motor

network, as has been highlighted by Rueda-Delgado et al. (2014).

Yet, especially electro-encephalographic (EEG) recordings suffer

from poor spatial resolution. After all, neural source activity has to be

inferred from surface recordings. MRI imaging provides a formidable

spatial resolution in the order of cubic millimeters. We hence com-

bined fMRI and EEG in simultaneous recordings during a sensorimotor

task (Ritter, Moosmann, & Villringer, 2009; Ritter & Villringer, 2006;

Stevenson, Brookes, & Morris, 2011). The signals of both modalities

were first analyzed separately following modality-specific standard

approaches. The fMRI provided estimates of region-of-interests

(ROIs) relevant for motor performance based on significant changes in

BOLD signals. The EEG yielded motor-related activity patterns that

revealed parts of the motor network that changed significantly while

learning and differed between age groups. Subsequently, the EEG sig-

nals served as regressors to identify their correlates in fMRI-BOLD in

the hope to find detailed spatial areas responsible for differences in

motor learning at different age.

We studied two groups, one with younger and one with older

participants. Motor learning was facilitated by simple perceptual cues

that we provided by means of visual feedback. We expected both

groups to learn a unimanual motor task but learning rate and overall

performance to decrease with age. In line with our theoretical model,

we hypothesized a less strongly inhibited ipsilateral M1 with increas-

ing age due to a reduced effective inter-hemispheric inhibition. In the

older participants we expected a less lateralized motor-related EEG

β-band modulation resembling less interhemispheric inhibition during

unimanual motor execution (Carson, 2020) irrespective of learning

state. For the (EEG and) fMRI analysis we expected more task positive

correlated activity in ipsilateral M1 indicating more activation in the

older age group, again due to the lack of inhibition.

2 | MATERIALS AND METHODS

2.1 | Participants

Twenty younger adults (mean age = 22.0 years; range, 20–

25 years; 13 females) and twenty older adults (mean age = 63.6;

range = 59–70 years; 14 females) participated in the study. None

of the participants had a history of neurological, psychiatric, or

chronic somatic diseases. None of them had musical background,

which is known for altered motor timing and accompanying neural

activity (Hughes & Franz, 2007). All participants were right-handed

according to the Edinburg Handedness Inventory test

(Oldfield, 1971) and the did not show any cognitive impairment

assessed with the Montreal Cognitive Assessment (Nasreddine

et al., 2005). They gave written informed consent prior to assess-

ment. The experiments were performed in compliance with the rel-

evant laws and institutional guidelines and were approved by the

medical ethical committee of the Charité Medical Center in Berlin

(EA1/060/14).

2.2 | Experimental design

We adopted a motor learning protocol that was successfully

implemented in previous MEG studies (Houweling, Daffertshofer,

van Dijk, & Beek, 2008; Houweling, van Dijk, et al., 2010). Partici-

pants had to learn a polyrhythmic motor task while online visual

feedback was provided. The visual feedback formed a “simple” per-

ceptual goal, cf. Figure 2. Providing such a perceptual goal is known

to vastly accelerate motor learning (Mechsner, Kerzel, Knoblich, &

Prinz, 2001; Repp, 2005; Swinnen, 2002), which renders it particu-

larly useful for learning complex behavior during limited scanning

times. We modified this protocol to unimanual motor learning in the

MR scanner.

Participants were asked to squeeze in an air-filled rubber bulb

with their right hand in a 4:3 frequency ratio to an external cue. The

cue was provided visually by a disc that rotated at 1.8 Hz on a com-

puter display (left). Squeezing the bulb let a second disc (right) rotate

(Figure 2). Their squeezing rhythm, however, was mapped in such a

way that the two discs rotated at the same frequency, if the

cue/performance ratio was 4:3. Put differently, participants had to

perform rhythmic squeezing at a frequency of 1.35 Hz for 2 min to

achieve a 1:1 left/right disc rotation which can be consider the afore-

mentioned perceptual goal.

In the MR-scanner, 700 volumes were recorded while participants

performed a total of 10 trials of 2 min each, separated by 15 s breaks.

To reduce motion artifacts, the participant’s head was restrained

using foam pads. EOG electrodes were recorded to measure eye

blinks. Participants were instructed to keep their eyes open during the

entire experiment and minimize eye and head movements. After data

collection, data containing excessive head movements in the MRI

scanner (more than 4 mm) were excluded from analysis. Remaining

movement artifacts were removed during offline preprocessing.

Blocks of 5 min resting state recordings that served as baseline were

collected before and after the motor task. There, participants were

instructed to close their eyes but stay awake and to not move their

head. On the consecutive day, participants performed the motor task

outside the scanner, which served as retention test for verifying

motor learning rather than mere non-lasting training effects (Kantak &

Winstein, 2012).
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2.3 | Data acquisition

Data have been acquired at the Berlin Center for Advanced Imaging

at the Charité Universitätsmedizin Berlin.

2.3.1 | Motor behavior

We used a custom-made pressure transducer to convert the pres-

sure inside an air-filled rubber bulb to an electrical signal that was

sampled at a rate of 100 Hz (SCXI module, National Instruments,

Austin, USA).

2.3.2 | EEG

EEG recordings were conducted with a 64-channel MR-compatible

EEG system (Brain Products, Gilching, Germany; 0.1–250 Hz hard-

ware band-pass filter, ±16.38 mV recording range at a 0.5 μV resolu-

tion and 5 kHz sampling rate) and an EEG cap with ring-type sintered

silver chloride electrodes with iron-free copper leads (EasyCap,

Herrsching, Germany). Sixty-one scalp electrodes were arranged

based on the international 10–20 system with FCz as reference and

ground electrode at AFz. In addition, two electrocardiogram (ECG)

electrodes and one vertical electro-oculogram (EOG) were recorded.

An abrasive electrolyte gel (Abralyt 2000, Easycap, Herrsching,

Germany) served to keep the impedances of all electrodes below

5 kΩ. The EEG-sampling was synchronized to the gradient-switching

clock of the MR scanner, to ensure time-invariant sampling of the

image acquisition artifact (SyncBox, Brain Products, Gilching,

Germany) (Anami et al., 2003; Freyer et al., 2009).

2.3.3 | (f )MRI

We used a 3 T Siemens Tim Trio MR scanner with a 12-channel Sie-

mens head coil. Every scan session started with a localizer sequence

(TR 20 ms, TE 5 ms, 3 slices [8 mm], voxel size 1.9 � 1.5 � 8.0 mm,

FA 40�, FoV 280 mm, 192 matrix) followed by an anatomical

T1-weighted scan (TR/TE 1900/2.52 ms, FA 9�, 192 sagittal slices

[1.0 mm], voxel size 1 � 1 � 1 mm3, FoV 256 mm, 256 matrix), an

anatomical T2-weighted scan (TR 2640 ms, TE1 11 ms, TE2 89 ms,

48 slices [3.0 mm], voxel size 0.9 � 0.9 � 3 mm, FoV 220 mm,

256 matrix). Afterwards, the EEG was prepared; fMRI (BOLD-sensi-

tive, T2*-weighted, TR/TE 1940/30 ms, FA 78�, 32 transversal slices

[3 mm], voxel size 3 � 3 � 3 mm, FoV 192 mm, 64 matrix) was

recorded simultaneously to the EEG.

2.4 | Data analysis

Data were analyzed using Matlab (version 2017b, The Mathworks,

Natwick, MA). For the (f)MRI processing we employed FreeSurfer

(version 6.0.0, Laboratory for Computational Neuroimaging, Boston,

United States, see Fischl (2012)) the FMRIB (Functional MRI of the

Brain) Software Library [version 5.0, Analysis Group, Oxford, UK, see

Jenkinson, Beckmann, Behrens, Woolrich, and Smith (2012)],

connectome workbench (version 1.2.3, WU-Minn HCP Consortium,

USA, see Marcus et al. (2011)) and the preprocessing scripts of the

human connectome project (version 3.24.0, WU-Minn HCP Consor-

tium, USA, Glasser et al. (2016, 2013)).

2.4.1 | Motor behavior

We quantified performance via the strength of frequency locking

between the visual cue and the force produced. As corresponding

F IGURE 2 Experimental setup. External cue and force performed
by the subject were displayed as two rotating discs on a computer
screen that was projected via a mirror mounted on top of the head
coil to the participant lying in the scanner. Squeezes of the rubber

bulb with the right hand were analyzed in real time for the phase
dynamics, which was multiplied by a factor 4/3. By this, proper
performance of a 4:3 polyrhythm let the disks counter rotate with a
1:1 frequency ratio, which was typically realized in sync; scheme has
been modified from Houweling et al. (2008) and Houweling, van Dijk,
et al. (2010)
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measure we used the normalized spectral overlap (Daffertshofer,

Peper, & Beek, 2000), that is, the similarity ψy
x between the power

spectrum of the cueing signal, Px, and that of the produced force, Py ,

after rescaling the frequency axis by the factor ρ¼ p : q. This measure

reads

ψy
x ρð Þ¼ 2

Ð
Px ωð ÞPy ρωð Þdω

Ð
P2x ωð ÞþP2y ρωð Þ
h i

dω

It is bounded to the interval [0,1] with 1 indicating maximum simi-

larity. We Fisher-transformed this value prior to statistical evaluation

to stabilized normality.

Statistical analysis of the behavioral data was performed with

SPSS (IBM Corp. Released 2015. IBM SPSS Statistics for Macintosh,

Version 23.0 Armonk, NY, United States: IBM Corp.). Frequency

locking values per trial for both groups were subjected to an ANOVA

with repeated measures. Within-subject factors were the 10 task tri-

als and the retention test. Age group was included as between-subject

factor. The significance threshold was set to α = 0.05. Sphericity was

tested using Mauchly’s test and, when violated, we applied a

Greenhouse–Geisser’s correction. Post hoc t-tests were performed

whenever a main effect of Age or Trial was detected to evaluate

effects of motor learning. In the first case we applied an independent

samples t-test between age groups and in the latter case a dependent

t-test on trials.

2.4.2 | Preprocessing EEG and fMRI

EEG data were segmented with BrainVision Analyzer software (Brain

Products) into three parts: the experimental learning task, pre- and

post-motor task resting state. We removed MR-scanner artifacts as

detailed in Supplementary Material S1, down-sampled to 512 Hz after

anti-aliasing filtering, and finally band-pass filtered between 0.1 and

100 Hz. Subsequent EEG preprocessing consisted of removing and

interpolating bad channels, removing the ballisto-cardiogram (pulsatile

blood movement causing body and electrode movement inside the

scanner) and excessive eye blinks as well as movement artifacts using

independent component analysis (ICA) (Hyvarinen, 1999). Since bal-

listocardiograph artifacts can generally be expected to covary with

the ECG, we combined these two signals with the EEG channels, con-

ducted principal component analysis (PCA) rather than ICA and

removed all components that were dominated by the ECG.

MRI data were preprocessed following the human connectome

project preprocessing pipeline (Glasser et al., 2013, 2016). Structural

T1 and T2 weighted images were aligned, bias field corrected, skull

stripped and nonlinearly registered to MNI space. We applied

FreeSurfer’s recon-all to reconstruct cortical gray matter surfaces and

a subcortical gray matter volume segmentation. Myelin maps across

the surface were created by taking the ratio of T1w/T2w from voxel

intensities inside the cortical gray matter (Glasser & Van Essen, 2011).

The first five fMRI scans were removed, and motion correction was

performed by aligning the first image to the series. In this stage we

also checked for potential scanner artifacts due to heating. Motion

parameters served as regressors when cleaning the fMRI data from

remaining motion-related artifacts via ICA. The fMRI data were

corrected for echo-planar imaging distortion using a gradient echo

field map, aligned to the T1w image as well as MNI space and bias

field corrected. The fMRI data were converted into the CIFTI file for-

mat, with time series of voxels inside the cortical gray matter ribbon

being mapped onto cortical surface vertices and the subcortical gray

matter being resampled onto a standard volume mesh. Next, fMRI

data were cleaned using FSL’s FIX tool (Griffanti et al., 2014; Salimi-

Khorshidi et al., 2014). In brief, using a pre-trained classifier automati-

cally we labeled independent components as either neural activity or

artifacts. The artifact components as well as motion parameters

served as regressors to remove the corresponding co-variate from the

fMRI. Finally, the FIX classifier was trained on hand-labeled data from

all the 23 subjects of this study. Subjects’ individual cortical surfaces
were registered to a parcellation template (Glasser et al., 2016) of the

human connectome project following a multimodal surface registra-

tion approach (Robinson et al., 2014, 2018). The features used for the

surface registration were cortical folding, myelin maps, resting state

network locations and visuotopic maps. The pre- and post-task fMRI

data were used to identify subject individual resting state network

locations and visuotopic maps. Aligned fMRI data entered statistical

analysis.

2.4.3 | EEG beamformer analysis

Source localization of the β-rhythm was realized using dynamical

imaging of coherent sources beamformers (Gross et al., 2005) with tis-

sue segments (skin, skull, cortical spinal fluid, gray and white matter)

determined through finite-element-modeling. For both we employed

the open-source Fieldtrip toolbox and used their template MRI

(Oostenveld, Fries, Maris, & Schoffelen, 2011).

Beamformers for motor event-related β-power

Upon visual inspection of motor-related potentials, we selected the

maximum increase in hand force as central events for the subsequent

EEG analysis because the surround epochs reveal the maximum differ-

ence between β-synchronization and de-synchronization (Figure 3).

Epochs of ±400 ms before and after these events served as contrast

for subsequent statistics. To identify significance of beamformer

power, we followed a Monte Carlo approach with cluster-based test

statistics for both groups (with a significance threshold of

αcluster = 0.01, Nichols and Holmes (2002)). Cluster-level statistics

were determined for the separate groups as the sum of t-values per

cluster. Probabilities were determined by collecting trials of pre- and

post-event intervals and test statistics were computed on randomly

chosen partitions. These steps were repeated 8,192 times to con-

struct the permutation density of the test statistics, which allowed for

using a dependent samples t-test between pre- and post-event

epochs (significance threshold α = 0.05). Following the same approach
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but using an independent t-test, we tested for significant differences

between groups (α < .05). While we focused on β-band activity, we

would like to note that we provide all the corresponding findings for

the α-frequency band (8–14 Hz) as Supplementary Material S2.

Beamformer outcomes were parcellated using the SPM anatomical

atlas (Eickhoff et al., 2005). ROIs were defined via significant out-

comes of the aforementioned tests and corresponding virtual sensors

were defined via the mean spatial filter over each ROIs onto which

the EEG data were projected after band-pass filtering in the frequency

band under study (β-band in the main text, α-band in Supplementary

Material S2). The motor-event-related β-amplitude modulation per

trial and for the two resting state blocks (based on randomly

placed virtual events) was evaluated as described in Houweling,

Beek, and Daffertshofer (2010); see also Neuper, Wörtz, and

Pfurtscheller (2006). In a nutshell, we normalized the β-band time-

series of the virtual sensor to baseline, that is, the first resting state

recording, computed the mean Hilbert amplitude and performed a

time-locked averaging (David, Kilner, & Friston, 2006) over the afore-

mentioned ±400 ms epochs. We further evaluated with a generalized

estimating equation whether the motor event-related β-modulation

correlated with the behavioral performance per trial.

Beamformers for average motor task execution β-power

For both groups we also computed grand-average source-level

β-power across learning vs. pre-learning rest, also referred to as task-

related power (Andres et al., 1999; Gerloff et al., 1998; Serrien,

Cassidy, & Brown, 2003; Toro et al., 1994). With this we tested

whether β-power during motor task execution differed between

groups, again using a voxel-wise permutation tests with an indepen-

dent samples t-test.

2.4.4 | EEG regressors for analysis with fMRI

We analyzed the fMRI data using general linear modeling (GLM) as

outlined below. When combining fMRI with EEG, the source localized

EEG served as an additional regressor. For this, we estimated the

instantaneous Hilbert amplitude in the frequency-band of interest.

For every scan epoch (700 in total) we utilized the mean β-amplitude

800 ms around every motor event and averaged over the events per

scan. To accommodate for delays and dispersions in the BOLD-

responses, the regressors were convolved with the double gamma

hemodynamic response function (HRF) (Grinband, Steffener,

Razlighi, & Stern, 2017) using the FMRIB Software Library; see

Figure 4.

2.4.5 | fMRI/EEG

Prior to statistical analysis, the fMRI data were spatially smoothed

both on the surface and in the subcortical volume using a 4 mm

FWHM Gaussian Kernel to suppress spatial noise and to increase the

signal-to-noise ratio. To remove low-frequency noise, the data were

also filtered with a Gaussian-weighted linear high-pass filter with a

cutoff of 135 s. On single-subject level, we fitted the GLM:

Y¼ βkXkþε, using the grayordinates-wise BOLD data Y in CIFTI for-

mat, that is, the time series from cortical vertices and subcortical

voxels (Friston et al., 1995). Here, βkXk denotes the design matrix and

ε the residual error. To build the design matrix we used the task para-

digm and combined it with the EEG source-localized β-amplitude

(Figure 4, bottom panel). The latter stemmed either from contralateral

M1 (left area 4a) or from frontal cortex (left area 6 �premotor area),

both according to the SPM atlas (Eickhoff et al., 2005). We contrasted

each regressor against baseline and both regressors against each other

to estimate statistical effects of interest. When both regressors—task

and EEG—are placed in a single GLM, the parameter estimates will

reflect the activation in BOLD of one regressor adjusted for the effect

of the other. By consequence, the variance explained by both regres-

sors will be removed, isolating the effect of the EEG regressor. Note

that by conducting orthogonalization, the shared information of the

two regressors is attributed to the regressor that is not orthogonalized

(Mumford, Poline, & Poldrack, 2015); hence, orthogonalization was

not applied. Based on these single-subject contrasts, a mixed-effects

group-level analysis was performed using a paired or unpaired two

F IGURE 3 Illustration event definition. Left panel: Pressure inside the air-filled rubber bulb; maximum changes of hand force were defined as
central events in the motor event-related beamformer approach. Epochs of ±400 ms before and after these events served as contrast. Right
panel: Corresponding event-related synchronization (ERS) and desynchronization (ERD) in the β-band of the EEG signal (electrode C3)

CHETTOUF ET AL. 2353



group t-test, to contrast within- and between-group activation,

respectively. The latter contrasts were masked to reveal only those

areas that deemed significant using the single-group activation con-

trast. Finally, we thresholded the statistical maps using a false discov-

ery rate of q = 0.01 (Genovese, Lazar, & Nichols, 2002).

3 | RESULTS

EEG data of nine participants (five young, four older) had to be

excluded due to technical errors during acquisition. In seven of these

cases, the EEG’s DAC experienced a buffer overflow in the local stack,

one participant’s fMRI volumes were not properly stored, and one

participant’s BOLD data could not be pre-processed because the seg-

mentation of brain and non-brain tissue appeared incorrect. Two par-

ticipants showed extensive head motion and had to be excluded from

further fMRI analysis. Another two showed clear deviations in motor

behavior and were considered outliers. Data of 27 participants

entered behavioral, EEG and fMRI analysis.

3.1 | Motor behavior

Since the assumption of sphericity was violated for the frequency

locking values per trial in both groups (χ2[44] = 83.43, p < .001), we

corrected the degrees-of-freedom (ε = .564). We found significant main

effects for Trial and Age (F(5.08,126.99) = 3.621, p < .01, η2p = .127 and

F(1,25) = 11.723, p < .01, η2p = .319, respectively) but could not estab-

lish a significant Age � Trial interaction (p = .142). The performance

level during the first trial was significantly lower in the older than in

the younger participants (p < .05, d = 1.406). This difference did not

persist in the last trial but re-appeared during retention testing.

Post hoc t-tests revealed an improved performance during trial

10 when compared to trial 1 in the older (p = .004, d = 1.045) but not

for the younger group (p = .072). Both groups showed significant dif-

ferences between the first trial and the retention test (young: p < .05,

d = .807, older: p < .01, d = .992), while we could not establish any

significant differences between the last trial and the retention test

(p > .05). This suggests that practicing culminated in proper motor

learning (Figure 5).

F IGURE 4 Computation of the
regressors. Illustration of the computation
of the beta amplitude and the resulting
regressors. From the source-localized EEG
(top panel), the Hilbert amplitude was
determined and the mean β-amplitude
800 ms around the motor events was
averaged for every scan (middle panel,
blue) and convolved with the

hemodynamic response function (HRF) to
determine the HRF-convolved regressor
(bottom panel, blue). The red curves show
the regressor of the task design (in the
bottom panel after HRF-convolution)

F IGURE 5 Behavioral results. Mean performance and standard
error per trial for 13 younger (blue) and 14 older (red) participants
during the fMRI/EEG recordings and the mean performance and
standard error of the retention test. The regression lines have been
added to ease visualization
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3.2 | EEG

As summarized in Figure 6, the β-band power that contrasted

±400 ms pre- and post-motor event displayed significant motor-task

positive modulation (i.e., an increase during the motor event) that was

lateralized in both groups. Differences between groups over the com-

plete task were not significant. We used left Brodmann’s area 4a, that

is, M1 contralateral to the force producing hand, as ROI for subse-

quent analyses (younger: t = �6.94, older: t = �3.73).

For both groups, we found motor-event-related β-amplitude modu-

lations in contralateral M1. This was more pronounced in the younger

group (Figure 7). The correlations between motor-task related modula-

tion and behavioral performance per trial did not reach significance

(young: r = .387, p = .269; older: r = .241 p = .502). The standard devi-

ations (Figure 7 in light blue for the younger and light red for older

group) indicated a substantial intra-group variability, which arguably

caused the absence of significant differences for this event-related

modulation. We would like to note that when not normalizing the

β-amplitudes to their average values during the first baseline resting

state recording, an on average lower beta amplitude could be identified

in the older participants (Figure 7b). This observation does agree with

the group differences shown in Figure 8: the younger group displayed a

less strong decrease in β-power in bilateral PM1 than the older group,

with a peak t-value of 4.14 (p < .05, d = .489) in left area 6 (premotor

area). Further task-vs.-rest descriptive statistics of β-power for both age

groups separately can be found in Supplementary Material S3.

3.3 | fMRI

We observed significant task-induced BOLD signal modulations in

visual and motor regions both in younger and older participants

(FDR corrected p < .01). As expected, the right-hand motor task

was primarily accompanied with activity in left M1. We also

found task-related activity in left and right PM1 in both groups

and in SMA in the younger participants (Figure 9). Subcortical

areas were active that are known for being involved in regulating

movement and motor learning, including putamen, thalamus, and

cerebellum.

To identify brain areas with task-related deactivation, we used

the task design as regressor, yielding patterns in both groups that

largely resemble the default mode network (DMN, see Figure 10).

According to Andrews-Hanna, Smallwood, and Spreng (2014), the

DMN consists of the posterior and anterior cortical midline structures,

with hubs located in the posterior cingulate cortex and precuneus, the

medial prefrontal and the parietal cortex (Brodmann areas 7 and

39/40). Neither in task positive nor in task negative BOLD responses

we found significant younger/older group difference during motor

learning.

3.4 | fMRI/EEG

Since the EEG beamformer results revealed left M1 as main ROI,

we employed the corresponding β-amplitudes to define supple-

mentary regressors. For both groups, the regions that significantly

correlated positively with the β-amplitude regressor were primary

motor- and visual cortex, Brodmann area 9, 39, and 32, putamen

and hippocampus. The activated Brodmann’s areas are considered

to contribute to short-term memory and attention (Figure 11). For

the older adults also the primary somatosensory cortex, insula,

thalamus, and amygdala came significantly to the fore. A remark-

able difference in comparison to the task-correlated fMRI patterns

was a positive correlation in the right (ipsilateral) M1 present both

F IGURE 6 Contrast of β-power between pre- and post-motor event. Adaptive spatial filtering identified cortical sources when contrasting
the β-band power over the 400 ms before the event vs. the β-band power ± 400 ms after the event. Grand averages shown correspond to
younger and older participants (N = 13 and N = 14, respectively). Permutation tests with a dependent samples t-statistic revealed voxels
comprising significant differences between ±400 ms pre- and post-motor event for both younger and older groups. Colors represent t-values
masked with a threshold of p < .05. Based on this result left area 4a (M1) was included as ROI for analysis
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groups. Moreover, bilateral premotor areas, the anterior

intraparietal area and some visual areas showed a significant nega-

tive correlation when including the β-amplitude regressor

(Figure 12). The older group showed a negative correlation

between fMRI-BOLD and β-amplitude in M1 in a small part of left

M1. Again, we could not establish any significant group

differences.

Since we did find a significant group difference (younger > old)

in the mean β-power, where Brodmann’s area 6 turned out to be

the most significant ROI (Figure 8), we used the corresponding

source-reconstructed β-amplitude as regressor for the BOLD analy-

sis. This revealed regions like the ones when using the β-amplitude

in left M1, though here the regions appeared more focal (Figure 13

and 14). Still, group differences in fMRI-BOLD could not be

established.

4 | DISCUSSION

We simultaneously acquired EEG and fMRI-BOLD signals in younger

and older participants when learning a unimanual motor task in the

presence of visual feedback. The experiment was designed to unravel

aging-related differences in visuomotor coordination learning. Both

age groups improved performance due to learning. The training was

accompanied by task-related changes in the motor event-related EEG

β-power (Figure 6) and in the mean β-power during motor execution

(Figure 8). The latter differed significantly between groups in

premotor areas. The fMRI-BOLD also displayed significant changes

during motor learning, but in contrast to the EEG and against our

expectation the two groups did not differ significantly.

Our behavioral outcomes revealed that both groups were able to

learn the motor task to a similar degree. Yet, there was an offset at
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F IGURE 7 (a) Learning block-wise
event-related β-amplitudes in
contralateral (left) M1. Grand average of
event-related amplitudes in left M1
(Broadman area 4a) for pre- and post-
rest and 10 task blocks for the younger
and older groups (upper row in blue,
N = 13 and lower row in red, N = 14,
respectively) group; amplitudes

(in arbitrary units, including standard
deviations [transparent], and standard
errors of the mean) are normalized to the
mean β-amplitude value of the first
resting state trial (baseline). (b) Non-
normalized event-related β-amplitudes in
contralateral (left) M1. Grand average of
event-related amplitudes in left M1 for
pre- and post-rest and 10 task blocks for
the younger and the older group (blue
and red, respectively); amplitude,
standard deviations (transparent), and
standard errors of the mean are
displayed in arbitrary units—compare
with (a) that contains the normalized
amplitudes. The green line has been
added to ease visual inspection
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baseline, that is, prior to starting to learn, which implies poorer perfor-

mance in the older group that persisted throughout the learning.

When correcting for this by stratifying the starting performance level,

the rate of learning largely agreed between groups in line with earlier

findings (Bhakuni & Mutha, 2015; Hoff et al., 2015). The 24-hours

follow-up retention test confirmed motor learning in both groups

rather than mere training effects. As expected also during the reten-

tion test, we observed decrease in motor performance with increasing

age (Houx & Jolles, 1993; Kauranen & Vanharanta, 1996; Shimoyama

et al., 1990; Smith et al., 1999; Ward & Frackowiak, 2003).

The β-band beamformers were signified by activity in left M1, that

is, contralateral to the force producing hand. While this was the case in

both groups, lateralization appeared more pronounced in the younger

group. In fact, we did expect to find less lateralized activity in the older

adults than in the younger ones (Cabeza, 2001). It seems that aging

limits the deactivation of ipsilateral M1 during unimanual movement.

By hypothesis this is because of a reduced increase in intra-hemispheric

inhibition and compromised phase locking between premotor and pri-

mary motor areas (Coxon et al., 2010; Daffertshofer et al., 2005; Goble

et al., 2010; Hinder et al., 2012; Van Impe et al., 2009; van Wijk

et al., 2012). Yet, we could not confirm this as ipsilateral activity did not

reach statistical significance in either group. Interestingly, however,

Larivière et al. (2019) reported aging-related difference during a

unimanual isometric handgrip task. In this more recent MEG study, par-

ticipants produced similar levels of activity irrespective of age, but older

participants displayed sharp activation peaks which led the authors

speculate about greater temporal synchrony in synaptic input to cortical

pyramidal neurons in the older group (Sherman et al., 2016).

We found significant differences between the groups in mean

β-power during motor task execution located in (bilateral) premotor

areas. The average β-power during motor execution in the younger

participants was substantially elevated. An overall decrease in

β-power when contrasting motor tasks with rest has been well

described in M/EEG research, where also coherence between bilateral

premotor and sensorimotor areas appears to increase (Calmels

et al., 2006; Calmels, Hars, Holmes, Jarry, & Stam, 2008; Farber &

Anisimova, 2000; Ford, Goethe, & Dekker, 1986; Gerloff et al., 1998;

Lange, Braun, & Godde, 2006; Man’kovskaya, 2006; Manganotti

et al., 1998; Mima, Matsuoka, & Hallett, 2000; Serrien, 2008; Shibata

et al., 1998; Svoboda, Sovka, & Stancak, 2002; van Wijk et al., 2012;

2

0
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4

F IGURE 8 Group differences of the β-power averaged over
motor execution. Permutation tests with an independent samples t-
statistic revealed significant β-power differences during learning
between younger and older groups. Colors represent t-values, masked
with a threshold of p < .05. Based on this result left area 6 (PM1) was
included as ROI for analysis
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F IGURE 9 Task-positive BOLD
responses. Using the task design as
regressor, we identified significant
clusters of task positive BOLD responses
displayed in red (unpaired two group t-
test, FDR-corrected p < .01). We used the
Glasser parcellated brain template to
display the BOLD patterns. PM1,
premotor cortex; M1, motor cortex; SMA,
supplementary motor cortex; BA7,
Brodmann area 7; V1, visual cortex; P,
putamen; CB, cerebellum; Th, thalamus
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Vecchio et al., 2014; Wang et al., 2017). Our results show that the

drop in β-power is significantly greater in older compared to younger

adults, with premotor areas as main region with age-related differ-

ences. This agrees with Espenhahn et al. (2019), who showed that

magnitude of movement-related β-desynchronization to be affected

by age. In their study, older subjects displayed a greater β-power

decrease in both sensorimotor cortices during the movement than

their younger counterparts.
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BA39/40
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BA8

STSlSTSl
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CB CB

vDC

BA39/40

OldYoung

F IGURE 10 Task-negative BOLD
responses. The task design as regressor
revealed regions that significantly
deactivated in blue (unpaired two group t-
test, FDR-corrected p < .01).
BA7/8/39/40, Brodmann area
7/8/39/40; PF, prefrontal cortex; STS,
superior temporal sulcus; PCC, posterior
cingulate cortex; V1, visual cortex; CB,

cerebellum; Th, thalamus; vDC, ventral
diencephalon
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F IGURE 11 BOLD responses when
including β-amplitudes in left M1 as
additional regressor. Using both the task
design and motor-related β-amplitudes in
left M1 as regressors, we evaluated
regions that significantly correlated with
these regressors in red (unpaired two
group t-test, FDR-corrected p < .05). M1,
motor cortex; S1, somatosensory cortex;
BA9/32/39, Brodmann area 9/32/39; V1,
visual cortex; P, putamen; CB, cerebellum;
Th, thalamus; AM, amygdala; HC,
hippocampus
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The fMRI-BOLD patterns contained significant task-related acti-

vation also in left M1, in bilateral PM1, SMA and visual areas, while

the deactivation patterns largely agreed with the DMN. None of these

differed significantly between age groups. The lack of aging-effects in

fMRI-BOLD persisted despite supplementing analysis by EEG-based

regressors. This was even the case when the regressor was used that

did reveal such differences when analyzing EEG alone. Next to left

M1, when using these EEG-based regressors we also found positive

correlations between source-reconstructed β-amplitudes in right M1,

that is, ipsilateral to the force producing hand. This was the case in

both groups and does suggest the involvement of an ipsilateral con-

troller in our unimanual perceptual motor task. Remarkably, the older
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AIPSMA SMAAIP

OldYoung
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CBCB
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F IGURE 12 Negative fMRI-BOLD
signal correlates of β-amplitude in left M1.
Regions that significantly correlated
negatively are indicated in blue (unpaired
two group t-test, FDR-corrected p < .05).
PM1, premotor cortex; M1, motor cortex;
AIP, anterior intraparietal area; SMA,
supplementary motor cortex; BA9,
Brodmann area 9; V1, visual cortex; CB,

cerebellum; Th, thalamus; vDC, ventral
diencephalon
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F IGURE 13 BOLD responses based

on β-amplitude in left PM1 (area 6) as
supplementary regressor. With task
design and the motor-related
β-amplitudes in left area 6 (left PM) as
regressor, we found several regions that
significantly correlated in red (unpaired
two group t-test, FDR-corrected p < .05):
M1, motor cortex; S1, somatosensory
cortex; BA39, Brodmann area 39; V1,
visual cortex; P, putamen; Th, thalamus;
vDC, ventral diencephalon; HC,
hippocampus
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group also showed a negative correlation between the β-amplitude

regressor and a small part of the left M1. And there were significant

negative BOLD/β-amplitude correlations in both groups as well as in

the anterior intraparietal area and some visual areas—recall that we

used visual feedback to facilitate motor learning. More importantly,

these correlations were also visible in bilateral PM1, at least when

combining fMRI and EEG.

When combining fMRI and EEG we could identify positive and

negative correlations in relevant motor areas during this unimanual

motor task in both groups. To what extent this really confirms the

idea of effective interhemispheric inhibition that we outlined in

Section 1 remains a puzzle. As discussed in Chettouf et al. (2020),

direction and location of both inhibition and excitation, that is, which

region inhibits or excites appears to depend on the motor task that

is performed. More precisely it depends on the degree of task diffi-

culty, even if it comes to inhibiting or exciting M1 during a

unimanual task. As such it could well be that the direction of correla-

tion (positive or negative) may differ because groups differ in the

degree of experienced task difficulty. The puzzle really starts when

recalling that this task difficulty changes as a function of motor

learning. However, we prefer to abstain from digging deeper in these

speculative ideas.

We expected that interactions through the CC would be altered

with age leading to an imbalance of the effective interhemispheric

inhibition. Yet, we did not find any significant age-related differences

in the combined EEG-fMRI analysis. This might be due to a small sam-

ple size per group (N = 13 vs. 14). On the other hand, we did find sig-

nificant differences in EEG (Figure 8). This suggests that—in

principle—our sample size sufficed to identify (electro-)physiological

differences but the metabolic changes—if present—came with very

small effect sizes. EEG reflects the degree of synchronization/

desynchronization of pyramidal cell membrane potential oscillations

that often is associated with changes of local firing rates and synaptic

activity (Schirner, McIntosh, Jirsa, Deco, & Ritter, 2018), yet a generic

link with to the BOLD signal is still lacking (Raichle, 2001). While lim-

ited statistical power might be a reason for the absence of group dif-

ferences of the combined EEG-fMRI analysis—and so might be

atrophic differences that we did not assess—it might also be conceiv-

able that correlates of EEG in fMRI remain the same across age

groups. For the EEG regressor, we utilized the mean β-amplitude

400 ms around the motor event, which is slightly different from our

event-related analysis where we contrasted pre and post epochs. This

was motivated by the clear difference in average β-power during

motor execution between groups though this was most pronounced

in premotor areas.

A recent study with a similar design revealed very comparable

behavioral results: a visuomotor tracking skill was learned to similar

extent in both younger and older adults (no interaction effect), while

motor performance was lower in the older compared to the younger

(Berghuis et al., 2019). There older adults display stronger fMRI-BOLD

activation. While this seemingly contradicts our findings, one should

note that when Berghuis et al. (2019) added the whole-brain gray

matter volume a covariate to their model, the observed differences

between younger and older adults were no longer significant. Appar-

ently, differences in gray matter “explained” the age-related differ-

ences that were found.

Both groups showed a similar decrease of brain activation over

time (from pre- to post-test), showing that the visual processing areas

are more involved when performing the task for the first time com-

pared to immediately after the training session—apparently our partic-

ipants had to rely more on the visual feedback when new to the

motor task and did require less of it in the course of learning. Yet,

changes in brain-deactivations were age-dependent in specific areas

that are part of the DMN (Raichle, 2015). This agrees with the idea

that DMN modulation is “dysregulated”; with increasing age (Park &

Reuter-Lorenz, 2009) and suggests the employment of compensatory

AIPl

BA47l
Insulal

V1l

BA47l

BA9lAIPl
BA8lBA9l

P

CAU

PMPMl

SMAl

CB

Young Old

F IGURE 14 BOLD negative responses
using the β-amplitude in left PM1 (area 6)
as supplementary regressor. Several
regions were significantly deactivated in
blue (unpaired two group t-test, FDR-
corrected p < .05). PM, premotor cortex;
AIP, anterior intraparietal area; SMA,
supplementary motor cortex; BA8/9/47,
Brodmann area 8/9/47; V1, visual cortex;

CB, cerebellum; P, putamen; CAU, caudate
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mechanisms by older adults to achieve similar learning rates as

younger ones.

As said, we facilitated learning by providing a “simple” perceptual

goal (Mechsner et al., 2001). Put differently, the task under study was a

perceptual-motor task with substantial involvement of visual areas (see

above). As such we must admit that our findings may not reflect “pure”
motor behavior but also contain the integration of—in our case—visual

information. One should realize, however, that “pure” motor behavior

hardly exists as, under normal circumstance, motor control always

includes the processing of some form of sensory information.

As another limitation we should note that we incorporated a tem-

plate anatomical MRI. Reason for this was that our experimental set-

ting did not allow for co-registering the precise location of the EEG

electrodes though this is known to largely improve spatial accuracy

(Michel & Brunet, 2019; Shirazi & Huang, 2019). Our source localiza-

tion has certainly room for improvement keeping in mind that our

“clinical” EEG-setting will always come with limited spatial resolution

(Kalogianni et al., 2018).

Our present data support the pivotal role of oscillatory activity in

premotor areas during motor coordination in line with the model

shown in Figure 1. The EEG finding support the idea that this role

changes as a function of age: A stronger PM1 β-rhythm

desynchronization in older adults makes the ipsilateral PM1 ! M1

inhibition less effective which arguably causes poorer motor perfor-

mance with increasing age.

5 | CONCLUSION

Demanding sensorimotor coordination performance that improves

with learning is diminished in the older adults. We found β-power in

the premotor areas during learning to be weaker in older than in

younger adults. That is, task-related β-desynchronization becomes less

pronounced. Irrespective of age the β-activity correlates negatively

with fMRI in PM1 and positively in M1. Despite that lack of clear-cut

age group differences in the fMRI even when combined with EEG as a

regressor, the EEG-results alone let us advocate a decreased

PM1-mediated intra-hemispheric inhibition of M1 in older adults to

be a potential source for elevated interhemispheric crosstalk and

diminished motor performance at increased age.

ACKNOWLEDGMENTS

Part of the computation has been performed on the High-

Performance Computing for Research cluster of the Berlin Institute of

Health. PR acknowledges support by EU H2020 Virtual Brain Cloud

826421, Human Brain Project SGA2 785907; Human Brain Project

SGA3 945539, ERC Consolidator 683049; German Research Founda-

tion SFB 1436 (project ID 425899996); SFB 1315 (project ID

327654276); SFB 936 (project ID 178316478); SFB-TRR 295 (project

ID 424778381); SPP Computational Connectomics RI 2073/6-1, RI

2073/10-2, RI 2073/9-1; Berlin Institute of Health & Foundation

Charité, Johanna Quandt Excellence Initiative. Open access funding

enabled and organized by Projekt DEAL.

CONFLICT OF INTEREST

None.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the

corresponding author upon reasonable request.

ORCID

Sabrina Chettouf https://orcid.org/0000-0001-6773-9035

Andreas Daffertshofer https://orcid.org/0000-0001-9107-3552

REFERENCES

Anami, K., Mori, T., Tanaka, F., Kawagoe, Y., Okamoto, J., Yarita, M., …
Saitoh, O. (2003). Stepping stone sampling for retrieving artifact-free

electroencephalogram during functional magnetic resonance imaging.

NeuroImage, 19(2), 281–295.
Andres, F. G., Mima, T., Schulman, A. E., Dichgans, J., Hallett, M., &

Gerloff, C. (1999). Functional coupling of human cortical sensorimotor

areas during bimanual skill acquisition. Brain, 122(Pt 5), 855–870.
Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default

network and self-generated thought: Component processes, dynamic

control, and clinical relevance. Annals of the new York Academy of Sci-

ences, 1316(1), 29–52.
Berghuis, K. M., Fagioli, S., Maurits, N. M., Zijdewind, I., Marsman, J.-B. C.,

Hortobágyi, T., … Bozzali, M. (2019). Age-related changes in brain

deactivation but not in activation after motor learning. NeuroImage,

186, 358–368.
Bhakuni, R., & Mutha, P. (2015). Learning of bimanual motor sequences in

normal aging. Frontiers in Aging Neuroscience, 7, 76.

Boonstra, T. W., Daffertshofer, A., Breakspear, M., & Beek, P. J. (2007).

Multivariate time–frequency analysis of electromagnetic brain activity

during bimanual motor learning. NeuroImage, 36(2), 370–377.
Cabeza, R. (2001). Cognitive neuroscience of aging: Contributions of func-

tional neuroimaging. Scandinavian Journal of Psychology, 42(3),

277–286.
Calmels, C., Hars, M., Holmes, P., Jarry, G., & Stam, C. J. (2008). Non-linear

EEG synchronization during observation and execution of simple and

complex sequential finger movements. Experimental Brain Research,

190(4), 389–400. https://doi.org/10.1007/s00221-008-1480-z
Calmels, C., Holmes, P., Jarry, G., Hars, M., Lopez, E., Paillard, A., &

Stam, C. J. (2006). Variability of EEG synchronization prior to and dur-

ing observation and execution of a sequential finger movement.

Human Brain Mapping, 27(3), 251–266.
Carson, R. (2005). Neural pathways mediating bilateral interactions

between the upper limbs. Brain Research Reviews, 49(3), 641–662.
Carson, R. G. (2020). Inter-hemispheric inhibition sculpts the output of

neural circuits by co-opting the two cerebral hemispheres. The Journal

of Physiology, 598(21), 4781–4802.
Chettouf, S., Rueda-Delgado, L. M., de Vries, R., Ritter, P., &

Daffertshofer, A. (2020). Are unimanual movements bilateral? Neuro-

science & Biobehavioral Reviews, 113, 39–50.
Coxon, J. P., Goble, D. J., Van Impe, A., De Vos, J., Wenderoth, N., &

Swinnen, S. P. (2010). Reduced basal ganglia function when elderly

switch between coordinated movement patterns. Cerebral Cortex,

20(10), 2368–2379.
Daffertshofer, A., Peper, C., & Beek, P. (2000). Spectral analyses of event-

related encephalographic signals. Physics Letters A, 266(4–6), 290–302.
https://doi.org/10.1016/S0375-9601(99)00908-1

Daffertshofer, A., Peper, C. L., & Beek, P. J. (2005). Stabilization of biman-

ual coordination due to active interhemispheric inhibition: A dynamical

account. Biological Cybernetics, 92(2), 101–109. https://doi.org/10.

1007/s00422-004-0539-6

CHETTOUF ET AL. 2361

https://orcid.org/0000-0001-6773-9035
https://orcid.org/0000-0001-6773-9035
https://orcid.org/0000-0001-9107-3552
https://orcid.org/0000-0001-9107-3552
https://doi.org/10.1007/s00221-008-1480-z
https://doi.org/10.1016/S0375-9601(99)00908-1
https://doi.org/10.1007/s00422-004-0539-6
https://doi.org/10.1007/s00422-004-0539-6


David, O., Kilner, J. M., & Friston, K. J. (2006). Mechanisms of evoked and

induced responses in MEG/EEG. NeuroImage, 31(4), 1580–1591.
Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R.,

Amunts, K., & Zilles, K. (2005). A new SPM toolbox for combining

probabilistic cytoarchitectonic maps and functional imaging data.

NeuroImage, 25(4), 1325–1335.
Espenhahn, S., van Wijk, B. C., Rossiter, H. E., de Berker, A. O.,

Redman, N. D., Rondina, J., … Ward, N. S. (2019). Cortical beta oscilla-

tions are associated with motor performance following visuomotor

learning. NeuroImage, 195, 340–353.
Farber, D. A., & Anisimova, I. O. (2000). Functional organization of the cor-

tex of the large hemispheres during voluntary movement performance:

Age aspect. Human Physiology, 26(5), 537–544. https://doi.org/10.

1007/BF02760369

Fischl, B. (2012). FreeSurfer. Neuroimage, 62(2), 774–781.
Ford, M. R., Goethe, J. W., & Dekker, D. K. (1986). EEG coherence and

power changes during a continuous movement task. International Jour-

nal of Psychophysiology, 4(2), 99–110.
Frederiksen, K. S., & Waldemar, G. (2012). Corpus callosum in aging and

neurodegenerative diseases. Neurodegenerative Disease Management,

2(5), 493–502. https://doi.org/10.2217/nmt.12.52

Freyer, F., Becker, R., Anami, K., Curio, G., Villringer, A., & Ritter, P. (2009).

Ultrahigh-frequency EEG during fMRI: Pushing the limits of imaging-

artifact correction. NeuroImage, 48(1), 94–108.
Friston, K. J., Ashburner, J., Frith, C. D., Poline, J. B., Heather, J. D., &

Frackowiak, R. S. (1995). Spatial registration and normalization of

images. Human Brain Mapping, 3(3), 165–189.
Fujiyama, H., Van Soom, J., Rens, G., Gooijers, J., Leunissen, I., Levin, O., &

Swinnen, S. P. (2016). Age-related changes in frontal network struc-

tural and functional connectivity in relation to bimanual movement

control. The Journal of Neuroscience, 36(6), 1808–1822. https://doi.
org/10.1523/jneurosci.3355-15.2016

Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of statisti-

cal maps in functional neuroimaging using the false discovery rate.

NeuroImage, 15(4), 870–878.
Gerloff, C., Richard, J., Hadley, J., Schulman, A. E., Honda, M., & Hallett, M.

(1998). Functional coupling and regional activation of human cortical

motor areas during simple, internally paced and externally paced finger

movements. Brain, 121(Pt 8), 1513–1531.
Ghacibeh, G. A., Mirpuri, R., Drago, V., Jeong, Y., Heilman, K. M., &

Triggs, W. J. (2007). Ipsilateral motor activation during unimanual and

bimanual motor tasks. Clinical Neurophysiology, 118(2), 325–332.
https://doi.org/10.1016/j.clinph.2006.10.003

Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J.,

Yacoub, E., … Jenkinson, M. (2016). A multi-modal parcellation of

human cerebral cortex. Nature, 536(7615), 171–178.
Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B.,

Andersson, J. L., … Polimeni, J. R. (2013). The minimal preprocessing

pipelines for the human connectome project. NeuroImage, 80, 105–124.
Glasser, M. F., & Van Essen, D. C. (2011). Mapping human cortical areas

in vivo based on myelin content as revealed by T1-and T2-weighted

MRI. Journal of Neuroscience, 31(32), 11597–11616. https://doi.org/
10.1523/JNEUROSCI.2180-11.2011

Goble, D. J., Coxon, J. P., Van Impe, A., De Vos, J., Wenderoth, N., &

Swinnen, S. P. (2010). The neural control of bimanual movements in

the elderly: Brain regions exhibiting age-related increases in activity,

frequency-induced neural modulation, and task-specific compensatory

recruitment. Human Brain Mapping, 31(8), 1281–1295.
Griffanti, L., Salimi-Khorshidi, G., Beckmann, C. F., Auerbach, E. J.,

Douaud, G., Sexton, C. E., … Mackay, C. E. (2014). ICA-based artefact

removal and accelerated fMRI acquisition for improved resting state

network imaging. NeuroImage, 95, 232–247.
Grinband, J., Steffener, J., Razlighi, Q. R., & Stern, Y. (2017). BOLD neuro-

vascular coupling does not change significantly with normal aging.

Human Brain Mapping, 38(7), 3538–3551.

Gross, J., Pollok, B., Dirks, M., Timmermann, L., Butz, M., & Schnitzler, A.

(2005). Task-dependent oscillations during unimanual and bimanual

movements in the human primary motor cortex and SMA studied with

magnetoencephalography. NeuroImage, 26(1), 91–98.
Hinder, M. R., Fujiyama, H., & Summers, J. J. (2012). Premotor-motor inter-

hemispheric inhibition is released during movement initiation in older

but not young adults. PLoS One, 7(12), e52573. https://doi.org/10.

1371/journal.pone.0052573

Hoff, M., Trapp, S., Kaminski, E., Sehm, B., Steele, C. J., Villringer, A., &

Ragert, P. (2015). Switching between hands in a serial reaction time

task: a comparison between young and old adults. Frontiers in Aging

Neuroscience, 7, 176.

Holtrop, J. L., Loucks, T. M., Sosnoff, J. J., & Sutton, B. P. (2014). Investi-

gating age-related changes in fine motor control across different effec-

tors and the impact of white matter integrity. NeuroImage, 96, 81–87.
Houweling, S., Beek, P. J., & Daffertshofer, A. (2010). Spectral changes of

interhemispheric crosstalk during movement instabilities. Cerebral Cor-

tex, 20(11), 2605–2613. https://doi.org/10.1093/cercor/bhq008
Houweling, S., Daffertshofer, A., van Dijk, B. W., & Beek, P. J. (2008). Neu-

ral changes induced by learning a challenging perceptual-motor task.

NeuroImage, 41(4), 1395–1407.
Houweling, S., van Dijk, B. W., Beek, P. J., & Daffertshofer, A. (2010).

Cortico-spinal synchronization reflects changes in performance when

learning a complex bimanual task. NeuroImage, 49(4), 3269–3275.
Houx, P. J., & Jolles, J. (1993). Age-related decline of psychomotor speed:

Effects of age, brain health, sex, and education. Perceptual and Motor

Skills, 76(1), 195–211.
Hughes, C. M., & Franz, E. A. (2007). Experience-dependent effects in

unimanual and bimanual reaction time tasks in musicians. Journal of

Motor Behavior, 39(1), 3–8. https://doi.org/10.3200/jmbr.39.1.3-8

Hutchinson, S., Kobayashi, M., Horkan, C., Pascual-Leone, A.,

Alexander, M., & Schlaug, G. (2002). Age-related differences in move-

ment representation. NeuroImage, 17(4), 1720–1728.
Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for indepen-

dent component analysis. IEEE Transactions on Neural Networks, 10(3),

626–634.
Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., &

Smith, S. M. (2012). FSL. Neuroimage, 62(2), 782–790.
Kalogianni, K., de Munck, J. C., Nolte, G., Vardy, A. N., van der

Helm, F. C., & Daffertshofer, A. (2018). Spatial resolution for EEG

source reconstruction—A simulation study on SEPs. Journal of Neuro-

science Methods, 301, 9–17.
Kantak, S. S., & Winstein, C. J. (2012). Learning–performance distinction

and memory processes for motor skills: A focused review and perspec-

tive. Behavioural Brain Research, 228(1), 219–231.
Kauranen, K., & Vanharanta, H. (1996). Influences of aging, gender, and

handedness on motor performance of upper and lower extremities.

Perceptual and Motor Skills, 82(2), 515–525.
Langan, J., Peltier, S. J., Bo, J., Fling, B. W., Welsh, R. C., & Seidler, R. D.

(2010). Functional implications of age differences in motor system

connectivity. Frontiers in Systems Neuroscience, 4, 17. https://doi.org/

10.3389/fnsys.2010.00017

Lange, R. K., Braun, C., & Godde, B. (2006). Coordinate processing during

the left-to-right hand transfer investigated by EEG. Experimental Brain

Research, 168(4), 547–556. https://doi.org/10.1007/s00221-005-

0117-8

Larivière, S., Xifra-Porxas, A., Kassinopoulos, M., Niso, G., Baillet, S.,

Mitsis, G. D., & Boudrias, M. H. (2019). Functional and effective reor-

ganization of the aging brain during unimanual and bimanual hand

movements. Human Brain Mapping, 40(10), 3027–3040.
Levin, O., Fujiyama, H., Boisgontier, M. P., Swinnen, S. P., & Summers, J. J.

(2014). Aging and motor inhibition: A converging perspective provided

by brain stimulation and imaging approaches. Neuroscience and Biobe-

havioral Reviews, 43, 100–117. https://doi.org/10.1016/j.neubiorev.

2014.04.001

2362 CHETTOUF ET AL.

https://doi.org/10.1007/BF02760369
https://doi.org/10.1007/BF02760369
https://doi.org/10.2217/nmt.12.52
https://doi.org/10.1523/jneurosci.3355-15.2016
https://doi.org/10.1523/jneurosci.3355-15.2016
https://doi.org/10.1016/j.clinph.2006.10.003
https://doi.org/10.1523/JNEUROSCI.2180-11.2011
https://doi.org/10.1523/JNEUROSCI.2180-11.2011
https://doi.org/10.1371/journal.pone.0052573
https://doi.org/10.1371/journal.pone.0052573
https://doi.org/10.1093/cercor/bhq008
https://doi.org/10.3200/jmbr.39.1.3-8
https://doi.org/10.3389/fnsys.2010.00017
https://doi.org/10.3389/fnsys.2010.00017
https://doi.org/10.1007/s00221-005-0117-8
https://doi.org/10.1007/s00221-005-0117-8
https://doi.org/10.1016/j.neubiorev.2014.04.001
https://doi.org/10.1016/j.neubiorev.2014.04.001


Logothetis, N. K. (2008). What we can do and what we cannot do with

fMRI. Nature, 453(7197), 869–878.
Maes, C., Gooijers, J., de Xivry, J. J. O., Swinnenab, S. P., &

Soisgontier, M. P. (2017). Two hands, one brain, and aging. Neurosci-

ence and Biobehavioral Reviews, 75, 234–256. https://doi.org/10.

1016/j.neubiorev.2017.01.052

Man’kovskaya, E. P. (2006). Changes in the spectral power and coherence

of the EEG alpha rhythm in humans performing grasp efforts by the

right and left arm. Neurophysiology, 38(3), 197–200. https://doi.org/
10.1007/s11062-006-0046-6

Manganotti, P., Gerloff, C., Toro, C., Katsuta, H., Sadato, N., Zhuang, P., …
Hallett, M. (1998). Task-related coherence and task-related spectral

power changes during sequential finger movements. Electroencepha-

lography and Clinical Neurophysiology/Electromyography and Motor Con-

trol, 109(1), 50–62. https://doi.org/10.1016/S0924-980X(97)00074-X
Marcus, D., Harwell, J., Olsen, T., Hodge, M., Glasser, M., Prior, F., … Van

Essen, D. (2011). Informatics and data mining tools and strategies for

the human connectome project. Frontiers in Neuroinformatics, 5, 4.

Mechsner, F., Kerzel, D., Knoblich, G., & Prinz, W. (2001). Perceptual basis

of bimanual coordination. Nature, 414(6859), 69–73.
Michel, C. M., & Brunet, D. (2019). EEG source imaging: A practical review

of the analysis steps. Frontiers in Neurology, 10, 325.

Mima, T., Matsuoka, T., & Hallett, M. (2000). Functional coupling of human

right and left cortical motor areas demonstrated with partial coherence

analysis. Neuroscience Letters, 287(2), 93–96.
Mumford, J. A., Poline, J.-B., & Poldrack, R. A. (2015). Orthogonalization of

regressors in fMRI models. PLoS One, 10(4), e0126255.

Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S.,

Whitehead, V., Collin, I., … Chertkow, H. (2005). The Montreal Cogni-

tive Assessment, MoCA: A brief screening tool for mild cognitive

impairment. Journal of the American Geriatrics Society, 53(4), 695–699.
Neuper, C., Wörtz, M., & Pfurtscheller, G. (2006). ERD/ERS patterns

reflecting sensorimotor activation and deactivation. Progress in Brain

Research, 159, 211–222.
Newton, J. M., Sunderland, A., & Gowland, P. A. (2005). fMRI signal

decreases in ipsilateral primary motor cortex during unilateral hand

movements are related to duration and side of movement.

NeuroImage, 24(4), 1080–1087. https://doi.org/10.1016/j.

neuroimage.2004.10.003

Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests

for functional neuroimaging: A primer with examples. Human Brain

Mapping, 15(1), 1–25.
Oldfield, R. C. (1971). The assessment and analysis of handedness: The

Edinburgh inventory. Neuropsychologia, 9(1), 97–113.
Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip:

Open source software for advanced analysis of MEG, EEG, and inva-

sive electrophysiological data. Computational Intelligence and Neurosci-

ence, 2011, 1–9.
Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and

neurocognitive scaffolding. Annual Review of Psychology, 60, 173–196.
Pfurtscheller, G. (1981). Central beta rhythm during sensorimotor activities

in man. Electroencephalography and Clinical Neurophysiology, 51(3),

253–264.
Raichle, M. E. (2001). Cognitive neuroscience: Bold insights. Nature,

412(6843), 128–130.
Raichle, M. E. (2015). The brain’s default mode network. Annual Review of

Neuroscience, 38, 433–447.
Repp, B. H. (2005). Sensorimotor synchronization: A review of the tapping

literature. Psychonomic Bulletin & Review, 12(6), 969–992.
Ritter, P., Becker, R., Graefe, C., & Villringer, A. (2007). Evaluating gradient

artifact correction of EEG data acquired simultaneously with fMRI.

Magnetic Resonance Imaging, 25(6), 923–932.
Ritter, P., Moosmann, M., & Villringer, A. (2009). Rolandic alpha and beta

EEG rhythms' strengths are inversely related to fMRI-BOLD signal in

primary somatosensory and motor cortex. Human Brain Mapping,

30(4), 1168–1187.
Ritter, P., & Villringer, A. (2002). Inhibition and functional magnetic reso-

nance imaging. Paper presented at the International Congress Series,

vol. 1235, 213–222.
Ritter, P., & Villringer, A. (2006). Simultaneous Eeg–fmri. Neuroscience &

Biobehavioral Reviews, 30(6), 823–838.
Robinson, E. C., Garcia, K., Glasser, M. F., Chen, Z., Coalson, T. S.,

Makropoulos, A., … Webster, M. (2018). Multimodal surface matching

with higher-order smoothness constraints. NeuroImage, 167, 453–465.
Robinson, E. C., Jbabdi, S., Glasser, M. F., Andersson, J., Burgess, G. C.,

Harms, M. P., … Jenkinson, M. (2014). MSM: A new flexible framework

for multimodal surface matching. NeuroImage, 100, 414–426.
Rueda-Delgado, L. M., Solesio-Jofre, E., Serrien, D. J., Mantini, D.,

Daffertshofer, A., & Swinnen, S. P. (2014). Understanding bimanual

coordination across small time scales from an electrophysiological per-

spective. Neuroscience and Biobehavioral Reviews, 47, 614–635.
https://doi.org/10.1016/j.neubiorev.2014.10.003

Salimi-Khorshidi, G., Douaud, G., Beckmann, C. F., Glasser, M. F.,

Griffanti, L., & Smith, S. M. (2014). Automatic denoising of functional

MRI data: Combining independent component analysis and hierarchi-

cal fusion of classifiers. NeuroImage, 90, 449–468.
Schirner, M., McIntosh, A. R., Jirsa, V., Deco, G., & Ritter, P. (2018). Infer-

ring multi-scale neural mechanisms with brain network modelling.

eLife, 7, e28927.

Seidler, R. D., Bernard, J. A., Burutolu, T. B., Fling, B. W., Gordon, M. T.,

Gwin, J. T., … Lipps, D. B. (2010). Motor control and aging: Links to

age-related brain structural, functional, and biochemical effects. Neuro-

science and Biobehavioral Reviews, 34(5), 721–733. https://doi.org/10.
1016/j.neubiorev.2009.10.005

Serrien, D. J. (2008). Coordination constraints during bimanual versus

unimanual performance conditions. Neuropsychologia, 46(2), 419–425.
https://doi.org/10.1016/j.neuropsychologia.2007.08.011

Serrien, D. J., Cassidy, M. J., & Brown, P. (2003). The importance of the domi-

nant hemisphere in the organization of bimanual movements. Human

Brain Mapping, 18(4), 296–305. https://doi.org/10.1002/hbm.10086

Sherman, M. A., Lee, S., Law, R., Haegens, S., Thorn, C. A.,

Hämäläinen, M. S., … Jones, S. R. (2016). Neural mechanisms of tran-

sient neocortical beta rhythms: Converging evidence from humans,

computational modeling, monkeys, and mice. Proceedings of the

National Academy of Sciences, 113(33), E4885–E4894.
Shibata, T., Shimoyama, I., Ito, T., Abla, D., Iwasa, H., Koseki, K., …

Nakajima, Y. (1998). The synchronization between brain areas under

motor inhibition process in humans estimated by event-related EEG

coherence. Neuroscience Research, 31(4), 265–271. https://doi.org/10.
1016/S0168-0102(98)00046-7

Shimoyama, I., Ninchoji, T., & Uemura, K. (1990). The finger-tapping test:

A quantitative analysis. Archives of Neurology, 47(6), 681–684.
Shirazi, S. Y., & Huang, H. J. (2019). More reliable EEG electrode digitizing

methods can reduce source estimation uncertainty, but current

methods already accurately identify brodmann areas. Frontiers in Neu-

roscience, 13, 1159.

Smith, C. D., Umberger, G., Manning, E., Slevin, J., Wekstein, D.,

Schmitt, F., … Kryscio, R. (1999). Critical decline in fine motor hand

movements in human aging. Neurology, 53(7), 1458–1458, 1461.
Stevenson, C. M., Brookes, M. J., & Morris, P. G. (2011). β-Band correlates

of the fMRI BOLD response. Human Brain Mapping, 32(2), 182–197.
Stinear, J. W., & Byblow, W. D. (2002). Disinhibition in the human motor

cortex is enhanced by synchronous upper limb movements. The Jour-

nal of Physiology, 543(1), 307–316.
Sullivan, E. V., Adalsteinsson, E., Hedehus, M., Ju, C., Moseley, M.,

Lim, K. O., & Pfefferbaum, A. (2001). Equivalent disruption of regional

white matter microstructure in ageing healthy men and women. Neu-

roreport, 12(1), 99–104.

CHETTOUF ET AL. 2363

https://doi.org/10.1016/j.neubiorev.2017.01.052
https://doi.org/10.1016/j.neubiorev.2017.01.052
https://doi.org/10.1007/s11062-006-0046-6
https://doi.org/10.1007/s11062-006-0046-6
https://doi.org/10.1016/S0924-980X(97)00074-X
https://doi.org/10.1016/j.neuroimage.2004.10.003
https://doi.org/10.1016/j.neuroimage.2004.10.003
https://doi.org/10.1016/j.neubiorev.2014.10.003
https://doi.org/10.1016/j.neubiorev.2009.10.005
https://doi.org/10.1016/j.neubiorev.2009.10.005
https://doi.org/10.1016/j.neuropsychologia.2007.08.011
https://doi.org/10.1002/hbm.10086
https://doi.org/10.1016/S0168-0102(98)00046-7
https://doi.org/10.1016/S0168-0102(98)00046-7


Sullivan, E. V., & Pfefferbaum, A. (2006). Diffusion tensor imaging and

aging. Neuroscience and Biobehavioral Reviews, 30(6), 749–761.
https://doi.org/10.1016/j.neubiorev.2006.06.002

Svoboda, J., Sovka, P., & Stancak, A. (2002). Intra- and inter-hemispheric

coupling of electroencephalographic 8-13 Hz rhythm in humans and

force of static finger extension. Neuroscience Letters, 334(3), 191–195.
Swinnen, S. P. (2002). Intermanual coordination: From behavioural princi-

ples to neural-network interactions. Nature Reviews Neuroscience, 3(5),

348–359.
Swinnen, S. P., & Wenderoth, N. (2004). Two hands, one brain: Cognitive

neuroscience of bimanual skill. Trends in Cognitive Sciences, 8(1),

18–25.
Toro, C., Cox, C., Friehs, G., Ojakangas, C., Maxwell, R., Gates, J. R., …

Ebner, T. J. (1994). 8–12 Hz rhythmic oscillations in human motor cor-

tex during two-dimensional arm movements: Evidence for representa-

tion of kinematic parameters. Electroencephalography and Clinical

Neurophysiology/Evoked Potentials Section, 93(5), 390–403.
Tscherpel, C., Hensel, L., Lemberg, K., Freytag, J., Michely, J., Volz, L. J., …

Grefkes, C. (2020). Age affects the contribution of ipsilateral brain

regions to movement kinematics. Human Brain Mapping, 41(3),

640–655.
Van Impe, A., Coxon, J. P., Goble, D. J., Wenderoth, N., & Swinnen, S. P.

(2009). Ipsilateral coordination at preferred rate: Effects of age, body

side and task complexity. NeuroImage, 47(4), 1854–1862.
van Wijk, B. C., Beek, P. J., & Daffertshofer, A. (2012). Differential modu-

lations of ipsilateral and contralateral beta (de)synchronization dur-

ing unimanual force production. The European Journal of

Neuroscience, 36(1), 2088–2097. https://doi.org/10.1111/j.1460-

9568.2012.08122.x

Vecchio, F., Lacidogna, G., Miraglia, F., Bramanti, P., Ferreri, F., &

Rossini, P. M. (2014). Prestimulus interhemispheric coupling of brain

rhythms predicts cognitive-motor performance in healthy humans.

Journal of Cognitive Neuroscience, 26(9), 1883–1890. https://doi.org/
10.1162/jocn_a_00615

Vercauteren, K., Pleysier, T., Van Belle, L., Swinnen, S. P., & Wenderoth, N.

(2008). Unimanual muscle activation increases interhemispheric inhibi-

tion from the active to the resting hemisphere. Neuroscience Letters,

445(3), 209–213. https://doi.org/10.1016/j.neulet.2008.09.013
Wang, B. A., Viswanathan, S., Abdollahi, R. O., Rosjat, N., Popovych, S.,

Daun, S., … Fink, G. R. (2017). Frequency-specific modulation of con-

nectivity in the ipsilateral sensorimotor cortex by different forms of

movement initiation. NeuroImage, 159, 248–260.
Ward, N., & Frackowiak, R. (2003). Age-related changes in the neural cor-

relates of motor performance. Brain, 126(4), 873–888.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version

of the article at the publisher's website.

How to cite this article: Chettouf, S., Triebkorn, P.,

Daffertshofer, A., & Ritter, P. (2022). Unimanual sensorimotor

learning—A simultaneous EEG-fMRI aging study. Human Brain

Mapping, 43(7), 2348–2364. https://doi.org/10.1002/hbm.

25791

2364 CHETTOUF ET AL.

https://doi.org/10.1016/j.neubiorev.2006.06.002
https://doi.org/10.1111/j.1460-9568.2012.08122.x
https://doi.org/10.1111/j.1460-9568.2012.08122.x
https://doi.org/10.1162/jocn_a_00615
https://doi.org/10.1162/jocn_a_00615
https://doi.org/10.1016/j.neulet.2008.09.013
https://doi.org/10.1002/hbm.25791
https://doi.org/10.1002/hbm.25791

	Unimanual sensorimotor learning-A simultaneous EEG-fMRI aging study
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Participants
	2.2  Experimental design
	2.3  Data acquisition
	2.3.1  Motor behavior
	2.3.2  EEG
	2.3.3  (f)MRI

	2.4  Data analysis
	2.4.1  Motor behavior
	2.4.2  Preprocessing EEG and fMRI
	2.4.3  EEG beamformer analysis
	2.4.3  Beamformers for motor event-related β-power
	2.4.3  Beamformers for average motor task execution β-power

	2.4.4  EEG regressors for analysis with fMRI
	2.4.5  fMRI/EEG


	3  RESULTS
	3.1  Motor behavior
	3.2  EEG
	3.3  fMRI
	3.4  fMRI/EEG

	4  DISCUSSION
	5  CONCLUSION
	ACKNOWLEDGMENTS
	  CONFLICT OF INTEREST
	  DATA AVAILABILITY STATEMENT

	REFERENCES


