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Abstract
Purpose: Patients with head-and-neck cancer (HNC) may experience xerostomia after radiation
therapy (RT), which leads to compromised quality of life. The purpose of this study is to explore
how the spatial pattern of radiation dose (radiomorphology) in the major salivary glands influences
xerostomia in patients with HNC.
Methods and materials: A data-driven approach using spatially explicit dosimetric predictors,
voxel dose (ie, actual radiation dose in voxels in parotid glands [PG] and submandibular glands
[SMG]) was used to predict whether patients would develop xerostomia 3 months after RT. Using
planned radiation dose data and other nondose covariates including baseline xerostomia grade of
427 patients with HNC in our database, the machine learning methods were used to investigate the
influence of dose patterns across subvolumes in PG and SMG on xerostomia.
Results: Of the 3 supervised learning methods studied, ridge logistic regression yielded the best
predictive performance. Ridge logistic regression was also preferred to evaluate the influence
pattern of highly correlated dose on xerostomia, which showed a discriminative pattern of influence
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of doses in the PG and SMG on xerostomia. Moreover, the superioreanterior portion of the
contralateral PG and medial portion of the ipsilateral PG were determined to be the most influential
regions regarding dose effect on xerostomia. The area under the receiver operating characteristic
curve from a 10-fold cross-validation was 0.70 � 0.04.
Conclusions: Radiomorphology, combinedwithmachine learningmethods, is able to suggest patterns
of dose in PG and SMG that are the most influential on xerostomia. The influence pattern identified by
this data-driven approach andmachine learningmethodsmay help improveRT treatment planning and
reduce xerostomia after treatment.
� 2018 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation
Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
Introduction

Patients with head-and-neck cancer (HNC) are
commonly treated with radiation therapy (RT). Of the
spectrum of side effects owing to injury to organs at risk
(OARs) from RT, xerostomia that arises from the parotid
gland (PG) and submandibular gland (SMG) radiation
have received significant study. The mean PG and SMG
radiation dose is well known to be associated with the risk
of developing xerostomia.1e4 Modern intensity modu-
lated RT techniques provide the opportunity to modify
radiation dose distributions in PG and SGM and could
potentially avoid radiation-induced xerostomia.

Despite these technological advancements, RT-
induced xerostomia continues to be a significant clinical
challenge that commonly affects patient-reported quality
of life. To study RT-induced xerostomia, most existing
literature used aggregated or summarized dosimetric
predictors within certain organs, such as mean dose and
dose-volume histogram (DVH) metrics in PG.1e3,5 The
disadvantage of this modeling approach is that the spatial
information for the radiation dose within an organ is lost.
Different spatial distributions of a dose within an organ
can yield the same mean dose and DVH metrics. A pre-
vious study by our group using DVH metrics showed that
the level of low dose delivered to the combined PGs has a
strong influence on xerostomia.6 However, this previous
study was not able to identify the spatial location of the
influential regions using DVH metrics.

On the other hand, spatial information of the dose is key
to understand the local dose effect on xerostomia. Pre-
clinical investigations suggest that RT-induced xerostomia
may be related to not only PG dosimetry, but also spatial
location of secondary radiation damage within the PG.7,8 In
rat models, irradiation of the caudal portion of the PG
caused not only xerostomia, but was also associated with
salivary function recovery in contrast with irradiation of the
cranial portion. The investigators subsequently demon-
strated that this recovery may be related to the presence of
stem or progenitor cells that are responsible for the recovery
of radiation-induced xerostomia.9
Data mining investigations by Robertson et al within
their informatic infrastructure have demonstrated that the
level of low-dose irradiation to PG is associated with
xerostomia at 3 to 6 months.10e11 A pilot study by Quon
et al of 30 patients has shown that the cranial half of the
PG and its dosimetry may be more important in causing
severe xerostomia in patients with HNC, and the current
study sought to build on these observations.12

To more robustly evaluate the influence of specific
subvolumes of the PG and SMGon injury and symptoms of
severe xerostomia after RT, we applied supervisedmachine
learning methods and a radiomorphology approach using
voxel dose to predict parotid-injury-causing acute xero-
stomia. Radiomorphology parametrically represents the
spatial dose distribution within normalized anatomic
structures using voxel- or shaped-based dosimetric pre-
dictors, which are consistent across patient cohorts.13 The
supervised machine learning method that was ultimately
used is able to learn the influence of spatial dose patterns
across organ subvolumes on xerostomia by assigning
higher weights to the voxel dose of the predictive regions
and lower weights to less predictive regions. We define the
spatial pattern of the learned weights distributed across the
voxels as the voxel importance pattern.
Methods and Materials

Patients

Our study population included 427 patients with HNC
who were treated with parotid-sparing intensity modu-
lated RT with curative intent between January 2008 and
December 2016 and for whom xerostomia scores were
available in our database. The data included both single-
and double-sided neck treatments. All patients were seen
weekly during RT for on-treatment visit assessments, and
during the follow-up period typically every 3 to 4 months
for the first 3 years and every 6 months thereafter. All
study assessments, including the National Cancer Institute
Common Terminology Criteria for Adverse Events

http://creativecommons.org/licenses/by-nc-nd/4.0/
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xerostomia grading, were performed prospectively at the
point of care during routine treatment and each follow-up
visit. The study cohort excluded patients who did not
have all PG and SMG contoured to ensure that every
patient in the study cohort had complete radiation dose
metrics in these 2 major salivary glands. Data from 427
actual patients were fed into the machine learning models.
Features

The features are predictors and variables we engi-
neered as input data for the prediction model. The fea-
tures are categorized into 2 parts: planned radiation dose
metrics and patient demographic and clinical pathology
features. To capture the spatial information of radiation
dose explicitly, organs are modeled as voxels, and actual
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Figure 1 Distribution of radiation dose in parotid and submandibular g
deviation of voxel dose, and (C) mean dose of patients who developed
dose in the voxels are used as individual dosimetric
predictors, which we call voxel dose. The voxels are
linearly interpolated within the dose grid and equally
spaced within the organ for the reference patient. The
distance between any adjacent 2 voxels along the x, y,
and z axes in Figure 1 are 4.68 mm, 4.68 mm, and
3.00 mm, respectively. Specifically, we used voxel-based
doses in PG and SMG. The PG and SMG were contoured
as part of the routine clinical workflow. In general, the
contours of the PG were guided by surrounding anatomic
landmarks as follows: Anteriorly and medially (masseter
muscle), posteriorly and medially (styloid process),
inferiorly and posteriorly (by course of posterior digastric
muscle), laterally (by platysma), and inferiorly (after
parotid tissues that generally stop at the level of the hyoid
bone). For the SMG, the contours were guided laterally
by the platysma, superiorly by the medial cortex of
Contralateral Ipsilateral

Parotid

Submandibular

 Standard deviation of voxel dose

nd non-xerostomia patients 

Ipsilateral

lands across the patient cohort. (A) Mean voxel dose, (B) standard
xerostomia, minus the mean dose of patients who did not.



Table 1 Patient characteristics at baseline

Predictor Xerostomia grade �2 at 3 mo
postradiation therapy

P-
value

No (N Z 282) Yes (N Z 145)

Age* 58.62 (52-67) 58.47 (53-64) .77
Sex .61
Male 210 (74.47%) 112 (77.24%)
Female 72 (25.53%) 33 (22.76%)

Race .24
Caucasian 196 (69.50%) 113 (77.93%)
African American 65 (23.05%) 22 (15.17%)
Asian/Pacific
islander

8 (2.83%) 7 (4.83%)

Other 13 (4.61%) 3 (2.07%)
Attending physician .22
1 143 (50.71%) 69 (47.59%)
2 58 (20.57%) 28 (19.31%)
3 35 (12.41%) 25 (17.24%)
4 3 (1.06%) 3 (2.06%)
Missing 43 (15.25%) 20 (7.09%)

Chemotherapy < .01
Yes 198 (70.21%) 123 (84.83%)
No 84 (29.79%) 22 (15.17%)

Human
papillomavirus

< .01

Positive 185 (65.60%) 74 (51.03%)
Negative 94 (33.33%) 71 (48.97%)
Missing 3 (1.06%) 0 (0%)

Feeding tube used .06
Yes 196 (69.50%) 88 (60.69%)
No 83 (29.43%) 57 (39.31%)
Missing 3 (1.06%) 0 (0%)

Baseline xerostomia
grade

< .01

0 216 (76.60%) 99 (68.28%)
1 63 (22.34%) 33 (22.76%)
2 3 (1.06%) 13 (8.97%)

Primary tumor stage
(T stage)

.89

0 12 (4.26%) 6 (4.13%)
1 50 (17.73%) 29 (20.00%)
2 66 (23.40%) 44 (30.34%)
3 47 (16.67%) 23 (15.86%)
4 65 (23.05%) 35 (24.14%)
Missing 42 (14.89%) 8 (2.84%)

Regional lymph
nodes stage
(N stage)

.11

0 69 (24.47%) 25 (17.24%)
1 33 (11.70%) 25 (17.24%)
2 128 (45.39%) 83 (57.24%)
3 6 (2.13%) 5 (3.45%)
Missing 46 (16.31%) 7 (2.48%)

Distant metastasis
stage (M stage)

.51

Yes 16 (5.67%) 6 (4.14%)
No 229 (81.21%) 132 (91.03%)

(continued)

Table 1 (continued )

Predictor Xerostomia grade �2 at 3 mo
postradiation therapy

P-
value

No (N Z 282) Yes (N Z 145)

Missing 37 (13.12%) 7 (2.48%)
Tumor site < .01
Oral cavity 52 (18.44%) 45 (31.03%)
Oropharynx 54 (19.15%) 42 (28.97%)
Nasopharynx 12 (4.26%) 14 (9.66%)
Larynx 54 (19.15%) 17 (11.72%)
Other 110 (39.01%) 27 (18.62%)

Treatment side < .01
Unilateral 8 (2.84%) 3 (2.07%)
Bilateral 238 (84.40%) 139 (96.55%)
Lower in the neck 36 (12.77%) 2 (1.38%)

P-value obtained using the 2-sample test.
* Summary statistics include the mean and interquartile range for

continuous variables and the count and percentage value for cate-
gorical variables.
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mandible, medially by the genioglossus, and by mylo-
hyoid muscles anteriorly. The voxel dose and clinical
features were later fed into the supervised learning
models as input.

Patients’ anatomic structures are spatially different. To
obtain consistently identifiable doses for all patients, we
aligned patients’ structures to a common reference frame
using a deformable registration technique (ie, Coherent
Point Drift algorithm).14 Furthermore, to consider the
factor of tumor location, we mirrored the patients’ struc-
tures so that the spatial relationship of the organs, which
we derived the dose from, was not left versus right, but
rather ipsilateral versus contralateral relative to the disease
side. The framework and actual steps to generate the
voxel dose were described in a prior study.14 We also
included the algorithmic steps to generate the voxel dose
in the supplemental material.

The sociodemographic and clinical pathology fea-
tures included are sex, race, age, attending physician,
baseline xerostomia grade, tumor characteristics (TNM
stage), chemotherapy (yes/no), human papillomavirus
(HPV) status (positive or negative), whether feeding
tube was used, and tumor site. Baseline xerostomia
grade was measured either before treatment started or
during the first week of treatment. Tumor site was
characterized by mapping International Classification of
Disease, 9th and 10th editions, diagnosis codes to spe-
cific site definitions. These features were chosen to
capture basic patient characteristics and factors that may
relate to xerostomia. There are no missing data in
continuous features, and missing data in categorical
features were treated as a new missing category. Patient
cohort characteristics (ie, summary statistics of the
above features) stratified by xerostomia outcome are
shown in Table 1.
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Outcome measure

The outcome measure was Common Terminology
Criteria for Adverse Events xerostomia grading, captured
prospectively at the start of the first follow-up period,
which is 3 months after RT. The xerostomia grade is
physician-rated at the clinic during the patient encounter.
A prevalence analysis within our database shows that the
severity of xerostomia starts decreasing after RT, which is
likely owing to recovery. We chose to look at xerostomia
3 months after RT, which is around the time of the second
follow-up visit, as an indication of acute xerostomia
caused by radiation-induced injury (as opposed to the
inclusion of recovery). For predictive modeling, a binary
classification problem was created by grouping xero-
stomia grading into 2 categories: Severe xerostomia if
grade 2 or 3, and no or mild xerostomia if grade 0 or 1.
The primary endpoint for prediction is whether a patient
will develop severe xerostomia 3 months after RT. For
patients who did not have a xerostomia measurement at
3 months post-RT, the last xerostomia measure was car-
ried forward. Patients who did not have a xerostomia
measurement at 3 months post-RT was mostly due to lost
to follow up or inability to get measurements at that time.

Prediction models

Three supervised machine learning algorithms were
applied to our data set: ridge logistic regression, lasso
logistic regression, and random forest.15,16 To fit ridge
and lasso logistic regression models, features were stan-
dardized to have 0 mean and unit variance before input
into the prediction models. The area under the curve
(AUC) score evaluated using nested 10-fold cross-
validation for each model was compared using a pair-
wise 2-sample t test after fitting each model to our data
set. The optimal hyperparameters for those algorithms
were chosen using 10-fold cross-validation while maxi-
mizing the AUC score on the hold-out data. Furthermore,
the cross-validation was repeated 40 times with different
random splitting of the data to ensure the learned hyper-
parameters do not depend on a specific random splitting
of the data. To determine the best model, the voxel
importance pattern obtained from each algorithm along
with the prediction performance was evaluated among the
3 algorithms.

Voxel importance pattern

Lasso logistic regression learns a sparse set of features
and assigns 0 weight to nonimportant features. Ridge
logistic regression does not learn a sparse solution but
assigns a larger weight to more important features. The
magnitude of the feature weights learned by regularized
logistic regression, combined with hyperparameter tuning
using cross-validation, indicates the relative importance of
the voxel dose. Moreover, the radiation dose in different
voxels are on the same scale (average dose range, 9.09-
58.77 Gy), which prevents having very different weights
owing to different feature scales. Therefore, the magni-
tude of the learned weights was used as a measure of
voxel importance, which indicates how much a change in
the radiation dose in a voxel affects the probability of the
patient developing xerostomia. A higher positive voxel
importance indicates a larger chance of developing
xerostomia if the dose in that voxel was increased.

The voxel importance for random forest was measured
by computing how much the squared error decreased
during the training process when partitioning data using a
certain feature over all trees.15,17

To visualize the voxel importance pattern, we normal-
ized voxel importance measures to be in the range of 0 to 1
and linearly mapped the normalized voxel importance onto
the 3-dimensional PG and SMG structures.

To further check whether the voxel importance pattern
is consistent given the sample randomness, the data were
randomly separated into 5 folds, and the analysis was
repeated (learning step in Fig 2) 5 times on 4 folds. Then,
the correlation coefficients of the weights learned from the
5 analyses were computed. High correlation coefficients
between the feature weights learned from the 5 analyses
indicate that the voxel importance pattern is consistent on
different random samples.

Results

Xerostomia outcome

For the xerostomia prediction outcome, 145 patients
(34%) had xerostomia (grades 2 and 3) 3 months after RT.
Eighty-nine patients (20.8%) did not have a xerostomia
assessment at 3 months post-RT, and last observation
carried forward was used to obtain the outcome for these
patients. The average time point from which the last
measurements were carried forward is 67.9 days from the
start of RT, and the standard deviation was 38.6 days.
Figure 3 shows the distribution of xerostomia grade at
baseline and 3 months post-RT and that a large portion of
patients developed xerostomia after RT.

Dose distribution

Figure 1 shows the distribution of mean voxel dose,
standard deviation of dose, and mean dose of the patient
group that developed xerostomia, minus the mean dose
of the patient group that did not develop xerostomia in
the total 942 voxels of the PG and SMG across the
patient cohort. The mean dose in voxels ranged from
9.09 Gy to 58.77 Gy, and the standard deviation of dose
from 7.81 Gy to 24.21 Gy. The ipsilateral SMG had the



Figure 2 Flowchart of key steps for this analysis. Abbreviations: ROI Z region of interest.
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highest mean voxel doses, and the anterioresuperior
portion of the 2 PG had the lowest mean voxel doses.
The inferioreposterior portion of the contralateral PG
and the 2 SMG had the highest variation of dose, and
the anterioresuperior portion of the contralateral PG
had the lowest variation of dose. The patient group that
developed xerostomia received a higher mean dose than
the patient group that did not develop xerostomia across
the entire PG and SMG. In the SMG and inferior
portion of contralateral PG, patients who developed
xerostomia received a much higher mean dose.

The pattern of mean voxel dose generated is
consistent with our clinical practice whereby the dose
spectrum decreases more superiorly across the PG. The
ipsilateral SMG and the tail of the ipsilateral PG
typically receives comparable high doses of radiation
owing to the presence of level II cervical nodal
metastases.
Figure 3 Distribution of xerostomia grade at baseline and
3 months after radiation therapy.
Model performance

After obtaining the voxel dose, nondose features, and
xerostomia outcomes, the AUC scores of ridge, lasso
logistic regression, and random forest were evaluated
using nested 10-fold cross-validation on the obtained data
set. The cross-validation AUC scores (out-of-sample
score) for ridge, lasso logistic regression, and random
forest were 0.69 � 0.08, 0.67 � 0.06, and 0.69 � 0.07
respectively. The P-values of the pairwise 2-sample t test
comparing the AUC scores on the 10 holdout folds be-
tween the 3 models were .46 (ridge vs lasso logistic
regression), .92 (ridge logistic regression vs random for-
est), and .48 (lasso logistic regression vs random forest).
Therefore, there is no statistically significant difference
between the 3 models regarding predictive performance
using the significance level of .05.
Voxel importance pattern

The voxel importance patterns for the 3 methods are
shown in Figure 4. The ridge and lasso logistic regression
models are both well suited for high-dimensional data,
where the number of features is larger than the number of
samples or many features are correlated.18 However,
given the highly correlated voxel dose, lasso yields only 1
or a few voxels from the predictive regions owing to the
[1 norm regularization. Random forest produces non-
smooth, relative, variable importance patterns owing to
the random selection of a subset of features among the
correlated features to grow the trees, but ridge logistic
regression produces a smooth solution by shrinking the
weights of correlated features close to each other.18

By reducing the variance of the estimated weights of
highly correlated features, ridge regression has been
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Figure 4 Voxel importance patterns learned from the 3 machine learning algorithms where the color corresponds to the relative
importance of each voxel.
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commonly used to address multicollinearity.19e21 The
dimension of the voxel radiation dose features is high
(942 voxels), and much larger than the number of pa-
tients (427 patients). Moreover, the radiation dose fea-
tures are highly correlated for voxels that are spatially
close. Likely, there is a region of voxels, instead of a
single or few voxels, from which the dose has the largest
influence on xerostomia, and other regions have less but
not 0 influence. The voxel importance patterns in
Figure 4 verified the reasoning given earlier in this
article.

Given the previous characteristics of our voxel dose
and 3 supervised learning models, ridge logistic regres-
sion is well suited for our study. Therefore, ridge logistic
regression was used to study the voxel importance pattern
(Fig 5). The AUC score for the final ridge logistic
regression model evaluated by nonnested 10-fold cross-
validation is 0.70 � 0.04. The red region represents the
most important voxels, and violet represents the least
important. Together, the doses in the different
subvolumes in PG and SMG all have an effect on xero-
stomia, but the influence of the dose on xerostomia
varies across the different subvolumes. Specifically, the
superioreanterior portion of the contralateral parotid is
the most influential region. The medial portion of the
ipsilateral parotid is also very influential, and the superior
portion of the ipsilateral parotid is the least influential
region. Figure 6 shows 2-dimensional cross-sectional
images from computed tomography of the reference pa-
tient that show the colored spatial distribution of influ-
ential areas within the anatomic substructures. Model
coefficients for clinical features and voxel dose are shown
in Tables S.3 and S.4 in the supplemental material. To
predict the risk of developing xerostomia for a patient, we
use logistic function pðyrXÞZ 1

1þe�bT X
; where y is the risk

of developing xerostomia, X is the vector of clinical
features and voxel dose for the patient, and b is the
learned model coefficients in Tables S.3 and S.4.



Figure 5 (A) Voxel importance pattern from ridge logistic regression and (B) different visualization of the same voxel importance
result where voxel importance values that are 1 standard deviation (SD) away from the mean were saturated to increase the resolution of
voxel importance closer to the mean value of the voxel importance. The saturated plot was created as the set of voxel importance values
that are greater than 1 SD of the mean voxel importance values to be 1 SD of the voxel importance values plus the mean value. As a
result, the voxels of which the voxel importance value is greater than 1 SD of the mean voxel importance values are shown in red.
Similarly, voxels of which the voxel importance value is greater than 1 SD of the mean voxel importance values are shown in blue.
Voxel importance values within 1 SD of the mean value is color coded from blue to red.
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The consistency of the voxel importance pattern obtained
from the ridge logistic regression was tested on 5 different
random samples. The lowest Pearson correlation coefficient
among the weights learned from the 5 random samples was
0.85, which indicates that the voxel importance pattern is
fairly consistent given the sample randomness.

We also performed the same analysis with only the
complete cases (332 patients) where patients who did not
have a xerostomia assessment at 3 months post-RT were
excluded. The 10-fold cross-validation AUC score for the
complete cases using ridge logistic regression is
0.68 � 0.03, and the voxel importance pattern is the same
as in Figure 5. The Pearson correlation coefficient be-
tween the voxel importance (feature weights) of the
complete cases versus the case where patients who did not
have a xerostomia assessment at 3 months post-RT were
included is 0.93, which indicates that the voxel impor-
tance patterns from the 2 analyses are highly consistent.

Statistically significant features

For a normal regression analysis where the number of
features is smaller than the number of samples, confidence
interval and P-value can indicate whether a feature is
statistically significantly associated with the outcome
(feature coefficient is nonzero). However, penalized
(ridge/lasso) regression methods do not produce mean-
ingful confidence intervals or P-values. Therefore, to get



Figure 6 Two-dimensional cross-sectional images from computed tomography scans of the reference patient, displaying the spatial
location of the influential area and colored distribution of voxel-based dose feature importance. (A) Axial view of voxel importance
pattern, (B) sagittal view of the voxel importance pattern on the contralateral side, (C) coronal view of the voxel importance pattern, and
(D) sagittal view of the voxel importance pattern on the ipsilateral side.
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the P-value for the clinical features and voxel dose, and
check if they are statistically significantly associated with
outcome, we performed a univariate logistic regression
for each clinical feature and voxel dose separately. In
other words, for each individual feature, we fitted a
logistic regression, using it as the independent variable,
and the xerostomia outcome as the dependent variable.
The results are shown in Tables S.1 and S.2 in the
supplemental material.

Table S.1 shows that, among the clinical features,
whether the patient has HPV, completed chemotherapy,
their baseline xerostomia grade, tumor site, N stage, and
use of feeding tube are statistically significant features at a
significance level of .05.
Discussion

The results demonstrate the successful application of
the use of spatially explicit dosimetric predictors in
predicting xerostomia in patients with HNC, leading to
the identification of potential important parotid dose
subvolumes associated with the predicted risk of severe
xerostomia at 3 months after RT. To the best of our
knowledge, this analysis used the largest cohort of pa-
tients with xerostomia HNC and prospective point-of-care
data in literature, which enables robust modeling results
and conclusions. The analysis confirmed evidence that
parotid subvolumes are at a greater risk of contributing to
radiation-induced xerostomia, as initially proposed in
humans by van Luijk et al.8

Modeling the radiation dose spatially explicitly pro-
vides insights into the spatial dependence of dose in
contrast with the use of DVH metrics alone. For instance,
we are aware of 1 existing study that used a similar voxel-
based dose analysis for acute dysphagia in patients with
HNC.22 The authors applied a statistical test to compare
the voxel-based dose distribution between patients with
grade �3 versus <3 dysphagia. Instead of comparing the
dose difference between patients who developed xero-
stomia and those who did not, we combined the voxel-
based dose modeling with supervised machine learning
algorithms to build a predictive model for xerostomia. We
also learned how spatial dose influences xerostomia,
highlighting the flexibility of this methodology. Our
methodology can also be potentially applied to other RT-
related head-and-neck toxicities, such as dysphagia and
trismus.
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The distribution of average doses shows that the most
important region found (ie, superior-anterior portion of
the contralateral PG) is within the low-dose region in the
patient cohort. This is consistent with the results from a
study by Robertson et al using DVH metrics to demon-
strate the impact of a low-dose bath to both PG on the risk
of grade �2 xerostomia.10 We believe that if this region
was treated with a high radiation dose, the other regions
were likely treated with an even higher dose, leading to a
much higher risk of developing xerostomia.

Furthermore, we would expect the superior portion of
the ipsilateral PG also to be more predictive because the
region is also low dose. However, the voxel importance
pattern result did not reveal this, but rather, the medial
portion of the ipsilateral PG was more predictive. We
hypothesize that in the ipsilateral PG, the medial portion
is more important because of its proximity to the ductal
region, and radiation damage to that region will render
doses in the superior portion much less important in
predicting xerostomia. This is in accordance with the
preclinical xerostomia model that has demonstrated that
sparing the stem or progenitor cells contained in the
ductal region of PG preserves salivary function after RT.8

We further investigated whether our current method
improves the prediction performance compared with
using only conventional dosimetric features. Specifically,
we computed the mean dose and DVH features (D5, D25,
D50, and D90) over all parotid and submandibular glands.
The AUC performance using these conventional dosi-
metric features and the ridge logistic regression model
evaluated with nested 10-fold cross-validation on the
same 477 patients is 0.68 � 0.09, which is not signifi-
cantly different from using voxel-dose features. Although
the current method using voxel-dose features did not
significantly improve prediction performance, more
insight is provided about the spatial dependency between
radiation dose and acute xerostomia, which cannot be
achieved using only conventional dosimetric features.

The findings provide insight into the importance of
bilateral parotid injury,and underscore the importance of
carefully determining the clinical indications for bilateral
cervical nodal irradiation alongwith a careful delineation of
how superior and lateral the cervical nodal planning target
volumes encroach upon the medial and superior aspects of
the PG. Moreover, the analysis also demonstrated (to a
lesser degree) the importance of irradiation in the sub-
volumes in the contralateral SMG contributing to the
severity of xerostomia at 3months post-RT. This highlights
the clinical implications and importance of reducing the
volume of cervical neck irradiation as a clinical strategy to
de-intensify the current chemoradiation treatment para-
digm for head-and-neck squamous cell carcinomas, espe-
cially for HPV-associated oropharyngeal carcinomas.

Several additional limitations of our analysis need to
be recognized. First, the study population consists of
patients treated at a single local hospital. The specific
voxel importance pattern obtained may be specific for
patients at this hospital. Second, for the xerostomia pre-
diction outcomes, we used last observation carried for-
ward to obtain data for patients without xerostomia
assessment at 3 months post-RT. Our longitudinal xero-
stomia outcomes data show that there is minor xerostomia
recovery from the end of treatment to 3 months post-RT.
Therefore, our prediction outcome data could be slightly
biased toward a more severe xerostomia grade.

Third, we believe that the importance pattern identified
by our method depends not only on the actual relationship
between dose and xerostomia outcome, but also on the
range of dose variations in our patient cohort. Most pa-
tients have similar patterns of dose; therefore, evaluating
dose-response outside of the range of patterns delivered to
patients in the database is challenging. Even if we think
that areas with low-dose variation are likely to show weak
associations, our study still shows that the low-dose re-
gion on the contralateral parotid gland, which has a low-
dose variation, is the most influential region.

Fourth, the learned influence pattern depends on the
specific model we used (ie, ridge logistic regression). The
identified important region may be too big if the region that
contains highly correlated voxel dose is large. In addition,
our results indicate a possible serial component to the
behavior within the ipsilateral parotid (ie, high radiation
dose delivered tomedial portion of ipsilateral parotid [close
to ductal region]), and possibly causing an occlusion to the
duct, rendering the superior portion less important.

However, we did not explicitly model serial behavior
within organs because we modeled voxel dose as inde-
pendent features. This assumes that doses in different re-
gions within the analyzed organs influence xerostomia in
parallel. Explicitly modeling the dependency between
doses in different voxels may enable us to model possible
serial behavior of dose influence on xerostomia within or-
gans. However, we believe a hypothesis regarding certain
serial behavior or dependency between dose influence on
xerostomia in different regions is required beforehand to
investigate possible serial behavior. Without prior knowl-
edge and a hypothesis about any serial behavior, we
adopted the current modeling approach.

Fifth, the pattern of dose effect on xerostomia, as we
learned in this study, represents only the association be-
tween radiation dose and xerostomia. Sixth, because we
treated each voxel independently, we did not explicitly
consider the spatial coherence of the dose patterns.
However, ridge logistic regression handles the correla-
tions between voxel doses by assigning similar voxel
importance to highly correlated predictors, which is
inherent in the way we treated patients. Future efforts that
explicitly include the spatial coherence between dose
voxels in derived features may uncover interdependencies
that also relate to the xerostomia outcome. No conclusion
on the causal effect between dose and xerostomia was
established in this observational study. Finally, this study
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only included radiation doses in the PG and SMG, but
there is a study that reported that the mean dose to oral
cavity is associated with xerostomia as well.1

For future studies, we can apply this approach to pa-
tients with HNC at other hospitals that may have different
patient characteristics and radiation treatment plans to
validate our approach and the voxel importance pattern
we learned. Ultimately, we want to learn the causal effect
between radiation dose and xerostomia, which is difficult
using observational studies. Either an experimental study
or advanced causal inference analysis should be con-
ducted. Nabi and Shpitser recently proposed a causal
inference technique (ie, causal sufficient dimension
reduction) for high-dimensional treatments problems,23

which we are currently applying to our problem.
In this study, we focused on the methodology to study

the spatial pattern of dose influence on xerostomia. To
investigate the effect of possible interaction, reserve ca-
pacity, and compensation mechanism on xerostomia, we
are currently studying the spatial dose influence on
xerostomia recovery by comparing its influence pattern
with an acute xerostomia analysis. We believe this next
study will provide further implications of the biological
mechanisms behind dose effect on xerostomia.

Different dose and fractionation schemes are known to
have different biologic effectiveness for HNC treatment.
For our patient cohort, all 427 patients were treated with
33 to 36 fractions, and the highest dose-planning target
volume received was between 200 Gy and 220 Gy.
Therefore, fractionation schemes do not vary much
among our patient cohort. However, we believe a study of
the effect of different fractionation schemes on xero-
stomia would be interesting for future studies.

In addition, whether the current method combined with
conventional dosimetric features will yield better predic-
tion accuracy is another interesting research question for
future study. To combine the current method with con-
ventional dosimetric features, we can carve the parotid
and submandibular glands into different subregions
(larger than voxels), and compute dosimetric features for
each of the subregions. Those dosimetric features within
the carved subregions can be used to predict xerostomia.
Using this approach, we will still be able to capture the
spatial dependency between radiation dose and xero-
stomia and enables a more flexible modeling approach
because we can control the sizes of the carved subregions,
which may improve xerostomia prediction accuracy.
Finally, we will also include dose in oral cavity in our
study to investigate how dose in subvolumes in oral
cavity is associated with xerostomia.
Conclusions

We have identified that doses to specific subvolumes in
the PG and SM (ie, superior-anterior portion of the
contralateral PG) are the most predictive of xerostomia
and are within the low-dose bath region in our study
population. We also found that the medial portion of the
ipsilateral PG to be predictive of xerostomia. We believe
our methodology and the local dose effect pattern iden-
tified can help improve RT planning and reduce xero-
stomia for patients with HNC.
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