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Abstract: The polarization status of porcine alveolar macrophages (PAMs) determines the infec-
tivity of porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV infection skews
macrophage polarization toward an M2 phenotype, followed by T-cells inactivation. CD163, one of
the scavenger receptors of M2 macrophages, has been described as a putative receptor for PRRSV. In
this study, we examined two types of PRRSV-2-derived recombinant antigens, A1 (g6Ld10T) and
A2 (lipo-M5Nt), for their ability to mediate PAM polarization and T helper (Th1) response. A1 and
A2 were composed of different combination of ORF5, ORF6, and ORF7 in full or partial length. To
enhance the adaptive immunity, they were conjugated with T cells epitopes or lipidated elements,
respectively. Our results showed that CD163+ expression on PAMs significantly decreased after
being challenged with A1 but not A2, followed by a significant increase in pro-inflammatory genes
(TNF-α, IL-6, and IL-12). In addition, next generation sequencing (NGS) data show an increase in
T-cell receptor signaling in PAMs challenged with A1. Using a co-culture system, PAMs challenged
with A1 can induce Th1 activation by boosting IFN-γ and IL-12 secretion and TNF-α expression.
In terms of innate and T-cell-mediated immunity, we conclude that A1 is regarded as a potential
vaccine for immunization against PRRSV infection due to its ability to reverse the polarization status
of PAMs toward pro-inflammatory phenotypes, which in turn reduces CD163 expression for viral
entry and increases immunomodulation for Th1-type response.

Keywords: PAMs; CD163; PRRSV; M1; M2; Th1

1. Introduction

Porcine reproductive and respiratory syndrome virus (PRRSV) causes severe respi-
ratory and reproductive disease in swine worldwide. According to the current genetic
analysis by the International Committee on Taxonomy of Viruses (ICTV) PRRSV has been
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reclassified to the Betaarterivirus genus, belonging to the order Nidovirales and the Ar-
teriviridae family. Type 1 (European) and type 2 (American) are the two main genotypes of
PRRSV, which have been classified into two distinct virus species (namely Betaarterivirus
suid 1 and Betaarterivirus suid 2) [1]. European PRRSV has further divided into three
subtypes, pan-European subtype 1 and East European subtypes 2 and 3, and at least nine
different genetic lineages of North American PRRSV have been classified [2]. It consists
of an enveloped virus, positive single-stranded RNA and is encapsulated in nucleocapsid
proteins containing 11 open reading frames (ORFs), identified as ORF1a, ORF1b, ORF2a,
ORF2b and ORF3-7 [3–6]. ORF5, ORF6 and ORF7 encode a glycosylated membrane protein
GP5, a non-glycosylated membrane protein M, and the nucleocapsid protein N [7,8].

Receptor-mediated endocytosis and replication are processes of PRRSV entry into host
cells [9]. Here, there are six potential host cell receptors for PRRSV attachment, namely
heparin sulphate, vimentin, CD151, CD163 (scavenger receptor for the haemoglobin-
haptoglobin complex), sialoadhesin (CD169), and DC-SIGN (dendritic cell-specific in-
tercellular adhesion molecule-3-grabbing non-integrin, known as CD209) [10]. GP5 is
the dominant glycoprotein on the viral surface and is considered the major envelope
glycoprotein. In contrast, the glycoproteins GP2, GP3, and GP4 were recognized as the
minor envelope glycoproteins due to their lower presence on the viral surface [8]. Nowa-
days, ORF5 is being one of the most promising targets for the development of the new
generation of vaccines against PRRSV. However, some of the experimentally developed
PRRSV-expressing GP5 vaccines showed that the neutralizing antibodies are weak [11]. In
Wang’s (2009) study [12], they immunized mice and pigs with recombinant adenovirus
expressing porcine GM-CSF-GP3-GP5 (rAd-GF35) and determined the responses after im-
munological challenges. The results described that the antibodies against PRRSV GP3/GP5
developed in animals after inoculation with rAd-GF35. Nonetheless, they did not find
the secretion of IFN-γ after challenge and they did not measure the correlation between
the level of cell-mediated immunity (CMI) and viremia. IFN-γ and TNF-α are important
cytokines that induce the response of CD4+ T-cells upon vaccination [13]. However, the
underlying mechanism of T-cells-mediated immunity to PRRSV is not fully understood
and further studies are needed.

Currently, the most efficient and functional method to prevent the PRRSV disease
is vaccination. The commercially attenuated live PRRSV vaccines are a tool for valuable
disease control, but have limited efficacy in protecting against infections with the genetically
diverse field strains of PRRSV and carry the potential risk of becoming virulent again.
Lower efficacy in preventing infectious disease has also been observed with killed PRRSV
vaccines [14–17]. To date, the success of the majority of vaccines relies on their capability to
target specific pathogen antigens which could induce humoral immune response in the
host. On the other hand, cell-mediated immunity is less achievable with current vaccination
strategies, and this leads to most chronic infections. Some developed vaccines carry several
potential risks, such as the risk of co-purification of undesirable contaminants or reversal
of toxoids to their toxigenic form when considering diphtheria or tetanus toxoid vaccines.
Recombinant protein vaccines have the potential to avoid these potential risks [18]. B- and
T-cells have become the focus of vaccine development research in recent years. However,
innate immune cells have a pivotal role in vaccination to promote the expression of long-
lasting adaptive immune responses. In order to get an effective vaccination, we need
an immune response to immunization, and this can be provided by both the innate and
adaptive immune systems. Furthermore, there are two critical points to be considered
in order to produce an effective immunization, which are the induction of long-term
stimulation of the humoral and cell-mediated arms of the adaptive system that can be
produced by the production of effector cells and memory cells [19]. Salerno et al. (2012) [20]
reported that the induction of strong and persistent memory T-cells and cell-mediated
immunity (CMI) responses supported vaccination success. CMI responses were dependent
on two cell types, namely CD4+ and CD8+ T-cells. CD8+ T-cells protecting the host cells
from pathogen by destroying infected or tumor cells and secreting interferon-γ (IFN-γ)
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and other cytokines. CD4+ T-cells play the important role in host defense supported by the
two main subpopulations: Th1, which in generally trigger inflammatory responses and the
differentiation of CD8+ cells, and Th2, which support the production of specific antibodies.

Primary porcine alveolar macrophages (PAMs) are the major target host cells of
PRRSV infection and are known to express CD14, SLA II, CD163, CD169, CD203, SWC3
(CD172a), and CD16 receptors [21,22]. A previous study demonstrated that by introducing
the CD163 gene alone into immortalized PAMs (iPAMs) was sufficient to restore PRRSV
susceptibility, suggesting that CD163 was the sole determining factor in PAMs for PRRSV
entry [23]. CD163 is a scavenger receptor expressed on monocytes/macrophages and was
determined to be a well-characterized M2 marker since its expression was upregulated
during macrophage differentiation of human blood monocytes stimulated by macrophage
colony-stimulating factor (M-CSF) [24,25]. Moreover, CD163 reduced the expression of
TNF-α and other pro-inflammatory factors [26]. High expression of CD163 in macrophages
indicates potent anti-inflammatory potential and phagocytic ability of macrophages to clear
debris and apoptotic cells [25]. Wang (2017) [27] demonstrated that the M1 type strongly
inhibits replication of highly pathogenic PRRSV (HP-PRRSV), but not in M2-type PAMs.
Moreover, their results showed that HP-PRRSV infection promotes the repolarization of
M2-type PAMs. These findings strongly suggested that HP-PRRSV infection can modulate
macrophages polarization. The presence of CD163+ in M2-type macrophages suppresses
T-cell proliferation and pro-inflammatory cytokine secretion. On the contrary, T-cells
proliferation and pro-inflammatory cytokine production was significantly increased in
CD163-deficient macrophages in osteosarcoma [28]. M2 macrophage polarization was
mediated by IL-4 alters secretion of IL-13 during Th2-type response. In contrast, the first
line of defense against intracellular pathogens was initiated by M1 macrophages through
the secretion of IL-12, which promoted or enhanced the Th1 type of CD4+ lymphocytes [29].
Th1 cells also provoke the production of immunoglobulin G2a (IgG2a) antibodies in B-cells
to optimize the ability of viral clearance and to clear extracellular bacteria [30]. In our
previous study, the production of neutralizing antibodies in vaccinated pigs was generally
poor in parallel with showing an immunosuppressive serum by increasing IL-10 and
Treg cells. Therefore, recombinant antigen derived from PRRSV was thought to induce
immunosuppression, just as a true virus, through the induction of M2 polarization of
PAMs in pigs. The aim of this study was to evaluate the effects of the two recombinant
antigens, A1 (g6Ld10T) and A2 (lipo-M5Nt), with respect to their ability to mediate innate
and T-cell-mediated immunity prior to humoral immunity after vaccination, as a novel
vaccine candidate.

2. Materials and Methods
2.1. Ethics Statement

The lung collection and pig euthanization were approved by the Institutional Animal
Care and Use Committee (IACUC) of Veterinary Medicine at National Pingtung University
of Science and Technology (NPUST), Taiwan.

2.2. Pigs and Inoculations

This study was performed on specific pathogen free (SPF) piglets, approximately eight
to eleven weeks of age and nine to twelve kg in weight. They were raised in a room with
positive pressure in NPUST Animal Diagnostic Center.

2.3. Constructed the Recombinant Protein Antigen

Antigen 1 (A1) was constructed from the complete sequence of ORF5 combined with
the partial sequence of ORF6 and the copies of T-cell epitopes (Supplementary material
Figure S1). The recombinant antigen was expressed using the baculovirus expression sys-
tem. Lipidated recombinant protein antigen 2 (A2) was constructed from the combination
of the ORF5, ORF6 and ORF7 sequences and expressed using the Escherichia coli (E. coli)
expression system (Supplementary material Figure S2).
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2.4. Collecting Porcine Alveolar Macrophages (PAMs)

Pigs were euthanized by exsanguination. The trachea was ligated to prevent total
pulmonary collapse, followed by the removal of heart and lungs from the thorax. Alve-
olar macrophages were harvested aseptically from fresh lungs. The lungs were washed
intratracheally 2–4 times with phosphate buffered saline (PBS), and the wash fluids con-
taining PAMs were centrifuged for 10 min at 800× g. The collected PAMs were seeded in
12-well plates and maintaining with complete RPMI-1640 medium (Corning, Manassas,
VA, USA) containing 10% fetal bovine serum (FBS) (Hyclone, Logan, UT, USA) at 37 ◦C in
a humidified 5% CO2 atmosphere.

2.5. Cytokine Stimulation

PAMs were seeded in 12-well plates and divided into five groups; control (untreated);
1 µg/mL LPS (Sigma-Aldrich, Steinheim, Germany) added; 20 ng/mL IL-4 (BIOTECH,
INC, Alpharetta, GA, USA) added; 5 µg/mL of A1 added; and 5 µg/mL of A2 added. After
24 h of treatment, cells were collected to extract RNA and perform qPCR analyses.

2.6. RNA Extraction and Quantitative Real-Time Polymerase Chain Reaction

Total RNA was prepared using Trizol reagent (Invitrogen, Waltham, MA, USA) accord-
ing to the manufacture’s protocol. Total RNA (1 µg) was used in the reverse transcription
(RT) reaction by iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA). The quantitative
real time PCR was performed using KAPA SYBR® FAST qPCR Master Mix (2X) Kit (KAPA
Biosystem, Wilmington, DE, USA) according to the manufacturer’s protocol. Quantitative
PCR reactions were performed using a QIAGEN Rotor Gene Q Real-Time PCR. β-actin was
used as the endogenous reference gene since it has the highest stability across pig tissues
compared to the other reference genes [31]. The primer sequences (5′–3′; forward, reverse)
were showed in Table 1. The amplification steps were set for 3 min at 95 ◦C, followed by
40 cycles of denaturation at 95 ◦C for 3 s, and annealing at 60 ◦C for 20 s. The data were
calculated using the standardized mRNA level comparative methods 2−∆∆Ct. The 2−∆∆Ct

method is a convenient way to analyze the relative changes in gene expression with a high
efficiency qPCR assay [32].

Table 1. Primer sequences.

Gene Name Primer Sequences (5′–3′)

Porcine IL-6
GCTGCTTCTGGTGATGGCTACTGCC

TGAAACTCCACAAGACCGGTGGTGA

Porcine TNF-α
ATGAGCACTGAGAGCATGATCCG

CCTCGAAGTGCAGTAGGCAGA

Porcine Arg-1
AGCCCGTGTCAACATGACTTCC

TTGTGTTGGCATCTTTACTGA

Porcine IL-12
CTCCCACACCGAAGCTTGAA

TTCTTCACCATGGGGGCT

Porcine β-actin
ACAGACAGCCGTGTGTTCC

ACCTTCACCATCGTGTCTCA

2.7. Next Generation Sequencing (NGS) Analysis

The cDNA libraries were collected from pooling of six independent samples in each
group. Then, cDNA libraries were assessed on the Agilent Bioanalyzer 2100 system and
a Real-Time PCR system. Housekeeping gene (β-actin) was served as an internal control
to verify the cDNA quality and quantity in PCR. NGS was performed externally at the
Genomics on an Illumina Novaseq 6000 with 150 bp paired-end reads (Genomics, BioSci &
Tech Company, New Taipei City, Taiwan). Raw-sequencing reads were filtered using the
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program Trimmomatic (version 0.36) [33]. Read alignments were assembled using Bowtie2
(version 2.3.5) [34]. The raw gene counts were extracted with RSEM (version 1.3.3) [35]. The
R package EdgeR v3.16.5 tool was used for differential gene expression analysis between
two sample groups. In addition, the log2 Fold Change (log2 FC) was calculated using
the log2 (sample count A/sample count B). Significant differences between two sets of
samples were identified by t-test with p < 0.05. A gene ontology (GO) enrichment analysis
was conducted on the differential genes obtained through screening, and when p < 0.05,
the GO terminology is regarded as significantly enriched [36]. The Kyoto Encyclopedia
of Genes and Genomes (KEGG, https://www.genome.jp/kegg/kegg2.html (accessed on
26 January 2021). was used for gene enrichment of differentially expressed genes [37].
The datasets presented in this study can be found in online repositories (NCBI Biopro-
ject PRJNA665327:https://dataview.ncbi.nlm.nih.gov/object/PRJNA726625) (accessed on
1 May 2021).

2.8. Integration of the Protein-Protein Interaction (PPI) Network

The potential differential expression gene (DEG) interactions at the protein level were
explored by the Search Tool for the Retrieval of Interacting Genes (STRING; string-db.org).
The PPI networks of DEGs by STRING were derived from validated experiments. p < 0.05
was considered to indicate a statistically significant difference.

2.9. Isolation of Porcine Peripheral Blood Mononuclear Cells (PBMC)

Peripheral blood mononuclear cells (PBMCs) were isolated by using Ficoll-Paque
(GE Healthcare BioScience, Uppsala, Sweden) density-gradient centrifugation at 400× g
for 30 min according to the manufacturer’s instructions. PBMCs were washed three
times in RPMI 1640 (Corning, Manassas, VA, USA), and resuspended in advanced RPMI
1640 medium containing 10% fetal bovine serum (FBS) (Hyclone, Lo-gan, UT, USA) for
further experiments.

2.10. Fluorescence Activated Cell Sorting (FACS) for T-Cell Subsets

For T-cells subset, PBMCs were sorted by FACS into subpopulations for co-culture
experiments. Briefly, 1 × 106 cells/mL were stained with 0.05 µg anti-pig FITC-CD4+

antibody (Ab24989, Abcam, Cambridge, UK) and 10 µg anti-pig CD25+ primary antibody
(MCA1736GA, Bio-Rad) on ice in dark for 30 min, followed by staining with 5 µg anti-
mouse R-Phycoerythrin-conjugated IgG1 secondary antibody (STAR132PE, Bio-Rad) on ice
in dark for 30 min. Hereafter, the stained cells were washed twice with cold PBS before
acquisition on BD FACS Aria II cells sorter (BD Biosciences, San Jose, CA, USA). Two
subpopulations of T cells were sorted based on the expression of CD4+CD25− (Th1) and
CD4+CD25+ (Treg).

2.11. Flow Cytometry Analysis

PAMs (1 × 106 cells/mL) were collected and washed once with cold PBS containing
0.5% BSA (Sigma-Aldrich, Steinheim, Germany). Cells were incubated with fluorescence-
conjugated antibodies in 1 µg FITC-SLA II+ (Bio-Rad), 5 µg FITC-CD14+ (Invitrogen),
0.1 µg APC-CD80+ (Invitrogen), and 1:10 dilution of PE-CD163+ (Invitrogen), on ice in
dark for 30 min. The cells were then washed by centrifugation at 300× g for 5 min and
resuspended in 500 µL to 1 mL of cold PBS. The expression of surface protein on cells
were measured by using the flow cytometry (BD Biosciences, San Jose, CA, USA), and
the analysis was performed using BD FACSDiva Software (BD Biosciences) and FlowJo
Software (Tree Star, Inc., Ashland, OR, USA).

2.12. Th1 Cytokines Assay

In an indirect transwell co-culture system, 2 × 106 PAMs were seeded at the bottom
of the transwell system overnight. Then after, the cells were stimulated by antigens A1 or
A2 and 2 × 105 T-cells subset (CD4+CD25− or CD4+CD25+) were seeded into the upper

https://www.genome.jp/kegg/kegg2.html
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chamber of the transwell insert, simultaneously. The co-culture dish was followed by
incubation in standard conditions (5% CO2; 37 ◦C) for 48 h. Then, conditioned medium
was collected for Th1 cytokines assay. Briefly, cytokine concentrations were determined
from a standard curve created by a reference preparation of IL-10, IFN-γ (Thermo Fisher
Scientific, Vienna, Austria) and IL-12 (R&D System, Abingdon, United Kingdom) from
commercial ELISA kit according to the protocols provided by the manufacturers. The
optical density A450 nm of each well was measured by EZ Read 400 Microplate Reader
(Biochrom, Cambridge, UK).

2.13. Statistical Analysis

Data were presented as mean ± SEM when indicated. Statistical analysis was con-
ducted by t-test with a 95% confidence limit, and one-way ANOVA followed by Tukey’s
test for multi comparisons based on a Shapiro–Wilk test for normality. The data analysis
was performed using Prism 8.0 (GraphPad Software Inc., San Diego, CA, USA). Differences
were considered significant at p < 0.05.

3. Results
3.1. A1 Directs Macrophages Polarization toward M1 Macrophages and Downregulation of
CD163 Expression

A homogeneous and stable subset of cells compatible with PAMs due to their size
and granularity were identified in all control and PRRSV-infected pigs. However, this
subset decreased proportionally in infected groups compared to the control. We presented
the gating strategy to obtain the living cells in terms of cell size and granularity based
on forward light scatter/side light scatter (FSC-A/SSC-A) and excluded the aggregated
cells by FSC-W/FSC-H as well as SSC-W/SSC-H (Figure 1a). Since PAMs represent the
PRRSV target cells in pigs, the first objective of our study was to determine the specific
markers associated with these cells. Among them, CD14 was first investigated as a marker
of the myelomonocytic phenotype. A representative histogram is shown in Figure 1b–d.
Furthermore, PAMs are known to express both SLA II and CD163 receptors [38]. In
agreement with the previous literature, we confirmed that 91.3%, 97.5%, and 95.2% PAMs
isolated from healthy pigs expressing CD14, SLA II, CD163 positive, respectively. On the
contrary, only a small percentage of cells (23.8% and 23.1%) expressing CD14+ and CD163+

were found in PAMs isolated from PRRSV-infected pigs. This result complements an article
which demonstrated that the proportion of CD163+ cells was decreased after eight days
post-infection of PRRSV [39]. Meanwhile, our result also showed a significant decrease in
the percentage of cells expressing CD14+, SLA II+, and CD163+ between PRRSV-infected
and healthy pigs (Figure 1e). Nevertheless, the mean fluorescence intensity (MFI) of CD14+

and CD163+ was significantly higher in PAMs isolated from PRRSV-infected pigs. The
increase in CD14+ indicates a strong infiltration of monocytes in the lungs, which is in
agreement with the statement of Van., et al. (2004) [40], who showed that CD14 was
significant increase in the lungs of pigs after PRRSV infection. A significant increase in
MFI of CD163+ during late gestation and PRRSV type 2 infection in pregnant gilts was
also demonstrated in the previous study by Novakovic, et al. (2016) [41]. Moreover,
the significant increase in MFI of CD163+ in PRRSV-infected pigs probably was due to
the polarization of the M2 phenotype after infection, and indicates that CD163 plays an
important role in receptor for viral infection (Figure 1f).
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from a representative pig of the control and PRRSV-infected group. We excluded more dead cells 
in the lower levels of FSC/SSC. The circles indicate living potential of PAMs according to light scatter 
properties (size and granularity). The combination of width and height of FSC and SSC, respec-
tively, indicate the singlets of cells. (b–d) Representative flow cytometry histogram of PRRSV-in-
fected PAMs. Samples were calculated from three pigs (duplicate each pig). Red color histogram 
represents signal for each specific antibody, and blue color histogram represents unstained. Cells 
percentage (e,f) mean fluorescence intensity (MFI) of CD14+, SLA II+ and CD163+ were detected with 
a specific monoclonal antibody, followed by a FITC-conjugated anti-mouse antibody and analysis 
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Figure 1. Surface marker expression on alveolar macrophages from animals infected with PRRSV. (a) Gating strategy of
healthy PAMs and PRRSV-Infected PAMS. Dot plots (FSC-Area vs. SSC-Area) from a representative pig of the control and
PRRSV-infected group. We excluded more dead cells in the lower levels of FSC/SSC. The circles indicate living potential of
PAMs according to light scatter properties (size and granularity). The combination of width and height of FSC and SSC,
respectively, indicate the singlets of cells. (b–d) Representative flow cytometry histogram of PRRSV-infected PAMs. Samples
were calculated from three pigs (duplicate each pig). Red color histogram represents signal for each specific antibody, and
blue color histogram represents unstained. Cells percentage (e,f) mean fluorescence intensity (MFI) of CD14+, SLA II+

and CD163+ were detected with a specific monoclonal antibody, followed by a FITC-conjugated anti-mouse antibody and
analysis by flow cytometry. The level of expression of non-infected animals is included as a control. Statistical differences
were established by mean ± SEM (* p < 0.05).
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To further validate the effect of antigens on macrophages polarization, we challenged
PAMs with recombinant PRRSV-2 antigens (A1 and A2). The results showed that PAMs
challenged with A1 enhanced the upregulation of pro-inflammatory genes (TNF-α, IL-6
and IL-12), suggesting that A1 promotes M1 macrophages polarization, but not in PAMs
challenged with A2. In contrast, A2-challenged PAMs up-regulate the expression of Arg-1,
one of the anti-inflammatory gene representatives for M2 macrophages (Figure 2a). These
results suggest that A1 may be a candidate for inhibiting PRRSV infection by regulating
macrophages polarization. There were no significant differences on SLA II+ and CD80+

surface protein marker between A1 and A2 induction. However, the number of cells-
expressing CD163+ were significantly decreased after they were treated with A1 (Figure 2b).
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titative PCR (qPCR). A1 promote up-regulation the mRNA level of pro-inflammatory genes and down-regulate the
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3.2. A1 Stimulate Endogenous Pro-Inflammatory Gene for T-Cell Receptor (TCR)
Signaling Pathway

To verify additional pro-inflammatory genes involved in the regulation of macrophages
polarization by these recombinant antigens, we next performed transcriptome analy-
sis of PAMs challenged with A1 versus A2. Our results showed that some of the pro-
inflammatory genes, such as Nf-kB, NNT, TNF-α, and JARID2, were included in the top
50 upregulated genes in PAMs challenged by A1 (Figure 3a). In contrast, some of anti-
inflammatory genes, such as Arg-1, SLC7A6, MAP4, and GATAD2A, were included in
total top 50 downregulated genes (Figure 3b). Some of the differential expression genes
also showed the significant changes in A1 compared to control (shown in the highlighted
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bars). We interestingly found that several special genes have different variants in the
heatmap. These genes with the variants were represented by the code number on the
Y-axis of the heatmap (Supplementary Material Figure S3a). Except for this, the majority
of anti-inflammatory genes among the variants were downregulated in A1 compared to
A2, such as CD274 and UBAP2L. In contrast, the majority of TLR8 variants, one of inducer
of IFN-γ, were up-regulated in A1 compared to that in A2. In order to verify the quality
and quantity of cDNA libraries in the PCR conditions, we used the β-actin as an internal
control. Our results showed that the melting curve of β-actin reflects the specific amplicon
in RT-PCR (Supplementary Material Figure S3b). In addition, the cycle threshold (Ct)
values of β-actin in all samples among the groups were in consistency, by a range of 19–24,
showing no significant differences statistically (Supplementary Material Figure S3c). Our
β-actin gene expression level was also elucidated from the NGS data, which also manifested
no significant differences among the groups by log2 FC value (Supplementary Material
Figure S3d). According to these aforementioned results, the quality and quantity of cDNA
libraries were identical among the groups. There were some overlapping genes among
the A1 and A2 (Figure 3c). Furthermore, the data showed that there were 8 overlapping
pathways enriched in up- and down-regulated genes. Nevertheless, T-cell receptors (TCRs)
signaling pathway was enriched only in up-regulated genes, which were promoted by A1.
This finding strongly suggests that endogenous genes expressed in A1-challenged PAMs
promote the activation of TCR signaling pathway and regulate the immune system process
(Figure 3d,e).
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3.3. A1 Potentially Regulate Immune Response by Promoting Rap1 Signaling Pathway and
Protein-Protein Interaction (PPI) Network

Furthermore, we investigated the correlating genes involved in the immune response
process in their respective signaling pathways using the Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analyses mapping tool. Surprisingly, we found that
the Rap1 pathway, the key regulator of T-cells activation, was highly enriched in PAMs
induced by A1 (Figure 4a). Consistent with our previous finding, the Rap1 pathway could
be stimulated by TCR activation, leading to proliferation, survival, and gene activation
(Figure 4b). Similarly, we found that the C-type lectin receptors (CLRs) signaling pathway
were also enriched. CLRs promote various signaling pathways that lead to the expression
of specific cytokines that determine T-cell differentiation status [42]. To investigate the
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potential protein-level interactions of differentially expressed genes (DEG) in regulating
the immune response, we generated an analysis of predicted protein-protein interactions
(PPI) of differentially expressed genes using Search Tool for Retrieval of Interacting Genes
(STRING) analysis. The results showed that some of the predicted proteins secreted by
PAMs challenged by A1 were correlated with inflammatory and immune responses, such
as caspase1, IL-18, PIK3CB, and IKKB (Figure 4c).
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On the other hand, downregulation of anti-inflammatory genes could act to suppress
estrogen signaling, as in the KEGG mapping tool (Figure 5a,b). Additionally, these genes
likely stimulate the downregulation of three negative regulator proteins of T-cell activation,
namely ISG15, USP18, and DAPK1, as shown in Figure 5c.
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3.4. PAMs Induced by A1 Activate Th1-Cells by Boosting Th1 Cytokine Secretion and
TNF-α Expression

It is generally believed that T helper (Th1) and regulatory T-cells (Treg) play an im-
portant role in dampening immune responses to antigens. To determine whether PAMs
challenged by A1 are able to induce significant modulations in the mRNA level of tran-
scription factors and cytokines related to the differential polarization of the T-cells immune
response (Th1 and Treg), we observed the cytokine secretion profile of IL-10, IL-12, and
IFN-γ using ELISA. The results showed that there was no significant difference in the
secretion of IL-10 (Figure 6a). Remarkably, A1 induced the secretion of IFN-γ from PAMs
co-cultured with Th1 cells (Figure 6b), representing a Th1 cells activation. Recently, Tregs
have been shown to inhibit the proliferation of several immune cells, including B-cells,
natural killer (NK) cells, natural killer T (NKT) cells, CD4+, and CD8+ T-cells, as well
as monocytes and dendritic cells (DCs) [43]. Additionally, IL-12 was released from both
Th1/Treg cells triggered by A1 (Figure 6c). Related to these results, real-time quantitative
RT-PCR analysis showed that A1-challenged PAMs cocultured with Th1 up-regulated the
expression of IL-6 (Figure 6d). Interestingly, cell-cell interaction of A1-induced PAMs with
T cells increased TNF-α expression up to 80-fold (Figure 6e), compared with A1-induced
PAMs alone in monoculture system, as shown in our previous result (Figure 2a). However,
there were no significant differences in Arg-1 expression (Figure 6f). We emphasize that
the Th1-type immune response stimulated by A1 is purely derived from A1 protein itself,
since the baculovirus expression system has advantages of free endotoxin in recombinant
protein production compared to that from the E. coli expression system we used for A2
production. Cox (2009) [44] have shown that the baculovirus expression vector system
produces large amounts of proteins that have similar biological activities to the original
proteins than proteins expressed in bacterial systems. In addition, the use of insect cells can
help to eliminate endotoxin contamination, leads to endotoxin-free recombinant antigen,
and stimulates cytokine secretions. In contrast, the E. coli expression system has several
disadvantages, including the LPS endotoxin [45]. LPS contains lipid A, a non-repeating
“core” of oligosaccharide that has the endotoxic properties and is recognized by its Toll Like
Receptor 4 (TLR4). It was known that TLR4 is expressed on the cell surface of macrophages
and the activation of TLR4 mediates the inflammatory response in lung macrophages [46].
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gene expression determined by real-time PCR. The genes profile of (d) IL-6, (e) TNF-α were up-
regulated by challenge with A1, but no any significant at (f) Arg-1. Isolated PAMs were challenged
with antigens followed by co-cultured with CD4+CD25+ Tregs or CD4+CD25− Th1 cells for 48 h.
Protein concentrations were measured by ELISA and determined by mean ± SEM, calculated from
3 pigs (duplicate each pig), * p < 0.05 compared to PAMs group.

4. Discussion

PRRSV infection was indicated by pregnancy loss and poor reproductive performance
in pregnant sows, while in young pigs and in piglets it showed in symptoms such as respi-
ratory distress and high excess mortality [47]. In PRRSV, the major envelope glycoprotein
(GP5) encoded by ORF5 forms a heterodimer membrane protein with non-glycosylated
M protein encoded by ORF6. ORF7 encodes the nucleocapsid (N) protein and is known
to be highly immunogenic in infected animals [48]. Here, we observed the two types of
recombinant proteins mainly derived from antigenic epitopes of PRRSV-2 in stimulating
innate and T-cell-mediated immunity as a novel vaccine candidate against PRRSV. A1 was
designed from the complete sequence of ORF5 in combination with a partial sequence of
ORF6 and provided with copies of T-cell epitopes so that it was delivered by the baculovirus
expression system. Sewel et al., 2020, [49] showed that T-cells play an important role in
protecting against many viral infections through processes known as cellular immunity.
A2 was constructed as a lipidated recombinant protein containing ORF5, ORF6 and ORF7
generated using the E. coli expression system.

PRRSV specifically infects certain subsets of differentiated macrophages in the lung
and replicates in monocytic lineage cells, particularly porcine alveolar macrophages
(PAMs) [27]. Macrophages play an important role in immune effectors and antigen pre-
senting cells [50]. According to their functions and expression markers, macrophages were
classified into classically activated macrophages (M1/kill macrophages) and alternatively
activated macrophages (M2/repair macrophages) [51–53]. M1 macrophages were charac-
terized by high expression levels of the major histocompatibility complex class II (MHC
II), the CD68+ marker, and the co-stimulatory molecules CD80+ and CD86+. In addition,
upregulation of the intracellular protein Suppressor of Cytokine Signaling 3 (SOCS3) and
activation of inducible nitric oxide synthase (NOS2 or iNOS) have been demonstrated in
M1 macrophages. In contrast, activation of M2 macrophages results in the secretion of
high amounts of IL-10 and low amounts of IL-12. To promote their growth, they have also
been shown to express high amounts of E- and C-type scavenger mannose and galactose
receptors [54]. The expression of some surface markers such as mannitol receptor, CD206,
CD163, CD209, FIZZ1, and Ym1/2 were also used to identify M2 macrophages [55].

In terms of mean fluorescence intensity (MFI), the expression of CD163 was signifi-
cantly up-regulated on PAMs infected with PRRSV, but not with A1 (Figures 1f and 2b).
However, the total percentage of CD163+ cells was significantly decreased after A1 chal-
lenge (Figure 2b). A study proved that CD163 is critical for PRRSV replication and plays
an important role in mediating viral internalization and degradation. Overexpression of
CD163 contributes to the susceptibility of non-permissive cell lines to PRRSV infection.
By binding to the three structural proteins GP2, GP4 and GP5, CD163 mediates entry and
attachment of the virus to susceptible host cells [56].

Since macrophages polarization plays an important role in PRRSV infection, we then
characterized M1/M2 macrophages polarization on PAMs challenged by A1/A2. Interest-
ingly, our results showed that A1 potently repolarizes macrophages into M1 macrophages
compared to macrophages challenged with A2, as indicated by significant upregulation of
pro-inflammatory genes (TNF-α, IL-6 and IL-12) in PAMs challenged with A1 (Figure 2a). In
contrast, A2 induction significantly up-regulates the anti-inflammatory gene Arg-1. More-
over, data from next-generation sequencing (NGS) supported our gene profiling results.
They revealed that some pro-inflammatory genes were upregulated in PAMs challenged
with A1 compared to A2 (Figure 3a,b). These genes include Nf-kβ, NNT, NFAT5, PI3KCB,
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and JARID2. Nuclear factor-κβ (Nf-kβ) synthesizes cytokines, such as TNF-α, IL-1β, IL-6,
and IL-8, and thereby regulates pro-inflammatory genes [57]. The other pro-inflammatory
genes, nuclear factor of activated T-cells 5 (NFAT5), enhance pro-inflammatory macrophage
polarization when appropriately stimulated and would be neutralized in a pro-M2 tumor
microenvironment [58–60]. Taken together, the NGS reported the shared genes involved
in regulating signaling pathway. Additionally, we found that the T-cells receptor (TCR)
signaling pathway were up-regulated (Figure 3d). A study demonstrated that the strength
of TCR signaling guides the development of CD8+ T-cells in the thymus, a process that may
have a direct impact on autoimmune diseases [61]. In cooperation with cytokine signaling
pathways, co-stimulatory molecules, chemokines, integrins and metabolites, TCR signaling
drives the differentiation of activated T-cells into specific T-cell subtypes, namely T helper
type 1 (Th1), Th2, Th17, follicular T helper and regulatory T-cells (Treg) [62].

In order to investigate the relevance of the different sets of genes, we created the
KEGG Pathway Enrichment Analysis. Our analysis showed the enrichment of a total of
19 KEGG and 4 KEGG pathways in 50 up- and down-regulated genes in A1-challenged
PAMs compared to their counterpart challenged by A2 (Figures 4 and 5). KEGG pathway
enrichment analysis revealed that the repressor activator protein 1 (Rap1) pathway is one
of the most highlighted pathways and is modulated by TCR activation, supporting our
previous finding from NGS. Rap1 plays a critical role in modulating T-cell responses and
regulates interactions between T-cells and antigen-presenting cells (APCs). In one study,
antigen-dependent Rap1 activation was shown to enhance T-cell-APC interactions and
trigger activation-induced cell death (AICD) [63]. Additionally, the down-regulation of anti-
inflammatory genes has significant correlation with estrogen signaling pathway. Estrogen
functions as a key regulator of anti-inflammatory responses and stimulates alternative
macrophages polarization during cutaneous repair [64]. These results strongly suggest that
A1 promotes the repolarization of PAMs toward M1 and can regulate the activation of Th1
cells through the secretion of pro-inflammatory cytokines.

The defenses of the innate immune system depend on three complement pathways in
triggering a localized inflammatory response (which are the classical pathway, the alter-
native or properdin pathway, and the lectin pathway) to initiate a localized inflammatory
response. Activation of the lectin pathway was not dependent on antibodies and is caused
by the attachment of plasma mannose-binding lectin (MBL) to microbes [65]. In line with
the reference, we found that C-type lectin receptors (CLRs) pathway was enriched in
A1-challenged PAMs. CLRs signaling could be one of the targets for vaccine development.
Signaling pathways induced by CLRs have the potential to directly activate the transcrip-
tion factor NF-κB. Recognition of CLRs leads to several properties that are important for
vaccine design, including pathogen internalization, degradation, and subsequent antigen
presentation [66].

We then tested the effect of recombinant antigens on Th1 cells activation. We used a
T-cell co-culture system for the experiments, and the results showed that A1 promoted Th1
activation by secretion of IFN-γ cytokines (Figure 6b). Our results are in agreement with
the literature showing that the inflammatory process is dominated by IFN-γ-producing
Th1 cells [67]. It is known that activated Th1 cells potentially secrete proinflammatory
cytokines IL-2, IFN-γ and lymphotoxin-α (LT, TNF-β), and enhance B-cells maturation and
the production of IgG2a antibody that optimize clearance of viruses and extracellular bac-
teria [29]. Moreover, Th1 cells are involved in cell-mediated immunity (CMI) by inhibiting
infections through induction of complement fixation, opsonizing antibodies, and antibodies
involved in antibody-dependent cell cytotoxicity, such as IgG1 in humans and IgG2a in
mice [68]. CMI is clearly one of the most important regulators in PRRSV infection [69].
Gujer et al., 2011, [70] determined that IFN-γ secreted by human plasmacytoid dendritic
cells (PDCs) stimulate B-cells proliferation and differentiation to antibody-secreting cells by
enhancing the interactions of B- cells and T-cells. Surprisingly, the pro-inflammatory gene
profile of TNF-α was boosted up to 80-fold after A1-induced PAMs interacted with Th1
cells when we compared it with A1-induced PAMs alone in the mono cell culture system
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(only 15-fold) (Figure 6e). In combination of IFN-γ secretion, these results proved that Th1
cell activation was triggered by cell-cell interaction of A1-induced PAMs and T cells. In
addition, the expression of IL-6 was also significantly increased after being challenged with
A1 compared to the control and A2 groups (Figure 6d). It is noteworthy that IL-6 binds to
the receptors (CD126 and CD130) to regulate B-cells proliferation [71]. Furthermore, our
results indicate that A1 might regulate the Th1 type response through the interaction of the
Caspase-1 (Casp1) and interleukin 18 (IL-18) proteins. Pro-inflammatory cytokine IL-18 has
the potent ability to support Th1 activation, but not Th1 development, and secrete IFN-γ in
the presence of IL-12 [72]. Indirectly, the up-regulated gene sets promote the interaction
of inhibitor of the nuclear factor kappa B kinase subunit B (IKBKB or IKKβ) protein, thus
promote B-cells differentiation. IKKβ is considered to be a key factor of antibody-mediated
immunity that provides an essential role in the activation of B-cells and the maintenance
of B-cell survival, and IKKβ knockdown significantly induce cell death in all peripheral
B-cell [73]. Besides, we described that the down-regulated genes in PAMs challenged by A1
possibly inhibits the interaction of ISG15 and USP18 as negative regulators of the immune
response. High levels of free ISG15 were confirmed to be released by M2 macrophages and
exert pro-tumor activity in pancreatic ductal adenocarcinoma (PDAC) by regulating PD-L1
expression [74]. By directly inhibiting type I IFN receptor signaling and regulating the
expression program cell death-1, Usp18 has been shown to function as a negative regulator
of innate anti-viral responses [75].

The question was, unlike A1, why A2 did not provoke Th1 response. One possible
explanation for it was that A2 was engineered with lipidated recombinant protein that
provides support only for B-cells activation as a humoral immune response, while A1
was engineered with T-cell epitopes that promote cell-mediated immune response. T-
cell-inducing vaccines have been developed to induce CD4+ and/or CD8+ cells to give a
protective adaptive immune response against viral infection. Recent clinical trials have
now reported the strong protective effect of T-cell-inducing vaccines against a range of
diseases, including HIV, malaria, influenza, tuberculosis, and cancer [76]. On the contrary,
vaccination of mice with lipidated pneumococcal lipoproteins enhanced antibody-mediated
immunity compared with vaccination with non-lipidated proteins, but had no significant
effect on the CMI responses [77]. Another possibility is caused by ORF7, which is involved
in A2. Conceivably, it is possible that ORF7 should play an essential role in inhibiting the
cell-mediated immune response in PAMs against PRRSV. As described in a previous study,
a robust T-cell response was induced by the PRRSV ORF6 (M) protein, whereas the PRRSV
ORF7 protein induced a weak ability to stimulate T-cells [78]. Similarly, the neutralizing
antibodies were not generated by antibodies directed against ORF7, although this is the
most abundant and used for serological tests [79,80]. Another study compared the two
vaccines developed, namely the PRRSV-ORF7 DNA vaccine (phCMV-ORF7) alone and
PRRSV-ORF7 with IL-2 as an adjuvant. The results showed that PRRSV-ORF7 DNA vaccine
(phCMV-ORF7) alone was insufficient to induce protective immunity, but had a positive
inductive effect on activating vaccine-induced virus-specific cellular immunity when IL-
2 was added [81]. However, the role of cell-mediated immunity to ORF7 in protection
against PRRSV is still controversial. Finally, we conclude that PRRSV-2 recombinant
protein antigen A1 was more potent than A2 in protecting PRRSV infection by inducing
repolarization of M1 macrophages and suppressing CD163 receptor expression for virus
entry. Similarly, PRRSV-2 recombinant antigen A1 enhances the immune response by
stimulating endogenous genes to activate the Th1 type immune response, and potentially
facilitates B-cells proliferation and differentiation into antibody-secreting cells. Overall,
our new findings could be useful for the development of screening new vaccine candidates
against PRRSV. In addition, future studies including immunization and humoral immune
response analyses are needed for a better understanding of long-lasting protection and the
development of a potential vaccine against PRRSV.
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5. Conclusions

Based on the results of our study, recombinant PRRSV-2 antigen A1, which consists
of the complete sequence of ORF5, a partial sequence of ORF6, and T-cell epitopes, can
stimulate the repolarization of M2 PAMs to M1. These repolarized M1 PAMs decreased
the total expression of CD163 for PRRSV entry, and hence offer a broad protection for
both PRRSV-1 and PRRSV-2 strains infection. Cell-cell interaction of A1-induced PAMs
and T cells can further stimulate Th1 response, along with the activation of T cell receptor
signaling pathway in PAMs and the secretion of IFN-γ from T cells, respectively. These
results also suggest that macrophages are not only host target cells but also play a key
role in immunomodulation during PRRSV infections. In addition to humoral immunity,
our assays provide a vision to screening the antigenicity of novel subunit-protein vaccine
candidates for their innate and T-cells-mediated immunity.
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