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Abstract

Cannabinoid CB1 receptors have analgesic effects in models of neuropathic pain, but can also produce psychoactive side-effects.
A supraspinal location of CB2 receptors has recently been described. CB2 agonists are also antinociceptive, although the functional
role of supraspinal CB2 receptors in the control of nociception is unknown. Herein, we provide evidence that CB2 receptors in the
thalamus play a functional role in the modulation of responses of neurons in the ventral posterior nucleus (VPL) of the thalamus in
neuropathic, but not sham-operated, rats. Spontaneous and mechanically evoked activity of VPL neurons was recorded with a
multichannel electrode array in anaesthetized spinal nerve-ligated (SNL) rats and compared to sham-operated rats. Intra-VPL
administration of the CB2 agonist JWH-133 (30 ng in 500 nL) significantly reduced spontaneous (P < 0.05), non-noxious (P < 0.001)
and noxious (P < 0.01) mechanically evoked responses of VPL neurons in SNL rats, but not in sham-operated rats. Inhibitory effects
of JWH-133 on spontaneous (P < 0.01) and noxious-evoked (P < 0.001) responses of neurons were blocked by the CB2 antagonist
SR144528. Local administration of SR144528 alone did not alter spontaneous or evoked responses of VPL neurons, but increased
burst activity of VPL neurons in SNL rats. There were, however, no differences in levels of the endocannabinoids anandamide and
2AG in the thalamus of SNL and sham-operated rats. These data suggest that supraspinal CB2 receptors in the thalamus may
contribute to the modulation of neuropathic pain responses.

Introduction

Neuropathic pain states have complex aetiologies and are difficult to
treat with analgesics. Studies in animal models of neuropathic pain
suggest that cannabinoid receptors are a potential therapeutic target.
Both systemic and local administration of cannabinoid 1 receptor
(CB1) agonists attenuate pain behaviour and evoked neuronal
responses in neuropathic rats (Fox et al., 2001; Costa et al., 2004;
Scott et al., 2004; Sagar et al., 2005; Liu & Walker, 2006). CB1

receptors are, however, densely expressed throughout the brain and
their activation is associated with psychoactive side-effects.
Systemic administration of selective cannabinoid 2 receptor

(CB2) agonists is also analgesic in models of inflammatory (Hanus
et al., 1999; Clayton et al., 2002; Nackley et al., 2003; Valenzano
et al., 2005; Whiteside et al., 2005; Beltramo et al., 2006; Sanson et al.,
2006) and neuropathic (Ibrahim et al., 2003; Scott et al., 2004;
Valenzano et al., 2005; Whiteside et al., 2005; Beltramo et al., 2006)
pain, in the absence of central nervous system (CNS)-mediated side-
effects. Until recently, dogma held that CB2 receptors were not present

in the spinal cord or brain (Howlett, 1995; Pertwee, 1997) and effects
of CB2 agonists were assumed to arise as a result of activation of
peripheral CB2 receptors. This dichotomy between CB2 and CB1

receptor expression in the CNS has, however, been dispelled by
reports of CB2 receptor expression in the brainstem (Van Sickle et al.,
2005) and higher brain centres, including the thalamus (Gong et al.,
2006) and cerebellum (Ashton et al., 2006) in naı̈ve rats, although
their physiological roles are unclear. Thus, although it has been
assumed that the effects of CB2 agonists arise as a result of activation
of receptors on peripheral immune cells and, under some pathological
conditions, on microglia (Carlisle et al., 2002; Benito et al., 2003;
Facchinetti et al., 2003; Klegeris et al., 2003; Walter et al., 2003;
Carrier et al., 2004; Nunez et al., 2004; Cabral & Marciano-Cabral,
2005), the presence of cells expressing these receptors in the brain
suggests that they might mediate some of the analgesic effects of
systemically administered CB2 agonists. Previously, we have demon-
strated a novel functional role of spinal CB2 receptors in modulating
nociceptive processing in neuropathic, but not sham-operated, rats
(Sagar et al., 2005), supporting their presence in the spinal cord of
neuropathic rats (Zhang et al., 2003; Wotherspoon et al., 2005;
Beltramo et al., 2006).
On the basis of the description of supraspinal localization of CB2

receptors and the well-accepted role of structures such as the thalamus
(Guilbaud et al., 1990; Bordi & Quartaroli, 2000) contributing to
neuropathic states, we hypothesized that supraspinal CB2 receptors in
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the thalamus might contribute to inhibitory effects of these ligands in
neuropathic states; this would have important implications for the
future clinical use of this class of compounds. Here, we report that
intrathalamic administration of a selective CB2 agonist, JWH-133,
attenuates spontaneous activity and evoked responses of neurons of
the ventral posterior nucleus of the thalamus (VPL) in neuropathic, but
not sham-operated, rats. These data provide evidence for a functional
role of supraspinal CB2 receptors in the modulation of neuronal
responses in neuropathic rats.

Materials and methods

Spinal nerve-ligated (SNL) rats

Experiments were carried out on male Sprague–Dawley rats (n ¼ 45;
Charles River, UK) weighing 140–150 g at the beginning of the study.
Rats were housed five per cage under a 12 : 12 h day : night cycle for
1 week prior to surgery. Rats were divided into two groups: SNL
group (ligation of the L5–L6 spinal nerves; n ¼ 31) and sham group
(n ¼ 14). All described procedures were approved by the Home
Office, UK and follow the guidelines of the International Association
for the Study of Pain.

The procedure of ligation of the spinal nerves was performed as
previously described by Kim & Chung (1992). Briefly, under
isoflurane anaesthesia (1.5–2% in 66% N2O, 34% O2) the rat was
placed in a prone position and the left paraspinal muscles were
separated from the spinous processes at the L4–S2 level. Part of the L6
transverse process was carefully removed and the L4–L6 spinal nerves
were identified. The L5–L6 spinal nerves were isolated and tightly
ligated, distal to the dorsal root ganglion and proximal to the formation
of the sciatic nerve, with 6–0 silk thread. Following complete
haemostasis the wound was sutured. The total period of anaesthesia
did not exceed 30 min. The procedure for the sham operation for
spinal nerve ligation was identical to that of the SNL group, except
that the spinal nerves were exposed but not ligated.

After surgery, the rats were maintained under the same conditions as
during the preoperative period. The posture and behaviour of the rats
were carefully monitored following recovery from the anaesthesia and
then on the first postoperative day. From postoperative day 2 onwards,
behavioural tests assessing sensitivity to mechanical stimuli were
performed for up to 14 days. The weight gain and general behaviour
of the rats was monitored throughout the postoperative period.

Behavioural testing of allodynia

Based on our previous experience and on aberrant pain responses
associated with clinical neuropathic pain, mechanical allodynia was
considered the most appropriate behavioural measure for these studies.
Rats were placed in transparent plastic cubicles on a mesh-floored
table and a period of acclimatization was allowed prior to testing. The
mechanical sensitivity of the ipsilateral and contralateral hindpaws of
SNL or sham-operated rats was assessed by measuring the frequency
of withdrawal of the hindpaw to mechanical punctate stimuli
(calibrated von Frey filaments; calibration codes 4.08, 4.56 and
5.07, corresponding to bending forces of 1, 4 and 10 g, respectively).
Stimuli were applied to the plantar surface of the hindpaw and each
trial consisted of the application of a single von Frey hair 10 times in
descending force order, each for a period of 2–3 s. Testing with
consecutive von Frey hairs was separated by a period of at least 5 min.
The occurrence of hindpaw withdrawal for each trial was expressed as
a percentage response frequency (10 · total number of hindpaw
withdrawals to ten applications).

In vivo electrophysiology

Methods used were similar to those previously described by Abdul
Aziz et al. (2005). Two weeks following sham surgery or spinal nerve
ligation, rats were anaesthetized for electrophysiological studies.
Anaesthesia was induced with 3% isoflurane in a 50% N2O : 50% O2

mixture. The level of isoflurane was reduced progressively and
maintained at 1.7–2.2% throughout surgery to ensure a state of
complete areflexia. Rats were subsequently mounted in a modified
stereotaxic frame. Core temperature was monitored and maintained
between 37 and 38 �C using a homeothermic heating pad (Harvard
Instruments, UK). A scalp incision was made, and a 5-mm-diameter
craniotomy was performed. The cortex above the thalamus was
exposed, the dura mater was excised and exposed tissue was kept
moist with saline solution (0.9% NaCl).

Recording procedure

An eight-microwire electrode array (2 · 4 array, 0.2 mm
wide · 0.7 mm long; Teflon-coated stainless steel, 50 lm diameter
per wire; NB Laboratories, TX, USA) with impedances of 100–
300 kW measured at 1 kHz (Robinson & Mishkin, 1968), complete
with microinjector (� 150-lm-diameter stainless steel cannula,
< 500 lm above the recording electrode wire tips) to allow for local
drug administration through pressure ejection at the electrode
recording tip (Krupa et al., 1999), was used to record spike activity
from a number of single VPL neurons. Electrodes were placed in the
VPL (3.2 mm posterior, 3.0–3.2 mm lateral and 5.0–7.0 mm ventral
from bregma) of the thalamus on the side contralateral to spinal nerve
ligation, according to the atlas of Paxinos & Watson (1997). The
electrode assembly was clamped to a Narishige manipulator which
was used to progressively lower the array through the right thalamus.
The electrode-injector array was gradually lowered over � 2 h to
reach 5.0 mm ventral from bregma to minimize any trauma caused by
the insertion of the array. Subsequent lowering was carried out in
tandem with mechanical stimulation of the nerve-injured hindpaw to
identify mechanically sensitive VPL neurons.
The electrode array was connected via an eight-channel unity-gain

headstage to a multichannel preamplifier (gain ·1000, bandpass-
filtered 150 Hz)9 kHz; Plexon Inc; http://www.plexoninc.com).
Extracellular action potential spikes were then fed to a Plexon
Multichannel Acquisition Processor system linked to a host PC,
providing simultaneous 40-kHz (25-ls) A ⁄ D conversion on each
channel at 12-bit resolution and additional programmable amplifica-
tion and filtering of spikes (final bandwidth 400Hz)5 kHz). Spike
discrimination on-line was achieved with pairs of voltage–time
windows and principal component analysis (Abeles & Goldstein,
1977); typically, 5–8 electrodes in the array picked up neuronal
activity and 1–3 spikes could be confidently discriminated per
electrode, giving a range of 8–15 isolated VPL neurons.

Peripheral cutaneous stimulation

All neurons studied in the right VPL had receptive fields on the
plantar region of the left (nerve-injured) hindpaw and responded to
innocuous (7 g) and noxious (65 g) mechanical stimuli, indicating
that these neurons were wide dynamic range neurons. The sponta-
neous activity of neurons was recorded throughout the study, 3 min
prior to recording of mechanically evoked responses, i.e pre- and 12,
27, 42 and 57 min postdrug injection. All evoked responses were
normalized by subtracting the spontaneous activity of the individual
neuron. The noxious withdrawal threshold in awake animals is 15 g
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(Chaplan et al., 1994); thus, weights exceeding the 15-g threshold
are described as noxious. A calibrated pneumatic probe (SMC
miniature actuation cylinder, RS components product no. 264–6119,
circular contact area of 1 mm diameter) was used to deliver trains of
innocuous (7 g) or noxious (65 g) stimulation to the peripheral
receptive field of VPL neurons on the nerve-injured hindpaw.
Pressure and timing of the probe was controlled via a pneumatic
picopump (WPI model Pv800; USA). Through the clamping of the
pneumatic probe in a fixed position a train of calibrated mechanical
stimulation was accurately delivered to the same point on the
hindpaw receptive field, eradicating any experimenter-induced var-
iation. Peri-stimulus time histograms (PSTHs) of innocuous (7 g)
and noxious (65 g) mechanically evoked responses were computed
using NeuroExplorer (Nex Technologies, USA). A train of mechan-
ical stimulation consisted of 20 stimuli of 5 s duration over a 5-min
time period (15-s window between the initiation of successive
stimuli). In order to minimize any desensitization produced by the
repeated mechanical stimulus trains, innocuous (7 g) and noxious
(65 g) stimulation were alternated so that application of noxious
stimuli was separated by at least 30 min.

Pharmacological studies

Prior to any pharmacological intervention, control basal spontaneous
activity and control innocuous and noxious mechanically evoked
PSTHs were recorded. The effects of a local VPL administration (via
pressure ejection through a microinjector over a 2-min period) of the
selective CB2 receptor agonist JWH-133 (30 ng in 500 nL, 192 lm)
alone, JWH-133 and the selective CB2 receptor antagonist SR144528
(respectively, 30 and 48 ng in 500 nL, administered as a single
infusion; 192 and 201 lm), SR144528 (48 ng in 500 nL) adminis-
tered alone and vehicle (0.3% ethanol, 0.3% Tween 80 in artificial
cerebrospinal fluid) on spontaneous burst activity and mechanically
evoked VPL neuronal responses was investigated. The effects of a
local VPL administration of JWH-133 (30 ng in 500 nL, 192 lm) and
the selective CB1 receptor antagonist AM251 (respectively, 30 and
48 ng in 500 nL, administered as a single infusion; 192 and 172 lm)
on mechanically evoked VPL neuronal responses was also investi-
gated in SNL rats. Agonist and antagonist drugs were administered as
a single infusion due to the constraints of using a microinjector that
was preloaded prior to implantation and recording. Doses of the drugs
used in this study were based on previous reports of spinal and
supraspinal administration of cannabinoid ligands (Lichtman et al.,
1996; Martin et al., 1999; Sagar et al., 2005).

Measurement of levels of endocannabinoids in the thalamus

Separate groups of SNL (n ¼ 4) and sham-operated (n ¼ 4) rats were
used for the measurement of levels of endocannabinoids using a
previously validated method (Richardson et al., 2007). In brief, the
thalamus was dissected from rats killed by decapitation and stored at
)80 �C for two to four weeks prior to spectrometric analysis for
measurement of endocannabinoids and related compounds. Further
subdivision of the thalamus was not possible due to the requirement for
the rapid removal of tissue to prevent any post-mortem effects on levels
of endocannabinoids measured and the amount of tissue required for
reliable analysis. Endocannabinoids were extracted using a lipid
extraction method; tissue was homogenized in an ethyl acetate–hexane
mixture with internal standards added in fixed amounts to all
samples (0.42 nmol d8-anandamide, 1.5 nmol d8–2-arachidonyl gly-
cerol, 0.2 nmol heptadecanoyl ethanolamide), followed by repeated

centrifugation and supernatant collection stages. Solid-phase extraction
was subsequently performed to purify samples. Simultaneous mea-
surement of endocannabinoids and related compounds was then
performed using liquid chromatography–tandem mass spectrometry.
Analysis was carried out on an Agilent 1100 system coupled to a triple
quadrupole Quattro Ultima mass spectrometer (Waters, UK) recording
in electrospray-positive mode. Analytes were separated chromato-
graphically on a HyPurity Advance C8 column and precolumn
(100 · 2.1 mm internal diameter, 3 lm particle size) with a mobile
phase flow rate of 0.3 mL ⁄ min. A gradient elution was used, with
mobile phases consisting of A (water with 1 g ⁄ L ammonium acetate
and 0.1% formic acid) and B (acetonitrile with 1 g ⁄ L ammonium
acetate and 0.1% formic acid). Samples were injected from a cooled
autosampler maintained at 4 �C. Multiple reaction monitoring of
individual compounds, using specific precursor and product mass-to-
charge (m ⁄ z) ratios allowed simultaneous measurement of anandamide
(AEA), 2-arachidonyl glycerol (2AG), palmitoyl ethanolamide (PEA)
and oleoyl ethanolamide (OEA). The peak area of each analyte was
divided by the appropriate internal standard peak area, and this
analyte ⁄ internal standard ratio was used to achieve quantification by
the internal standard method. Individual calibration lines were obtained
during each analytical run by applying the method to a suitable range of
concentrations of the nondeuterated forms of each analyte. Data are
reported only for analytes above the limit of quantification by this
method (10 pmol ⁄ g except for 2AG, 100 pmol ⁄ g).

Histology

At the end of each experiment, rats were overdose-killed with
isoflurane and a current (10 lA) was passed for 10 s through a single
electrode in the middle of the array to deposit ferric ions at the
recording site. Brains were removed and stored overnight in 4%
paraformaldehyde. Tissue blocks were sectioned transversely at
100 lm using a vibrotome (Campden Instruments, UK). Iron deposits
at the electrode tips were revealed by the Prussian Blue reaction (Hong
et al., 2000). Recording sites were identified with reference to the rat
brain atlas of Paxinos & Watson (1997).

Data analysis

For each neuron isolated, the mean spontaneous frequency of firing
was recorded over a period of 3 min just prior to mechanical
stimulation. To allow for comparisons between the absolute magni-
tudes of evoked responses of neurons, spontaneous activity (spikes ⁄ s)
of each neuron was subtracted from mechanically evoked responses of
neurons (spikes ⁄ s). PSTHs were plotted from trains of alternating
innocuous (7 g) and noxious (65 g) mechanical stimuli, plotting total
activity (spikes ⁄ s) generated by 20 · 5 s stimulations. Effects of the
various pharmacological treatments on spontaneous and evoked
activity are expressed as a percentage of control responses.
Burst activity (bursts ⁄ minute) of neurons was also analysed.

A burst was defined using the following criteria in NeuroExplorer
software (version 3): maximum interval to start burst, i.e. the first
interspike interval within a burst, must be £ 6 ms; maximum interval
to end burst, 9 ms; minimum interval between bursts, 100 ms;
minimum duration of burst, 10 ms; and minimum number of spikes
within a burst, two (Fanselow et al., 2001; Hains et al., 2006).
Data were analysed off-line using Off-Line Sorter (Plexon Inc,

USA), NeuroExplorer (version 3.1x, Nex Inc, USA), Matlab (version
7.4; Mathworks, USA), Prism (version 3.03; GraphPad, USA).
Statistical analysis was carried out using Mann–Whitney, Kruskall–
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Wallis and Dunn’s post hoc test or repeated-measures anova where
appropriate. Data are expressed as mean ± SEM; statistical signifi-
cance was taken as P < 0.05.

Results

Development of mechanical allodynia in SNL rats

Following SNL surgery, rats exhibited normal grooming behaviour
and weight gain similar to sham-operated controls. The development
of mechanical allodynia was assessed for up to 14 days after surgery.
SNL rats exhibited significant mechanical allodynia. Application of a
10-g mechanical stimulus to the ipsilateral hindpaw of SNL rats
evoked a significant increase in paw withdrawal (56 ± 5% paw
withdrawal; P < 0.001, n ¼ 27), compared with sham-operated rats
(1 ± 1% paw withdrawal; n ¼ 10) on day 10 post-surgery. Similarly,
at day 14 post-SNL surgery, application of a 10-g mechanical stimulus
to the ipsilateral hindpaw of SNL rats evoked a significant increase in
paw withdrawal (48 ± 5% paw withdrawal; P < 0.001, n ¼ 27),
compared with sham-operated rats. In contrast, application of a 10-g
mechanical stimulus to the contralateral hindpaw of SNL and sham-
operated rats did not evoke a significant paw withdrawal response
(n ¼ 27 and 10, respectively). SNL rats which were used in the
subsequent electrophysiological studies had established mechanical
allodynia of the ipsilateral hindpaw, which is in agreement with
previous studies of this model (Kim & Chung, 1992; Chapman et al.,
1998; Jhaveri et al., 2006).

Extracellular electrophysiological recordings from VPL neurons

Spontaneous and mechanically evoked neuronal activity in the VPL
of sham-operated and SNL rats

The activity of neurons in the VPL contralateral to SNL (n ¼ 414
neurons, 27 rats) or sham surgery (n ¼ 99 neurons, 10 rats) was

recorded; the location of these neurons was histologically identified as
being in the VPL (Fig. 1).
The spontaneous firing of VPL neurons was of a significantly

higher frequency in SNL rats than in sham-operated rats (9.9 ± 0.8
and 3.8 ± 0.5 Hz, respectively; P < 0.001; Figs 2 and 3). In SNL rats,
88% of neurons showed burst activity compared to 62% of neurons in
sham-operated rats. Furthermore, there was a significantly greater
incidence of burst firing of VPL neurons in SNL rats than in sham-
operated rats (33.4 ± 2.5 and 12.8 ± 2.1 bursts ⁄ min, respectively;
P < 0.001; Fig. 3). Seventy-four per cent (73 ⁄ 99 neurons) of the
spontaneously active VPL neurons recorded on the side contralateral
to sham surgery responded to mechanical stimulation of the hindpaw.
Similarly, 82% (341 ⁄ 414 neurons) of spontaneously active neurons
recorded in the contralateral VPL of SNL rats responded to
mechanical stimulation of the nerve-injured hindpaw (Figs 2 and 3).
All of the recorded VPL neurons responded to mechanical stimulation
of the receptive field on the hindpaw and exhibited a differential
magnitude of firing to innocuous (7 g) vs. noxious (65 g) mechanical
stimulation (Figs 2 and 3). Mechanically evoked responses of VPL
neurons were significantly greater than basal spontaneous activity
(P < 0.001 for both 7 g and 65 g; Fig. 3). Comparison of evoked
responses of VPL neurons revealed that noxious (65 g) evoked
responses of VPL neurons were significantly greater in SNL rats than
in sham-operated rats (P < 0.05; Fig. 3C). Basal spontaneous activity
was subtracted from mechanically evoked neuronal activity in order to
obtain an absolute value for mechanically evoked neuronal responses.
Thus, the marked increase in spontaneous neuronal activity in SNL
rats did not contribute to the increase in frequency of firing to the
noxious mechanical stimulation in SNL rats.

Fig. 1. Recording sites of VPL neurons, contralateral to sham surgery or
spinal nerve ligation, with mechanical receptive field located on the hindpaw.
(A) Representative cannula track diagram and (B–D) histologically identified
recording sites at three rostrocaudal coordinates in the VPL of SNL (solid
circles) and sham (unfilled, white circles). Each circle represents recording sites
in distinct experiments. VPM, ventral posteromedial nucleus; VPL, ventral
posterolateral nucleus. Note that there was an overlap in some recording sites
and, thus, the number of dots may appear to be fewer than the total number of
rats used in this study.

Fig. 2. Spontaneous and innocuous (7 g) or noxious (65 g) mechanically
evoked VPL neuronal activity in (A and B) sham-operated and (C and D) SNL
rats prior to pharmacological intervention, presented as a raster plot and PSTH
from the same neuron. An innocuous (7 g) or noxious (65 g) mechanical
stimulus was applied to the hindpaw receptive field for 5 s, repeated 20 times at
15-s intervals over a 5-min period, and the activity of VPL neurons on the side
contralateral to SNL or sham surgery was recorded. Mechanical stimulus trains
were applied every 15 min and alternated between application of an innocuous
(7 g) and a noxious (65 g) mechanical stimulus. Raster lines represent
responses to 20 individual mechanical stimuli and the PSTH is an average
response to those stimuli from a single neuron.
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Effects of the selective CB2 receptor agonist JWH-133 on responses
of VPL neurons in sham-operated and SNL rats

Intrathalamic injection of vehicle produced similar, nonsignificant,
effects on neuronal activity in the VPL of sham-operated (n ¼ 35
neurons from five rats) and SNL (n ¼ 80 neurons from six rats) rats.
Effects of local intrathalamic administration of the selective CB2

receptor agonist JWH-133 on spontaneous and burst activity of VPL
neurons were studied in SNL and sham-operated rats. All data were
statistically compared to the appropriate vehicle-treated SNL or sham-
operated group. If significance was reached, for clarity of presentation
vehicle data for SNL and sham-operated groups were pooled and
further statistical analysis compared the effects of drug treatment to the
pooled vehicle group. Thirty minutes after administration of JWH-133
(30 ng in 500 nL vehicle) into the thalamus, spontaneous activity of
VPL neurons was significantly (P < 0.05) inhibited in SNL rats, but
not in sham-operated rats, compared to pooled-vehicle controls
(Fig. 4). The effects of JWH-133 on the spontaneous activity of
VPL neurons were not significant at other timepoints studied. To test
the contribution of CB2 receptors to the effects of JWH-133, the
ability of the CB2 receptor antagonist SR144528 to block the effects of
JWH-133 was studied in SNL rats. SR144528 (48 ng in 500 nL)
significantly blocked the inhibitory effects of JWH-133 on spontane-
ous activity of VPL neurons in SNL rats (Fig. 4). Intrathalamic
administration of SR144528 (48 ng in 500 nL) alone did not
significantly alter spontaneous activity of VPL neurons in SNL rats
(data not shown).
The effects of JWH-133 on the burst activity of VPL neurons were

also studied in sham-operated and SNL rats. In SNL rats, intrathalamic
injection of JWH-133 did not significantly alter burst activity of VPL
neurons, compared to pooled-vehicle (25-min time-point: vehicle,
69 ± 19% of control; JWH133, 88 ± 30% of control). In addition,
JWH133 did not inhibit burst activity of VPL neurons in sham-
operated rats (data not shown). Given the lack of effect of JWH133 on
burst activity, data from pharmacological studies of coadministered
CB2 agonist and antagonist were not analysed. We did, however,
investigate whether blocking the CB2 receptors alone influenced burst
activity. In this case, intrathalamic administration of SR144528 (48 ng
in 500 nL) significantly (P < 0.05) increased burst activity in SNL
rats (25-min time-point: 286 ± 137% of control) compared to vehicle
(25-min time-point: 69 ± 19% of control) for up to 55 min after drug
administration.
The ability of the CB2 receptor agonist to modulate evoked

responses of VPL neurons was also studied. Intra-VPL administration
of JWH-133 (30 ng in 500 nL) significantly inhibited innocuous (7 g;

Fig. 3. VPL thalamic neurons in SNL rats exhibited more spontaneous
activity (SA) and a larger noxious mechanically evoked response than did sham
rats. SNL rats also displayed more spontaneous burst activity. (A) Represen-
tative raster plot of a neuron from a sham-operated and SNL rat during a burst
episode; (B) mean burst activity; and (C) mean spontaneous and evoked
responses of VPL neurons. An innocuous (7 g) or a noxious (65 g) mechanical
stimulus was applied to the hindpaw receptive field for 5 s, repeated 20 times at
15-s intervals over a 5-min period, and the activity of VPL neurons on the side
contralateral to SNL or sham surgery was recorded. Data were analysed using
Mann–Whitney test: *P < 0.05, ***P < 0.001 vs. sham (sham, n ¼ 47–99
neurons in 10 rats; SNL, n ¼ 303–414 neurons in 27 rats).

Fig. 4. Intrathalamic administration of the CB2 receptor agonist JWH-133
inhibited spontaneous activity of VPL neurons in SNL rats. JWH-133 (30 ng in
500 nL, intra-VPL) was administered alone or in combination (single infusion)
with the CB2 receptor antagonist SR144528 (48 ng). Data were analysed using
Kruskall–Wallis test followed by Dunn’s post hoc test. *P < 0.05 vs. pooled
vehicle, ##P < 0.05 vs. SNL: JWH-133 (n ¼ 36–75 neurons in five or six rats
per data set). Vehicle treatment data from sham and SNL rats were not
statistically different and were pooled for clarity of presentation.
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P < 0.001) and noxious (65 g; P < 0.01) mechanically evoked
responses of VPL neurons in SNL, but not in sham-operated, rats
(Fig. 5). The effects of JWH-133 on 7-g-evoked responses in SNL rats
were significantly (P < 0.01) different from the effects of JWH-133 in
sham-operated rats (Fig. 5A). The CB2 receptor antagonist SR144528
(48 ng in 500 nL) significantly (P < 0.001) blocked the inhibitory
effects of JWH-133 on noxious- but not innocuous-evoked responses
of VPL neurons in SNL rats (Fig. 5A and B). Inhibitory effects of
JWH-133 on innocuous-evoked responses of VPL neurons were not
altered by the CB1 receptor antagonist AM251 (48 ng in 500 nL;
Fig. 5A). These data provide further support for the role of the CB2

receptors in mediating the effects of JWH-133 on evoked responses of
VPL neurons.

Effects of neuropathic pain on endocannabinoids in the VPL

The second part of this study investigated the effects of nerve injury
on levels of endocannabinoids in the thalamus of neuropathic rats.
Levels of AEA, 2AG, PEA and OEA in the thalamus of SNL and
sham-operated rats were quantified 14 days after surgical interven-
tion. We did not observe any significant differences in the levels of
these compounds between the thalamus of SNL and sham-operated
rats (Table 1). To investigate whether the endocannabinoids can
tonically modulate responses of VPL neurons, we also determined
the effects of local intrathalamic administration of the selective CB2

receptor antagonist SR144528 (48 ng in 500 nL) alone on evoked
responses of neurons. Overall, SR144528 did not significantly alter

evoked responses of VPL neurons in sham-operated or SNL rats
(Fig. 5).

Discussion

The major finding of the present study was that intra-VPL adminis-
tration of the selective CB2 receptor antagonist JWH-133 attenuated
spontaneous and evoked responses of VPL neurons in neuropathic rats
but not in sham-operated rats. JWH-133 attenuated both innocuous
and noxious mechanically evoked responses of VPL neurons.
Inhibitory effects of JWH-133 on spontaneous and noxious-evoked
responses of VPL neurons were blocked by the selective CB2 receptor
antagonist SR144528 but not by the CB1 receptor antagonist AM251.
This is the first report of a functional effect of supraspinal CB2

receptors on neuronal activity in a model of neuropathic pain.
In the present study, VPL neurons exhibited significantly higher

spontaneous and burst activity in neuropathic rats than in sham-
operated rats. All of the VPL neurons examined in this study
responded to innocuous and noxious mechanical stimulation of the
peripheral receptive field, indicating that these neurons were wide
dynamic range. Noxious mechanically evoked responses of VPL
neurons of neuropathic rats were significantly larger than evoked
responses in sham-operated rats, corroborating earlier studies in
neuropathic rats (Guilbaud et al., 1990) and a model of spinal cord
injury (Hains et al., 2006).
In contrast to the well described spinal and supraspinal distribution

of the CB1 receptor, until recently the CB2 receptor has been
predominantly associated with a peripheral distribution. Recent studies
in naı̈ve rats reported expression of CB2 receptors in the cerebellum,
hippocampus, cortex, thalamus, amygdala, substantia nigra, periaqu-
eductal grey matter and inferior colliculi, albeit at levels much lower
than those of CB1 receptors (Van Sickle et al., 2005; Ashton et al.,
2006; Gong et al., 2006). The expression of CB2 receptors at sites
which modulate pain processing, such as the periaqueductal grey
matter and thalamus (Gong et al., 2006), suggests that this receptor
may modulate nociceptive neurotransmission, either directly or
indirectly. In the present study, local administration of a CB2 receptor
agonist did not modulate spontaneous or evoked responses of VPL
neurons in sham-operated rats, suggesting little functional control of
neuronal responses at this level under nonpathological conditions.
Previously, intralateral posterior thalamic microinjection of the mixed
CB1 and CB2 receptor agonist WIN55212 attenuated nociceptive
behavioural processing in naı̈ve rats (Martin et al., 1999), although the
receptor mediating this effect was not further investigated. In other
brain regions, such as the amygdala, the antinociceptive effects of
intrabasolateral amygdala injection of WIN55212 in formalin and tail-
flick tests were abolished by CB1 receptor antagonism but not CB2

receptor antagonism in naı̈ve rats (Hasanein et al., 2007). Further
support for a lack of functional role of supraspinal CB2 receptors was
provided by the report that intracerebroventricular injection of

Fig. 5. Intrathalamic administration of the CB2 receptor agonist JWH-133
inhibited (A) innocuous and (B) noxious mechanically evoked responses of
VPL thalamic neurons in SNL rats but not sham-operated rats. JWH-133
(30 ng in 500 nL) was administered intra-VPL, alone or in combination with
the CB2 receptor antagonist SR144528 (48 ng) or the CB1 receptor antagonist
AM251 (48 ng) in sham-operated and SNL rats. Innocuous (7 g) and noxious
(65 g) mechanically evoked responses were recorded at 15 and 30 min after
drug administration, respectively. Data were analysed using the Kruskall–
Wallis test followed by Dunn’s post hoc test. *P < 0.05, **P < 0.01,
***P < 0.001 vs. pooled vehicle; ###P < 0.001 vs. SNL: JWH-133;
$$P < 0.01 vs. Sham: JWH-133 (n ¼ 46–115 neurons in five or six rats per
data set). Vehicle treatment data from sham and SNL rats were not statistically
different and were pooled for clarity of presentation.

Table 1. Levels of endocannabinoids and related compounds in the thalamus
of SNL and sham-operated rats

AEA
(pmol ⁄ g)

2AG
(nmol ⁄ g)

OEA
(nmol ⁄ g)

PEA
(nmol ⁄ g)

Sham 13.86 ± 1.7 13.38 ± 1.1 0.23 ± 0.02 1.01 ± 0.03
SNL 14.01 ± 2.5 14.38 ± 0.9 0.23 ± 0.05 1.06 ± 0.2

Data are expressed as mean ± SEM pmol ⁄ g or nmol ⁄ g wet tissue; n ¼ 4 each
(sham and SNL).
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JWH-133 did not alter formalin-evoked nociceptive responses (Jafari
et al., 2007). A recent functional magnetic resonance imaging study
reported that the selective CB2 agonist AM1241 did not alter brain
activation in rats, whereas a CB1 ⁄ CB2 receptor agonist produced
dose-related changes in brain activity (Chin et al., 2008). Overall, data
from a variety of experimental approaches suggest that there is little
contribution of supraspinal CB2 receptors to the control of nociceptive
processing in naı̈ve or inflamed rats.
In contrast to the lack of effects of the CB2 receptor agonist JWH-

133 on responses in sham-operated rats, local administration of JWH-
133 into the thalamus significantly attenuated the spontaneous activity,
but not burst activity, of VPL neurons in neuropathic rats. The
relevance of this differential effect of JWH-133 on spontaneous vs.
burst activity is presently unclear. Furthermore, the CB2 receptor
agonist also attenuated both innocuous- and noxious-evoked responses
of VPL neurons in neuropathic rats. It is important to note that these
inhibitory effects do not merely reflect the attenuation of spontaneous
activity, which was subtracted from evoked responses prior to
assessment of drug effects. The ability of the CB2 receptor agonist
JWH-133 to attenuate the facilitated spontaneous activity of VPL
neurons, as well as inhibiting both innocuous- and noxious-evoked
responses of VPL neurons, in neuropathic rats, suggests that suprasp-
inal CB2 receptors may contribute to the inhibitory effects of
systemically administered CB2 receptor agonists on mechanical
allodynia in neuropathic rats (Ibrahim et al., 2003; Scott et al., 2004;
Valenzano et al., 2005; Whiteside et al., 2005; Beltramo et al., 2006).
Caution is required in relation to the anatomical interpretation of these
data. Although the cannulae were positioned in the VPL, further
objective measurements of the spread of the JWH-133 into adjacent
brain areas would be required to discount additional local sites of
action. Absolute confirmation of these data would require supraspinal
electrophysiological studies in neuropathic CB2 gene-deleted mice, a
combined approach which, to our knowledge, has yet to be applied.
Overall, our data suggest that, following peripheral nerve injury,

there are changes in the functional role of CB2 receptors in the thalamus
which can then be targeted by JWH-133 to modulate responses of VPL
neurons. The novel functional role of CB2 receptors in the VPL of
neuropathic rats may arise as a result of increased receptor expression
or increased coupling of pre-existing receptors to their signal
transduction systems. Indeed, CB2 receptor protein was shown to be
increased in the afferent terminals of sensory nerves in the superficial
laminae of the dorsal horn of the spinal cord after peripheral nerve
damage Wotherspoon et al. (2005). CB2 receptor expression is also
induced in the brains of rats subjected to hypoxia–ischemia, although
in this situation the receptors appear to be located on non-neuronal cells
including resident microglia or invading monocytes (Ashton et al.,
2007). As there is no evidence for an increased population of
neuroimmune cells in the thalamus of neuropathic rats, the most
parsimonious explanation of the present data is an increased expression
of CB2 receptors on thalamic neurons, although this requires verifi-
cation by immunohistochemical approaches.
The putative role of the endocannabinoids in modulating activity of

neurons in the thalamus in neuropathic rats was also studied. Local
thalamic administration of the CB2 receptor antagonist SR144528
alone did not significantly alter spontaneous or evoked responses of
thalamic neurons in neuropathic rats. By contrast, SR144528 alone
significantly increased burst firing of VPL neurons in SNL rats. These
data suggest that CB2 receptors play a complex role in the tonic
control of activity of thalamic neurons. The significance of the lack of
effect of CB2 receptor antagonism on spontaneous activity compared
to burst activity is poorly understood, but it suggests that CB2

receptors play a role in tonic inhibition of neuronal activity in the

VPL. It has been proposed that burst activity transmits more
information than single spikes, and there is a greater probability of a
burst than of single spikes generating a single postsynaptic spike
(Csicsvari et al., 1998). It is also hypothesized that burst firing and
single spikes convey different information (Cooper, 2002), such that
certain burst parameters convey selective information between neu-
rons (Krahe & Gabbiani, 2004).
Although not the focus of the present study, endocannabinoids may

also modulate levels of activity of thalamic neurons via activation of
CB1 receptors. Indeed, CB1 receptors are up-regulated in the thalamus
of nerve-injured rats (Siegling et al., 2001) and therefore provide an
additional target for the endocannabinoids. Levels of AEA, 2AG, PEA
and OEA in the thalamus of neuropathic rats were not different from
levels in sham-operated rats at 14 days post-surgery, suggesting there
are no major changes in endocannabinoid turnover in neuropathic rats
at this level. It is important to note, however, that levels of
endocannabinoids were measured in the whole thalamus and this
may have concealed subtle changes in the levels of endocannabinoids
in the VPL of neuropathic rats compared to sham-operated rats.
Peripheral nerve damage has been shown to increase levels of AEA,
but not 2AG, in the dorsal raphe at 7 days following neuropathic
surgery compared to sham-operated controls; however, later time-
points were not studied (Palazzo et al., 2006). Similarly, levels of
AEA were increased, compared to sham controls, in the spinal cord,
periaqueductal grey matter and rostral ventromedial medulla at 7 days
following peripheral nerve injury (Petrosino et al., 2007). Thus it is
clear that there are changes in levels of AEA in the spinal cord and
certain brain regions involved in descending inhibitory control
pathways at early timepoints following nerve injury, but our data
provide no evidence for this at later timepoints in the thalamus, a
region involved in ascending pain pathways.
In conclusion, we have demonstrated a functional inhibitory effect

of supraspinal administration of the CB2 receptor agonist JWH-133,
an effect which was blocked by a selective CB2 receptor antagonist, in
a model of neuropathic pain. These data complement our earlier report
of a novel functional role of the CB2 receptor in the spinal cord of
neuropathic rats compared to sham-operated rats (Sagar et al., 2005),
and the report that CB2 receptor mRNA is present in the spinal cord of
neuropathic, but not sham-operated, rats (Zhang et al., 2003). Our data
suggest that the inhibitory effects of CB2 receptor agonists, following
nerve injury, are mediated by thalamic as well as spinal (Zhang et al.,
2003; Sagar et al., 2005; Beltramo et al., 2006) and peripheral (Elmes
et al., 2004; Walczak et al., 2005; Wotherspoon et al., 2005; Walczak
et al., 2006) sites of action. One of the perceived benefits of targeting
the CB2 receptor for novel analgesics was the purported absence of
receptor in the brain and therefore the lack of the psychoactive side-
effects (Malan et al., 2003) which limit the clinical usefulness of CB1

receptor agonists. The role of CB2 receptors in the brain of naı̈ve
rodents is unclear and requires further investigation.
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