
Nadasdy et al., Sci. Adv. 8, eabm6081 (2022)     4 May 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

1 of 21

N E U R O S C I E N C E

Phase coding of spatial representations in the human 
entorhinal cortex
Zoltan Nadasdy1,2,3*, Daniel H. P. Howell2,4, Ágoston Török5, T. Peter Nguyen6, Jason Y. Shen7,8, 
Deborah E. Briggs7,8, Pradeep N. Modur7,8, Robert J. Buchanan2,7,9,10

The grid-like activity pattern of cells in the mammalian entorhinal cortex provides an internal reference frame for 
allocentric self-localization. The same neurons maintain robust phase couplings with local field oscillations. 
We found that neurons of the human entorhinal cortex display consistent spatial and temporal phase locking 
between spikes and slow gamma band local field potentials (LFPs) during virtual navigation. The phase locking 
maintained an environment-specific map over time. The phase tuning of spikes to the slow gamma band 
LFP revealed spatially periodic phase grids with environment-dependent scaling and consistent alignment with 
the environment. Using a Bayesian decoding model, we could predict the avatar’s position with near perfect 
accuracy and, to a lesser extent, that of heading direction as well. These results imply that the phase of spikes 
relative to spatially modulated gamma oscillations encode allocentric spatial positions. We posit that a joint spa-
tiotemporal phase code can implement the combined neural representation of space and time in the human 
entorhinal cortex.

INTRODUCTION
The entorhinal cortex (EC) is an integral part of the medial tempo-
ral lobe of the mammalian brain and plays a critical role in memory- 
guided spatial navigation in rodents (1, 2) and in humans (3–6). 
Grid cells, border cells, and conjunctive head direction cells in the 
medial EC (mEC), along with place cells and head direction cells in 
associated areas of the hippocampus and subiculum, are key cellular 
constituents of the functional network underlying allocentric spa-
tial navigation and enable individuals to localize themselves relative 
to the environment (7–9). However, grid cells, defined on the basis 
of the grid-like pattern of their firing rate (FR), account for less than 
30% of cells in the rodent dorsomedial EC (2) and less than 25% in the 
human EC (4, 6). Those cells in the rodent also include conjunctive 
cells (10). The rest of the neurons (>70%) include head direction 
cells (58%) (11) and time cells (20%) (10, 12). The network of func-
tionally heterogeneous classes of neurons implies a combined spatial- 
directional-temporal coding scheme to be prevalent at a cellular 
level in the EC, yet no such unified code has been identified (13).

Beside their spatial modulation of FR, mEC neurons also exhibit 
a robust phase tuning relative to intracellular subthreshold oscilla-
tions (14, 15) and local field potentials (LFPs) primarily within two 
harmonic bands: theta and gamma (16). Theta (2 to 12 Hz) and 
gamma (25 to 60 Hz) oscillations were found to be most prominent 
during active exploratory behavior and rapid eye movement sleep in 
rodents (17) and intermittent but still prevalent in the human medial 
temporal lobe during both real and virtual navigation (3, 18–22). 

The spatial periodicity of grid cell activity is also critically dependent 
on theta band oscillatory drive by the medial septum (23, 24), and 
inactivation of the septal input was shown to reduce the theta fre-
quency coding of running speed (25). On the other hand, gamma 
frequency communication between the EC and dentate gyrus under-
lies spatial and object learning (26). In addition, theta and gamma 
tend to phase couple in the rodent and human medial temporal lobe 
(27–30), and both gamma-to-theta and spike-to-theta phase coher-
ence are instrumental for encoding and recall (31–33). Despite the 
indisputable role of grid cells in the allocentric spatial navigation 
across the range of mammalian species (2, 4, 6, 34, 35) and the de-
pendency of spatial behavior on theta rhythm, our understanding of 
the relationship between spatially modulated spike rate, spike phase, 
and ongoing LFP oscillations during unconstrained two-dimensional 
(2D) spatial navigation is incomplete, especially in the human brain 
(15, 36–40).

Efforts to model grid cell properties from the combination of 
spatial and oscillatory features led to the oscillatory interference 
model, which explained the emergence of equidistant FR nodes, 
and a further extension of the model hypothesized that the phase of 
velocity-controlled oscillations relative to the baseline theta rhythm 
encodes the distance traveled along a specific direction (41). Ele-
gantly, the same model explained phase precession (42–44). Other 
models posited that spatial information encoded by the spike phase 
naturally generates spatially distributed periodic activity patterns as 
a by-product of the inherent ambiguity of decoding locations from 
phases (45). However, neither the predicted phase patterns nor allo-
centric interference patterns have been observed. The challenge was 
to integrate the phases of spikes over spatial locations and recover 
the map of phase modulation in two dimensions over the area of the 
environment. The 1D approach by mapping the phase of spikes rel-
ative to theta component of the LFP while the rat is running in a 
linear track revealed systematic phase precession in the hippocam-
pus (46–48) and in the mediolateral EC (49, 50). However, because 
the neuronal mechanism of phase precession and the role it plays in 
encoding space are still debated (51–56), the questions of whether 
phase coding contributes to the construction of cognitive maps and 
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the specific frequency band of intrinsic oscillation involved in this 
coding are still open. Despite various reports of decoding the ani-
mal’s position and heading direction from theta phase precession of 
hippocampal place cells (57, 58) or the animal’s position from the 
activity of mEC grid cells (43, 44) during unconstrained 2D naviga-
tion, the concept of 2D phase maps (i.e., the spatial distribution of 
phases) across the entire environment previously only existed in 
simulations (42–44). Nevertheless, leveraging the theta phase pre-
cession using a Bayesian maximum likelihood method afforded 
moderate decoding performance of the animal’s position relative to 
the center of the place field (57) or the head direction of the animal 
(58). The common features of these approaches were, regardless of 
predicting location or direction of the animal, to hinge the decoding 
on theta phase precession and place cell activity (44, 57–59). On the 
other hand, previous studies that concerned phase precession in 
grid cell activity were unable to detect directional or field-specific 
phase coding (43, 44). A complete empirical 2D reconstruction of 
phase maps has not been accomplished, neither with respect to 
theta nor to gamma band LFP.

Since these earlier studies limited the analysis of motion trajectories 
either by using a linear track (49) or by extracting omnidirectional 
trajectory segments from the 2D navigation (43), the location-invariant 
nature of phase coding remained hypothetical (45). Conservation of 
phase upon unconstrained reentry to a location from different di-
rections, the ultimate proof of phase coding, has not been shown. In 
addition, earlier experiments did not validate the decoding perform-
ance against randomized spike phases dispersed along the actual 
trajectories to provide an unbiased estimate of decoding. Moreover, 
although it has long been suggested (46), an allocentric 2D spike phase 
code across a full environment has never been demonstrated, neither 
in animals nor in humans. Last, none of the previous studies inves-
tigated gamma band LFP as a potential reference for phase coding.

Therefore, we investigated the cellular-level phase coding relative 
to theta and gamma LFP during unconstrained spatial navigation in 
2D environments from the human EC. We were able to derive phase 
maps to decode the avatar’s movement from the phase of spikes, vali-
dated the phase decoding against randomized phases, and, lastly, 
compared the decoding performance between spike phases and FR.

Since spikes of mEC neurons maintain high temporal coherence 
with local theta and gamma oscillations during locomotion (60), for 
the same cells to express grid-like spatial periodicity in the environ-
ment, a 2D map of the spike to LFP phase coherence must conform 
with the spatially periodic topography, similar to the FR grids. Given 
that single-unit activity of the human mEC expresses grid-like firing 
patterns (4, 6) and the human EC shows intermittent but robust 
oscillatory LFP both at theta (18, 19, 32) and gamma frequency 
bands (29, 30), we sought evidence of spatially organized phase 
maps in data recorded from two patients (subjects 1 and 2) performing 
spatial navigation tasks in four different virtual environments. These 
environments were a backyard (BY), a courtyard of the Louvre (LV), 
a model reconstruction of the main hall of the Luxor (LX) Temple 
in Egypt, and a large open space (OS) with a boundless horizon and 
minimal external cues. Both patients in our study underwent intra-
cranial monitoring of epileptiform activity in their medial temporal 
lobe before the surgical resection of the seizure focus. Because theta 
frequency modulations correlate with running speed in the rodent 
and the human (61–63), the walking speed of the avatar in our vir-
tual navigation experiment was set to be constant to eliminate the 
potential confound of speed affecting the phase of LFP.

RESULTS
Definition of phase maps
Grids of 16 microelectrodes (Fig. 1, A and B) were implanted in the 
right EC of two previously consented subjects along with different 
configurations of macroelectrode strips (Table 1). The locations of 
electrodes were verified by postsurgical magnetic resonance imaging 
(MRI) and computed tomography (Fig. 1A). We analyzed the single- 
unit activity (Fig. 1C) from 525 putative neurons isolated with 
99% confidence based on their intercluster Mahalanobis distances 
(64) and verified by >5-ms refractoriness of spike times. LFPs were 
recorded simultaneously from a separate electrode to rule out con-
tamination of LFP by spike waveforms (Fig. 1B). The two subjects 
performed spatial navigation tasks in four virtual environments for 
30 min each day over seven to eight consecutive days, resulting in a 
total of 2100 data segments (Table 2). Each data segment was asso-
ciated with 30 min of navigation in four different virtual environ-
ments, spending 5 or 10 min in each. The spike phase analysis was 
focused on the two most prominent frequency bands of the LFP 
that significantly deviated from the 1/f spectral function: 2 to 2 Hz 
and 25 to 35 Hz (slow gamma). We identified the former as theta 
and the latter frequency range as slow gamma or gamma for short 
(Fig. 1D and fig. S1) (13). Building on previous findings (4, 6, 13) of 
grid cells expressing allocentric spatially periodic firing patterns in 
humans (Fig. 1, F and G) while maintaining firing phase coherence 
with LFP [including phase precession (65)], we hypothesized that 
average aggregate spike phases should unravel spatially periodic 
patterns when resolved in the 2D space of navigation (Fig. 1H). Al-
though our analysis was agnostic to the frequency band of the LFP, 
the theta and gamma frequency band LFP references generated dif-
ferent maps from the same spike train. To determine the optimal 
frequency band to serve as reference, we compared the temporal 
stability of the resulting phase maps between theta and gamma 
band LFP. Furthermore, we were also aware that spike trains may 
not reveal consistent phase maps beyond the by-chance joint prob-
ability of spatial and temporal patterns.

To determine the phase of spikes, we first bandpass-filtered the 
wide-band LFP at theta (2 to 12 Hz) and gamma (25 to 35 Hz) 
frequency bands and then computed the Hilbert transforms of the 
filtered signals separately (Fig. 1E). The Hilbert transforms of LFP 
defined the instantaneous phases of spikes relative to theta and 
gamma band LFP with less than 1° resolution at 1-ms sampling 
frequency. The 1-ms precise intersections of spike times with the 
two phase transforms defined two phase vectors converting the 
spike times to spike phases (), one vector relative to theta and 
the other vector relative to gamma, referred herein as gamma 
phases and theta phases, respectively (Fig. 1E) (13). While the 
distributions of spike phases for most cells were nonuniform, three 
times as many (19%) neurons expressed deviation from uniform 
phase distribution relative to gamma as to theta (6.21%) [Fig. 1I and 
figs. S3 and S6E; Rayleigh(gamma)P < 0.05: 94 of 478 cells or 376 of 
1914 epochs; binomial test, P = 2.3066 × 10−43 and Rayleigh(theta)P < 
0.05: 23 of 370 cells or 92 of 1480 epochs; binomial test, P = 0.0274] 
and 10 times as many  with Rayleigh(gamma)P < 0.01. Moreover, 
the average single-unit , examined individually or combined 
across electrodes 1 to 4, displayed notable polarization relative to 
gamma [Figs. 2B, 3 (A to E), and 4 (A to D, third column) and figs. 
S3 and S9J] but distributed uniformly relative to theta (Figs. 3F and 
4E, third column; Rayleigh P values are indicated above the circu-
lar histograms).
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To elucidate the spatial distribution of , we binned the area 
of each virtual environment into uniform size proportionate square 
units (.7 by .7, 2 by 2, and 3 by 3   m ̄   , where   m ̄    is virtual meter) and 
computed the circular mean and circular variance of  over the vis-
ited units [equivalent of computing the resultant vector of  (48)]. 

By integrating  over the visited areas, we computed a variance- 
weighted spatial distribution of phases (“phase map” hereinafter) 
denoted by  (Figs. 1H and 2C) (13). Moreover, we computed tra-
ditional FR maps (Figs.  1G and 2A), phase tuning histograms 
(Figs. 1I and 2B), maps of mean heading direction denoted by  

Fig. 1. Construction of phase maps. (A) Postsurgical MRI verification of the electrode position in the right EC. The electrode strip (e) is accentuated. (B) Schematic of the 
4 by 4 microelectrode grid (interelectrode spacing is 1 mm). A designated electrode (#6) served as the source of LFP, while other electrodes recorded single-unit activity. 
Circular waves illustrate propagating gamma waves. (C) Spike waveforms and clusters extracted from 20 min of data with the shortest intercluster Mahalanobis distance 
indicated. (D) Average spectral density of LFP sampled at 2 to 50 Hz during a 10-min spatial memory task. The two most prominent frequency components at theta (2 to 
12 Hz) and slow gamma (25 to 35 Hz) are labeled (shaded area represents SEM). (E) Computation of phase of spikes relative to LFP (1-s data). From the top: spike event, 
broad-band LFP (bandpass filtered, 0.1 to 300 Hz) displaying theta-modulated gamma oscillations, and gamma LFP (bandpass filtered, 25 to 35 Hz) and its Hilbert trans-
form (purple trace). The phase of a spike is defined by the intersection of spike time (red line) with the Hilbert transform (red arrow) of the bandpass-filtered LFP. (F) A 3D 
representation of the mean FR map overlaid on the mean phase map (bin size = 4 virtual   m ̄   2) and their respective orthogonal views (G and H). For phase maps, the hue 
and luminance correspond with mean phase and variance of phase, respectively. (I) Radial histogram of spike phases () relative to gamma LFP combined and (J) sepa-
rated according the four quadrants of the phase spectrum. The r and P values correspond to Pearson’s correlation coefficients between phase and avatar’s trajectory and 
their significance. (F and J) Plots are based on recording of one cell in one environment. (K) Comparisons of grid scores between FRs and gamma phases () by combining 
all data from two subjects (blue and green represent subjects 1 and 2, respectively). ***P < 0.001.
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(Fig. 2D), the resultant vector length (RVL) of the heading direc-
tion, and the correlation of  with heading direction and with RVL 
from daily navigation sessions for each cell in four different envi-
ronments (Fig. 2E and fig. S7, fourth column). According to these 
correlations, most cells expressed strongly nonuniform phase dis-
tributions, clustered heading directions to phase relationship 
(Fig. 2E, “BY” environment, and fig. S7) and occasional dependency 
of phase  on heading directions (P2 < 0.0001; Fig. 2E, “LV” envi-
ronment; and figs. S7, A and C, and S8, A to E).

Despite the large positional and directional variability of trajec-
tories within and across environments, the  phase maps revealed 
environment-aligned periodic clusters of iso-phase densities with 
smooth phase transitions between clusters (fig. S11). The stability of 
iso-phase clusters was tested by cross-validation (fig. S5). The pat-
terns of iso-phase nodes resembled those of grid cell FR maps (2). 
The spatially periodic pattern was prevalent even if the cell’s  grids 
did not coregister with the FR grids (Figs.  1, G and H, and 
2, A and C). The composition of iso-phase nodes in  was consist-
ent with a grid-like pattern expressing a constant spatial shift 
between  nodes after decomposition of  according to phase 
quadrants (Figs. 1J and 2C and fig. S10, C, E, and F). Moreover, 
phase grids displayed sharper clusters than FR grids as the variance 
of grid scores computed from the -values of all cells was signifi-
cantly smaller than those computed from FR maps [coefficient of 
variation CVFR−gridmod = 0.5997 and CVphase−gridmod = 0.2623 and 

two-way analysis of variance (ANOVA): Fsubject = 0.73, P(1,2094) = 
0.3917 and FFR,  = 143.02, P(1,2094) = 0.00097; Fig. 1K].

Environment-dependent scaling of phase maps
To examine the environmental dependence of , we calculated the 
average distance between iso-phase nodes (Fig. 2C) within each en-
vironment across the six to nine sessions played per subject and 
found a monotonic increase of iso-phase distances with the size of 
environments (Fig.  2,  F  to  H; BY  =  5.462   m ̄   , LX  =  15.812   m ̄   , 
LV = 18.242   m ̄   , and OS = 19.119   m ̄   ). Although the FR grids did not 
necessarily coregister with the iso-phase nodes of , as mentioned 
earlier (Fig. 2, A to C), the average iso-phase distance and its scaling 
with the size of the environment were consistent with the FR grid 
scaling (Fig. 2, F and H) (6, 13). The average iso-phase distance 
scaled linearly with the size of the environment (  √ 

_
 ab   ) [Fig. 2G; sub-

ject 1: R2 (coefficient of determination) = 0.5448, root-mean-square 
error (RMSE) = 4.711, f(x) = 0.2835x + 0.669; subject 2: R2 = 0.2026, 
RMSE = 7.395, f(x) = 0.1834x + 3.087]. The slope of iso-phase grid 
scaling (0.2835 and 0.1834) was slightly smaller but comparable to 
the slope of FR grids (subject 1 = 0.4108 and subject 2 = 0.3509; 
Fig. 2H) (6, 13).

Because of the low FRs of cells (<1 Hz for n[0...1 Hz] ≥ 80% of 
cells), most of the EC neurons generated sparse phase maps 
(Figs. 3, B to E, and 4, B to D; and fig. S4). To increase the spatial 
coverage of these neurons and unravel the spatial pattern of  

Table 1. Patients’ data, diagnoses, and recording information.  

Patient no. Diagnosis Symptoms Hemisphere of 
seizure origin

Dominant 
Hemisphere

Electrode 
implantation

Number of 
recording days

Subject 1 Multifocal epilepsy 
due to cavernous 
angiomas in the 

right mesial 
temporal lobe and 

in the inferior 
aspect of the right 

frontal lobe.

Intractable seizures Right Left An array of subdural 
electrodes over the 

right convexity 
temporal lobe and 

EC. Bilateral 
hippocampal depth 

electrodes.

8

Subject 2 Multifocal epilepsy Intractable seizures Right Left An array of subdural 
electrodes over the 

right convexity 
temporal lobe and 

EC. Bilateral 
hippocampal depth 

electrodes.

7

Table 2. Dimensions and features of the virtual environments. N/A, not applicable. 

Environments Size (m) Area (m2) Bin size (m) Shape Boundaries Obstacle External cues Topology 
(roof)

BY 18 by 18 324 .7 by .7 Square ✓ None ✓ Open

LV 50 by 70 3500 2 by 2 Rectangle ✓ None ✓ Open

LX 52 by 52 by 10 2704 2 by 2 Square ✓ ✓ ✓ Closed

OS (70 by 70)* 4900 3 by 3 N/A None None Spaceships Open

*The OS environment did not have visible boundaries, nevertheless above dimensions apply to the navigable area.
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Fig. 2. Environment-dependent scaling of phase maps. (A) FR maps of a combined set of single units (n = 4) monitored in four different virtual environments (BY, LV, 
LX, and OS). The axis scaling in virtual meters (  m ̄   ) reflects the dimension of environments. Black horizontal lines on scale bars indicate mean FR. (B) Polar histograms of 
gamma phase tuning () of combined unit activity per environment. P values represent the significances of Rayleigh tests for circular nonuniformity. (C) Variance-weighted 
gamma phase maps ( described in Fig. 1). The r values represent correlation coefficients between gamma  and RVL of heading, along with the corresponding 
P values. Circles highlight near- (purple) iso-phase nodes close. Iso-phase distances are indicated. (D) Local RVL and  of heading directions. Larger arrows represent 
smaller variance. (E) Heading direction () and gamma  covariance. Red symbols depict the local heading direction (− < dir < ) as a function of . Histograms capture 
the marginal distributions. Asterisks above the plot indicate the nonindependence of phase and heading direction (2 = 107.5121, P = 0.0005). (F) Comparison of FR grid 
and  grid scaling across environments. The boxplot triplets from left to right represent the distribution of mean distances between FR grid centers and mean distances 
between iso-phase grid centers for subjects 1 and 2 (boxes represent the median, 25th, and 75th percentile of the data). Color rectangles depict scale proportional layouts 
of the four environments. (G) Phase grid scaling as a function of environment size in virtual meters (  m ̄   ) (subjects 1 and 2). Pearson’s correlation coefficients between iso-
phase distance and environment sizes are indicated. (H) Comparison of slopes of the environment-dependent scale functions of  relative to FR grids. (A to E) Examples 
from a single subject in the same day in four different environments. (F to H) Population data from both subjects over all days and environments combined.
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Fig. 3. Dependence of spike phase on electrode position. (A to F) FR maps and phases of single units grouped by electrodes (examples from a single environment from 
one subject and 1 day over multiple electrodes). Phases were computed relative to gamma (A to E) and theta (F). (A and F) Spikes combined over four electrodes (n = 2908 
spikes). (B to E) Units combined over single electrodes. Electrode position varied. First column: Spatial configurations of the microelectrode grid. Gray shading illustrates 
the theoretical gamma phase difference between electrodes. Second column: FR maps. Arrowheads on scale bars represent average FRs. Third column: Polar histograms 
of  relative to gamma LFP, except that (F) is relative to theta. Blue angles represent a constant rotation of  between electrodes, and red angles signify the angular span 
of the phase distribution. Fourth column: Spatial phase maps () relative to gamma and theta (A to E and F, respectively). Local mean phase and phase variance are rep-
resented by colors and darkness, respectively. Asterisks above  indicate the significance of the Rayleigh test of directionality; under  heading represent 2 test of phase 
RVL covariance. (G) Summary of phase rotation. Polar histogram represents the interelectrode rotation angles combined over days and sessions from both subjects be-
tween electrode pairs. (H) Bar chart represents the difference between counts of rotation angles between electrode pairs when the angles fall within bins defined as in-
teger multiples of 30° and between those. P value indicates the significance of the binomial test between the two counts. (A to F) Examples from one subject, 1 day, one 
environment, one electrode, and different units. Spatial dimension of pixels is 0.7 by 0.7   m ̄   . P values of polar histograms under  represent the Rayleigh test of direction-
ality. The polar histograms were binned by 5°, and phase maps and average velocity maps were binned by 0.7 by 0.7   m ̄    bins.
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despite low FR units, we merged the spike times of 16 putative neu-
rons (four units from four electrodes) before computing the average 
phase map that evolved during each 5-min navigation session and 
compared that with the phase maps of individual single units. The 
angular distribution of gamma or theta phases  across all spatial 

locations was typically uniform when combined across all four elec-
trodes during 5-min navigation in a given environment (Rayleigh 
P > 0.05; Fig. 2B and fig. S4A). In contrast, the same set of neurons 
displayed highly polarized spatial distributions of  when the 
phases were displayed in the 2D area of virtual navigation (Fig. 2C 

Fig. 4. Dependence of spike phase on single-unit identity. (A to E) Phase differences across single units isolated from the same electrode with respect to gamma (A to 
D) and theta (E). First column: Schematics of putative single neurons recorded from 1 of the 16 microwire electrodes. Second to fourth columns: Same as in Fig. 3, except 
that  and  represent the activity of individual neurons isolated from the same electrode. Red angles under  indicate differences in phase between discrete phase 
tuning modes. Color and darkness in  represent phase and variance, respectively, as in Figs. 1 to 3. (All examples were recorded simultaneously from one subject, 1 day, 
one environment, one electrode, and different units. Same subject and same environment as in Fig. 3 but different day and electrode.) Spatial dimension of pixels is 0.7 
by 0.7   m ̄   . P values of polar histograms under  represent the significance of Rayleigh test of directionality. The polar histograms were binned by 5°, and phase maps and 
average velocity maps were binned by 0.7 by 0.7   m ̄    bins.
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and fig. S4A, third column), regardless of the choice of LFP reference 
gamma or theta (Fig. 3, A and F). Whether the topography of the  
is stable in the given environment or changing over time is crucial 
for the reliability of allocentric spatial representations. The stability 
of  maps over time and their robustness to spike sampling were 
tested using two independent cross-validation methods, blockwise 
and subsampling, each applied to a 5-min interval of game playing 
(fig. S5, A, B to D, and E to G). The correlations between the subsam-
pled spikes confirmed the stability and robustness of phase maps to 
spike sampling [Pearson’s r = 0.403, P(1,359) < 0.0001 and r = 0.239, 
P(1,359) < 0.0001 for stability and robustness, respectively].

Phase maps are different from by-chance phase coincidences
To test the statistical significance of spatial organization of  against 
by-chance pattern formation and to elucidate the feature that con-
trols the topography of phase maps, we applied two types of surro-
gate tests: interspike interval (ISI) shuffling and phase permutation 
of the LFP (fig. S6, A to C). Both types of surrogate spike trains re-
tained the average FR and the original ISI histograms of neurons. At 
the same time, both methods effectively eliminated any systematic 
temporal relationship between spikes and LFP. Although the 2D 
entropy of  and its correlation with navigation were immune to 
the ISI shuffling, entropy increased, and behavioral correlation de-
creased after phase permutation of LFP (Table 3). The concordance 
of the two results suggests that the spatial pattern of the LFP phase, 
as a 2D projection of the collective membrane potential oscillation 
dynamics, may effectively control the spike timing of grid cells.

Next, we compared the spatial organization of  between gam-
ma and theta with respect to entropy, prominence of low spatial 
frequency components of phase autocorrelograms, and the correla-
tion of phase maps with the avatar’s movement directions in space. 
Although both theta and gamma -values displayed equally high 
correlations with the avatar’s movement directions [Kruskal-Wallis 
test, P = 0.4528, r(, dir) > 0.5, P(, dir) > 0.0001], gamma  displayed 
a significantly higher-order spatial structure (smaller entropy) 
and larger power in the low-frequency spatial harmonics than theta 
 (Kruskal-Wallis tests, P2 < 0.0001; fig. S6D and Table 4).

Phase relationship between distant groups of neurons
In all previous examples, we combined single-unit activity across 
electrodes to increase the spatial coverage of neuronal activity and 
elucidate the phase maps in their entirety (fig. S4). However, by do-
ing so, the contribution of single cells to the average phase maps 
remained obscured by the contribution of the entire cell popula-
tion. To tease apart the effects of single neurons to the average phase 
map, we compared  across different electrodes and across individ-
ual neurons isolated from the same electrode. First, we identified a 
recording from a single 5-min session of one environment from one 
subject and day where we could isolate 16 single-unit spike trains 
from four different electrodes (four neurons per electrode) and in-
vestigated the phase composition of -values and -values by merging 
the spike trains at the electrode level. The phase was computed rela-
tive to gamma and theta LFP, where the LFP was always recorded 
from a separate electrode to ensure that the phase and frequency of 
LFP were uncontaminated by the harmonic components of single- 
unit activity (Fig. 3, A to F, and figs. S7 and S8). When electrodes 
and units were combined, the  polar histogram displayed a high-
ly nonuniform phase distribution (Rayleigh P < 0.001; Fig. 3A). 
Despite the moderate FR gridness scores (g = 0.014, P > 0.05), the 

gamma  expressed strong periodicity in alignment with the 
environment (Fig. 3A). Comparisons of phase differences (ij) be-
tween pairs of electrodes 1 and 2, 1 and 5, and 1 and 3 revealed 
a rotation series of 60°, 120°, and 180° rotation of phases (Fig. 3, 
B and C, B to D, and B to E), respectively. Hence, the phase spec-
trum rotates with 60° increments with every electrode position 
as the Euclidean distance increases between the electrodes, whereas 
the 150° span of the phase tuning was invariant to the electrode po-
sition (Fig. 3, B to E, and fig. S7, red angles). Notably, the observed 
phase tuning was specific to gamma band LFP (Rayleigh P < 0.001; 
Fig. 3, A to E). On one hand, the distance-dependent rotation of  
suggests a spatially nonlinear but constant interelectrode delay of 
gamma phases, which is consist ent with a propagating gamma 
fields dynamics (Fig. 3, first column), also evident from the de-
layed correlation analysis of gamma and theta between electrode 
pairs (figs. S1 and S2). On the basis of the known interelectrode 
distance, the angle of phase rotation, and the predefined gamma fre-
quency, the speed estimate of gamma field propagation was between 
0.135 and 0.189 mm/ms. To demonstrate that the discrete and con-
stant phase rotation between electrodes was not an isolated example, 
we combined the phase rotations between pairs of electrodes where 
the two phase distributions allowed for unambiguous identifica-
tion of the corresponding peaks and histogrammed them with 
15° bins (Fig. 3G). The polar histogram revealed a discrete se-
quence of angles that represent integer multiples of 30° phase rota-
tions, consistent with the propagation delay between electrode 
pairs of the evenly spaced multielectrode grid. The interelectrode 
phase rotations of 30°, 60°, or 90° between electrodes were repro-
ducible across virtual environments, days, and subjects with very 
few exceptions (binomial test, P < 0.00001; Fig. 3H). Moreover, 
the gamma phase of combined single-unit activity on each elec-
trode expressed a significant dependency on the avatar’s heading 
direction (2 test, P < 0.05), but no similar relationship was ob-
served between heading and theta phases (2 test, P = 0.1157) (fig. 
S8F, rightmost column).

Phase relationship between nearby neurons
Next, we examined the contribution of individual neurons to the 
average phase composition of a group of neurons recorded from the 
same electrode over a 5-min duration of navigation in one environ-
ment (Fig. 4, A to E). Single units were verified by their high isola-
tion coefficients [Mahalanobis distance between nearest clusters 
dn > 50 ≥ 20 corresponds with >99% confidence (6, 13, 64)] and >5-ms 
refractory period in their ISI histograms. The second column of 
fig. S8 represents typical examples of single-unit -values isolated from 
a group of neurons simultaneously recorded from the same elec-
trode, each displaying highly polarized phase tuning. The first neu-
ron displayed a strong 30° polarity with relatively high FR (mean = 7 
spikes/s, Rayleigh P < 0.0001; Fig. 4A, ). The second neuron with 
low FR (mean  =  0.1 spikes/s) displayed five equiangular phases 
with 72° rotational symmetry (Rayleigh P = 0.8961; Fig. 4B, ). 
Whereas the other two neurons displayed only two components of 
the pentangular phase tuning, one with 144° and another with 72° 
between the peaks, both of these neurons’ phase tuning histograms 
were highly polarized (Rayleigh P ≤ 0.0001), conformed with the 
fivefold symmetry (Fig. 4, C and D,  and ), and retained a precise 
coregistration with firing phases of all the other cells from this elec-
trode. The highly polarized , typical of gamma LFP, was in stark 
contrast with the lack of phase tuning expressed with respect to theta 
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(Fig. 4E). Despite the dispersed spatial scattering, each cell maintained 
the association of iso-phase nodes with spatial locations relative to 
the environment (Fig. 4, A to D, ). Although theta  was homoge-
neously distributed across the phase spectrum (Rayleigh P = 0.627), 
it displayed a clear dependency on the direction of heading [2 
test, P(n = 196) = 7.3819 × 10−6; Fig. 4E,  heading].

In summary, distant groups of neurons show a distance-dependent 
rotation of their phase spectrum, while the shape of the phase spec-
trum does not change (Fig. 3, A to E, and fig. S12A). In contrast, 
individual neurons within the same local assembly display discrete 

equiangular phase distributions with preserved absolute angle of 
peaks but different prominence of certain angles (Fig. 4, A to D, and 
fig. S12B). These two observations suggest that while the absolute 
phases of the group of neurons cannot encode information, the phase 
difference between neurons potentially could. If gamma oscillations 
manifest as traveling waves through the EC, then the absolute phase 
of spikes has no physiological meaning because it depends on where 
we measure gamma, except when taking the neuron’s own sub-
threshold gamma oscillation as a reference. However, the relative 
spike phase differences between neurons are maintained across the 

Table 3. The statistics of surrogate analysis. Nos. 1 and 2 are the difference between original and ISI-permuted dataset and between original and phase-
randomized LFP dataset with respect to the correlation between phase and resultant vector length (RVL) of movements. No. 3 represents the medians of data 
per datasets (from left to right) in the original dataset and the ISI-permuted LFP and phase-permuted LFP datasets separately for subject 1 and subject 2. Nos. 4 
and 5 represent the entropy difference between the original and ISI-permuted datasets and between the original and phase-randomized LFP datasets. No. 6 
contains the median entropy values of original data and ISI-permuted LFP and phase-permuted LFP datasets. Nos. 7 and 8 represent the statistical difference in 
the low-frequency power of the 2D spectrum between the original spatial phase and the ISI-permuted phase and between the original spatial phase and 
phase-randomized LFP phase patterns. No. 9 lists the median power corresponding to the low-frequency power of original and ISI-permuted LFP and 
phase-randomized LFP datasets. 

No. Test Variable P Ha 
P < 0.05 zval n P Ha P < 0.05 zval n Supplementary 

figure

1 Rank sum PH-VELO-ISI 0.5348 0 −0.6207
910

0.8165 0 0.2321
1004

fig. S6A
910 1004

2 Rank sum PH-VELO-
REVLFP 0 1 10.5241

910
0 1 7.8262

1004
fig. S6A

909 1003

3 Medians 0.4982 0.5046 0.3965 0.5575 0.5586 0.4905

4 Signed 
rank

PH-GRID-
ENTR-PHGRID-
ENTR-ISI

0.7487 0 0.3204 910 0.3619 0 0.9118 1004 fig. S6B

5 Signed 
rank

PH-GRID-
ENTR-PHGRID-
ENTR-REVLFP

0 1 −10.51 910 0.0026 1 −3.0143 1004 fig. S6B

6 Medians 0.1544 0.1525 0.1621 0.0923 0.1 0.1015

7 Signed 
rank

PH-GRID-
POWER-
PHGRID-
POWER-ISI

0.0072 1 2.6879 697 0 1 11.8777 1004 fig. S6C

8 Signed 
rank

PH-GRID-
POWER-
PHGRID-
POWER-
REVLFP

0.0956 0 1.6668 697 0 1 8.6097 1004 fig. S6C

9 Medians 0.0551 0.0532 0.0544 0.0821 0.0654 0.0708

Table 4. The Kruskal-Wallis nonparametric ANOVA of theta to gamma phase map comparison. Data from the two subjects were combined. First row: 
Comparison of spike phase to heading direction correlations between spike phases derived from gamma versus theta oscillations showed no significant 
difference. Second row: Kruskal-Wallis test comparing gamma and theta phase maps with respect to entropy indicated significantly lower entropy for gamma 
phase maps. Third row: Kruskal-Wallis test comparing the power of low-frequency components of the 2D spectra between gamma and theta phase maps 
indicated significantly larger low-frequency power in the gamma phase maps. 

No. Statistics Theta-gamma df n 2 test P Sign Supplementary figure

1 Kruskal-Wallis Phase heading r 1 3396 0.5637 0.4528 fig. S6D, left

2 Kruskal-Wallis Entropy e 1 3396 24.3 8.24 × 10−7 *** fig. S6D, middle

3 Kruskal-Wallis Low-frequency 
power

1 3396 41.61 1.12 × 10−10 *** fig. S6D, right
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population regardless of the actual phase of the gamma field. Therefore, 
the next question we address is whether we can decode the spatial infor-
mation from the relative phase differences between neurons.

Decoding positional information from phase
If the phase of spikes relative to gamma encodes allocentric localization 
information (position and/or direction), then given that the same 
gamma oscillation is shared with downstream neurons, it follows 
that they can decode the avatar’s position/direction from the phase 
itself as precisely as our subjects were able to localize their avatar in 
the virtual environment. However, because of the spatial periodicity 
of phase maps, multiple locations can be associated with a given 
gamma phase. To reduce the ambiguity of localization, our goal was to 
use the avatar’s actual position at a time of the spike for predicting 
the impending spatial position at the next spike (xspikei+1, yspikei+1) 
and the heading direction (spikei, i+1) within the neighborhood 
defined by the 20 forthcoming spikes xk ∈ i1…20, yk ∈ i1…20 (fig. S13, 
C to F). Although the decoding was performed relative to the previ-
ous spike, both () and position (x, y) estimates were computed in 
environment-referenced, allocentric coordinates (fig. S13, E and F). 
Following the Bayesian decoding framework, we used the actual po-
sition of the avatar at the time of a predicate spike (x0, y0), the phase 
of the next spike 1, the phase probability map , and the probabil-
ity of the avatar being at that position pA(x, y). The goal of decoding 
was to predict the position of the subsequent spike (x1, y1) from the 
phase 1 given  and pA(x, y). We captured the direction decoding 
errors in a circular histogram (fig. S13G) and in a form of a confu-
sion matrix (CM) (fig. S13H), comprising the predicted positions or 
directions as a function of observed positions or heading directions 
of the avatar, respectively. To increase the spatial density of spikes 
for reliable spike phase estimates of prior, we combined the spikes 
across all neurons and electrodes but kept the days and navigation 
sessions (environments) separate. To ensure that the gamma compo-
nent of the LFP was uncontaminated by the spikes, we recorded the 
LFP and the spikes from different electrodes separated by at least 
1 mm. For decoding the avatar’s position or direction from the 
phase of spike, we sought to determine the spike with the maximum 
likelihood arg max (p(T∣x, y)), where (x, y) was the estimated allo-
centric coordinate. The tangent of the shortest Euclidean path be-
tween successive spike positions relative to the opposite and adjacent 
walls provided the heading direction as  = tan−1(dx/dy) of the avatar, 
where dx = x1 − x0 and dy = y1 − y0. We iterated the process for every 
spike in the test set per session and computed the average CM for each 
session and day (fig. S13H). The mean decoding error matrices of di-
rection [(error)], positions [x, y(error)], and path lengths [l(error)] were 
averaged across environments and days, but the two subjects’ data were 
kept separated (Fig. 5). Correlations between decoded and actual 
movement parameters including heading direction, position, and path 
length were all significant (circ rdir = 0.347, P < 0.001 and circ rdir = 0.332, 
P < 0.001 for subjects 1 and 2, respectively; rpos = 0.838, P < 0.001 and 
rpos = 0.688, P < 0.001 for subjects 1 and 2, respectively; rlength = 0.714, 
P < 0.001 and rlength = 0.625, P < 0.001 for subjects 1 and 2, respective-
ly). Representative decoding performances are illustrated in Fig. 5 (A and 
B, insets) and fig. S14. Nevertheless, to compensate for the decoding 
bias deriving from the narrow dispersion of spikes along straight trajecto-
ries, we applied two interventions. First, we excluded straight movement 
trajectories from the analysis by limiting the analysis to r <15   m  ̄  , where r 
is the radius of path curvature. Second, we computed a CM [M(Null)] 
using the original spike time data and movement trajectory but shuffled 

the spike phases across the spikes and subtracted the shuffled phase CM 
MNull from the observed phase CM Mobs for directions [(error)] and for 
positions x, y(error) separately (Fig. 5, A and B). The corrected CMs retained 
a near-perfect decoding performance for allocentric positions (Fig. 5B; 
Pearson’s rsubj1 = 0.3220, P = 0.005 and rsubj2 = 0.1957, P = 0.0046, 
and areas under receiver operating characteristic (ROC) curves for both 
subjects were above 0.99; Fig. 5D and see fig. S15 for the construc-
tion of ROC curves) but partly lost predictability for directions (Fig. 5A; 
rdir = 0.092, P = 0.0001 and rdir = 0.037, P = 0.120 for subjects 1 and 2, re-
spectively) as also evident from the differential dispersion of the distribu-
tions of CMs. At the same time, the diagonal distribution of the true 
phase CM was narrower than that of the phase-shuffled Null for 
data from both subjects (Kolmogorov-Smirnoff test after Benjamini- 
Hochberg correction for multiple comparisons).

The results deriving from the corrected CMs suggest that posi-
tion information encoded by phase is accurate within 2 by 2   m  ̄   (Fig. 5B, 
diagonal histograms), and the likelihood of getting a phase readout 
by chance at this level of accuracy is Psubj1 = 0.0323 and Psubj2 = 
0.0417. We conclude that in contrast with the heading direction, the 
position information of the avatar from the phase of spikes is avail-
able to neurons downstream, whether it is used.

Comparing position and direction decoding between 
phase and FR
To assert whether decoding the phase of spikes has any benefit rel-
ative to FRs, we compared the position and direction decoding per-
formances of the gamma phase with the decoding from FR. Since 
the spatial FR distribution of EC grid cells is also spatially periodic, 
the Bayesian decoding algorithm that we applied to the gamma 
phase was applicable to FRs with minor modifications. Because un-
like phase, FR is bounded to a frequency range between 0 and the 
maximum FR of the cell, it had to be z-transformed over the area of 
navigation before using it for decoding. If FR is just as efficient for 
encoding positions and directions as the phase of firing, then the 
decoding performance of spike phase could be accounted for by the 
topography of spike density as opposed to the spike phase relative to 
LFP. However, the CMs of FR indicated a moderate yet significant 
decoding power from FR as compared to the gamma phase for both 
features, allocentric position and allocentric direction in both sub-
jects’ data (   subj1,dir  

2   = 1.4339 , Psubj1,dir = 0.2311; rsubj1,dir = 0.1356, 
Psubj1,dir = 2.36 × 10−08;    subj1,pos  

2   = 8.4044 , Psubj1,pos = 0.0037; rsubj1,pos = 
0.0235, Psubj1,dir = 0.2399;   t (TP−FP)  

subj1   = 4.2297 , df = 99, P = 5.2276 × 
10−0.5;    subj2,dir  

2   = 0.09164 , Psubj2,dir = 0.7621; rsubj2,dir = 0.01262, 
Psubj2,dir = 0.60496;    subj2,pos  

2   = 23.5638 , Psubj2,pos = 1.2084 × 10−06; 
rsubj2,pos = 0.0295, Psubj2,dir = 0.1390;  tsta  t (TP−FP)  

subj2   = 2.2087 , df = 99, 
P = 0.0295, where TP and FP denote true positive rate and false 
positive rate, respectively; fig. S16). The areas under ROC curves 
(AUC) of position decoding from FR for subjects 1 and 2 were 
AUCsubj1 = 0.7072 and AUCsubj2 = 0.6150, respectively, smaller than 
for gamma phase decoding (fig. S16). In summary, FR provided less 
information about direction and position of the avatar than the .

DISCUSSION
Spike-LFP phase coherence has been extensively studied within 
(66–68) and across cortical areas (69). A special class of spike-LFP 
phase coherence, the theta phase precession, has elucidated the in-
tricate interplay between spikes and the theta oscillation observed 
in the rodent hippocampus and EC during traversing a place field 
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Fig. 5. Bayesian decoding of heading direction and position from the phase of spikes. (A) Panels from the left to right are normalized population average of CMs of 
the decoding of the heading direction before (a) and after trajectory bias correction (a-b), respectively. Left and right blocks represent data (combined across all days, from 
all environments, and cells) from subjects 1 and 2, respectively. (B) Same panels as in (A) except decoding the avatar’s position. Possible positions were limited to a 6 by 
6   m ̄    space. Tilted histograms represent the distributions of position decoding errors (median errors are indicated) with respect to identity lines (dashed line). Insets in (A) 
represent data points magnified. White numbers are the positive bin counts per quadrant. Trajectory plots at the far right represent single-session examples of direction 
decoding (top plot) and position decoding (bottom plot). Gray lines are true trajectories, and black arrows and black lines represent the decoded directions and positions, 
respectively. Examples derived from merging all single units per session in the same environment. (C) Histograms show the prevalence of correct position decoding (gray 
bars) relative to by-chance decoding from phase-shuffled spikes (black bars) for subjects 1 and 2 separately. ***P < 0.001. (D) ROC curves capture the ratio of spikes cor-
rectly decoding the position from phase (true positive) relative to spikes decoding the correct position by chance (false positive). The curve is the aggregate of data points 
over all experiments grouped by subjects. AUC, area under the curve. (E) Distributions of P values of the Kolmogorov-Smirnov tests when comparing the cumulative 
probability density functions between the observed prediction errors and the errors deriving from 100 shuffled spike phase datasets relative to the identity lines of the 
CMs. The P values represent the false discovery rate after Benjamini-Hochberg correction. Dashed lines represent the P = 0.05 level of confidence.
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(46, 49, 70) as well as in the human hippocampus (65). While previous 
studies have investigated the spike phase within a 1D framework by 
using linear mazes (49), constraining the analysis to omnidirection-
al passes in open environments (43, 71), analyzing the theta phase 
during approaching navigational goals (72), or predicting trajectories of 
the animal from 1D theta phase precession of neurons in the CA1 area 
of the hippocampus and lateral septum (47, 48, 58), none of these studies 
extended the scope to reveal the 2D map of spike phase modulation. In 
contrast, by introducing three manipulations—(i) expressing the 
same spike phases relative to gamma and theta, (ii) computing the 
spatial average of phases within 2D environment- aligned bins, and 
(iii) allowing for 2D navigation—we were able to combine the naviga-
tion trajectories into a 2D map and observed grid-like discrete gamma– 
iso-phase nodes with systematic phase transitions between nodes 
(Figs. 1, H and J, and 2C and figs. S4 and S11).

By comparing phases of the same spikes when referencing them to 
gamma versus theta band LFPs, we found that 3 to 10 times as many 
neurons expressed significant environment-specific phase nonuni-
formity relative to gamma than to theta (13). In addition, gamma 
phase tuning showed an increased polarization (Figs. 3, A to E, and 
4, A to D) relative to theta (Figs. 3F and 4E), and iso-phase node dis-
tances in gamma phase were smaller than those constructed from the-
ta (figs. S3, A to D, and S9, E and K), contrary to other approaches 
focusing only on theta (18, 43, 71). Not only the gamma phase tuning 
was more articulated than theta but also the low- frequency components 
of spatial autocorrelograms computed from gamma phase maps had 
a larger power than those of theta phase maps. Moreover, the spatial 
distribution of gamma phase maps, as quantified by entropy, was over-
all more clustered than that of the theta phase maps (fig. S6, D and E). 
The enhanced spatial coherence of gamma phase maps relative to the 
theta phase maps could, at least partly, be accounted to the increased 
phase variance deriving from the theta phase precession, an explana-
tion that requires further validation.

The third main observation was that the coefficient of variation 
of population-wide gamma phase modulation was smaller than that 
of the FR grids’ (Fig. 1K), suggesting that the spike phase can en-
code information under either extremely low or high FR conditions 
when no grids can be extracted from FRs. This observation was sup-
ported by our result showing the immunity of phase maps to ISI 
shuffling, while the phase randomization of LFP was able to com-
promise the spike phase maps significantly (fig. S6B) (13).

The fourth main observation was that the interelectrode phase 
shift (Fig. 3, B to E) was consistent with the model of propagating 
gamma waves (40, 67, 73), which also can explain why the activities 
of cells recorded from two adjacent electrodes display a constant 
phase difference. Moreover, we observed that gamma phases from 
both multiple neurons recorded from the same electrode and single 
neurons resulted in discrete multimodal phase distributions (Figs. 3, 
B to E, and 4, A to D, respectively) (13).

Fifth, we demonstrated that both position and direction infor-
mation can reliably be read out from the phase of spikes (Fig. 5), 
which raises the intriguing hypothesis that downstream neurons, in-
cluding pyramidal cells in the hippocampal CA1 and CA3 areas, 
may be able to decode position and direction information from the 
phase of action potentials given a shared gamma oscillation, as pre-
dicted by the model of gamma phase coding (45, 74).

Last, we showed that gamma phase coding provides a surplus of 
information relative to the information available from FR alone by 
comparing the precision by which Bayesian decoding can predict the 

direction and position of the avatar from FR versus gamma phase (Fig. 5 
and fig. S16). We concluded that gamma phase decoding far exceeded 
the performance of decoding the FR; hence, there must be information 
contained by the phase that is not available from the FR alone.

The joint representation of direction and location observed in our 
experiment over the same neuron population is a defining feature of 
conjunctive cells in layers 3 and 5 of the mEC of the rodent (75) with the 
qualification of head-directional tuning, which should not be confused 
with the heading direction tuning of phase in our study. However, head 
direction and heading direction in our experiment were inseparable be-
cause the avatar was always facing in the heading direction. Therefore, 
it is conceivable that a class of grid cells in the human EC also jointly rep-
resent direction and location, consistent with reports on goal-specific 
spike-LFP phase coding found in the human hippocampus relative to 
theta oscillations (72). Although speed was constant in our experiment, 
location and direction combined with speed could provide a complete 
positional representation of the agent relative to the navigation space.

In summary, beyond simple phase tuning, we demonstrated a 
2D modulation of spike-LFP phase relationship that is (i) periodic 
in space, (ii) strongest at slow gamma LFP, (iii) persistent, (vi) scales 
with the environments, (v) allocentric, and (vi) jointly encodes 
heading direction and relative location. To prove the efficacy of this 
code, we applied Bayesian decoding on the phases of spikes gener-
ated by EC neurons, which demonstrated a reliable readout of posi-
tions with a ±1   m ̄    precision in both x and y dimensions. Given the 
areas of the mid-size virtual environments (52 by 52 and 50 by 70   m  ̄  ) 
and the average seven subdomains within which spike phases 
uniquely associated with specific locations were observed (i.e., the 
number of iso-phase nodes), the probability of correctly guessing 
the location of the impending spike based on the spike phase is less 
than 0.01, a likelihood worth to consider. To attain this level of con-
fidence, spike phase coding is critically dependent on the frequency 
and phase of gamma oscillations. On the basis of the dynamic fea-
tures shared between the human EC neurons and grid cells in the 
rodent mEC, we posit that the phase of spikes enables the agent to 
localize itself relative to an allocentric reference frame within the 
subspace defined by the phase grids with precision exceeding that of 
FR grids. Whether the two kinds of information encoded by spike 
phases and FRs are redundant, complementary, or represent dis-
junct readouts altogether remains to be determined. Regardless of 
the precise relationship between phase grids and FR grids, the spa-
tial modulation of spike phases by the slow gamma rhythm suggests 
a new mechanism by which EC acquires stable allocentric represen-
tations via the subtle interaction between spiking neurons and the 
propagating field of gamma oscillation in the human brain.

MATERIALS AND METHODS
Subjects
Two male patients (ages 33 and 40; average, 36 and a half years; 
Table 1), diagnosed with multifocal epilepsy, were previously con-
sented and implanted with microelectrode arrays in their EC in prepa-
ration for surgical resection of epileptic foci. From these two patients 
(subjects 1 and 2), we could record well-isolated single-unit activity 
with one channel LFP throughout a 7- and 8-day period in the hospital’s 
epilepsy monitoring unit, while they performed a virtual navigation 
task that required spatial memory on a tablet computer (Table 1). 
All surgical and experimental procedures were approved by the 
Seton Institutional Review Board.
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Tasks
The subjects were asked to play a computer game on a tablet they 
held on their lap. The game’s objective was to locate randomly dis-
persed space aliens in four different environments and return them 
to preassigned spaceships parking at memorized locations. The four 
virtual environments included a BY, a courtyard of the LV, a model 
reconstruction of the main hall of the LX Temple in Egypt, and a 
large OS with a boundless horizon and minimal external cues (6). 
These environments differed in several features, including scenery, 
size, aspect ratio, and presence of obstacles or boundaries (Table 2). 
The virtual reality environments were designed using Unity 3D 
(version 3.5.6) and were compiled for Android 4.0. The game 
rendered the 3D environment from the player’s point of view. The 
player was constrained to the flat ground surface of each map, and 
their movement speed was a constant 5   m ̄   /s, unless the “GO” button 
was released or an obstacle inhibited the movement.

Game control
The task was performed on a tablet PC (ASUS Transformer 201 
running Android 4.0 at 1280 by 800–pixel resolution). Subjects ma-
neuvered by pressing a GO button with their left thumb and con-
trolled the direction by pressing either a “LEFT” or “RIGHT” button 
with their right thumb. Before experimental data were collected, 
subjects were allowed to practice playing the game until they were 
accustomed to the game controls. The subjects’ virtual trajectory 
and heading (relative to the north-south axis in each game environ-
ment) were recorded (6, 13).

Implementation of the task
Our subjects performed virtual spatial navigation tasks implemented 
as video games using a tablet computer, for a 5- or 10-min duration 
per game in four different environments (see the “Tasks” section), a 
total of 40 min/day. The four environments differed in size, geome-
try, architecture, indoor, outdoor space, and the richness of spatial 
landmarks (6). The subjects viewed these scenes from the first-per-
son point of view (further referred to as the “avatar’s view”). The 
avatar’s movement was controlled by touch screen buttons, allow-
ing movement controls of advancing along a straight or a curved 
trajectory by pressing GO and/or LEFT or RIGHT buttons at the 
same time, respectively. The touch screen control enabled also stop-
ping (when not pressing GO) and turning while stopping. The ava-
tar moved by emulating real walking with a constant step size and a 
constant speed of 1.4   m ̄   / s , where   m ̄    denotes for virtual meter. The 
objective of the game was to locate randomly placed space aliens, 
pick them up one by one, and deliver them to one of the two space-
ships parked at constant locations within the space. The game pro-
gram kept track of the avatar’s movements with a 16-ms sampling 
rate synchronized with the display frame rate. The pickup and de-
livery of a space alien were displayed on the screen giving continu-
ous feedback to the subject on his/her performance. We motivated 
the subjects to exceed his/her last day’s performance. Our subjects 
were able to complete as many as 50 space alien deliveries per day, 
with an average of 2 space aliens/min (6, 13).

Synchronizing spatial navigation with neuronal data logging
The subjects’ navigation data, recorded on the tablet, was associated 
with the neuronal data by sending a 25-ms duration frequency- 
modulated waveform from the tablet’s audio output port to the 
analog auxiliary input port of the data acquisition system each time 

the “START” button for the game was released and periodically 
afterward. The precision of data synchronization between the tablet 
and the neuronal data logging was <2 ms (SD, 1 ms). This resulted 
in a spatial localization error of less than 2.5-cm virtual distance 
(<0.048% of average map width) (6, 13).

Surgical procedures and electrode implantation 
and explantation
We recorded wide-band signals from no deeper than layers 2 and 3 
(given the <0.8-mm tissue penetration and the average 5-mm corti-
cal thickness of human EC, although lacking histological verification) 
of the mEC. Ad-Tech macro/micro subdural electrodes (catalog 
code: CMMS-22PX-F478), custom made per our specifications, 
were surgically implanted in the right hemisphere of two patients. 
The macro/microelectrode assembly consisted of six macroelec-
trodes and 16 microelectrode wires arranged in a 4 by 4 grid be-
tween the macroelectrodes. The microelectrodes were made of 
35-m platinum-iridium wires arranged in a 4 by 4 wire grid with 
1-mm spacing between nearest electrodes. Electrodes were cut to 
0.8 mm in length from the electrode base and with a nominal im-
pedance of <3 megohm. Craniotomy and electrode implantation 
were performed under general anesthesia. After craniotomy, the 
electrodes were inserted subdurally to the surface of the EC by the 
neurosurgeon with stereotactic control. The dura was hermetically 
closed in a watertight fashion, and the bone flap was reattached. The 
patient remained in the hospital intensive care unit under continuous 
epilepsy monitoring for 5 to 14 days following the surgery. After 
sufficient evidence for seizure origin had been collected, electrode 
explantation and surgical resection of the seizure foci were per-
formed under general anesthesia (6, 13).

Recording neuronal data
Simultaneous single-unit activity was obtained from 5 of 16 micro-
electrodes at 24-kHz sampling frequency using an FHC Guideline 
4000 system, a Food and Drug Administration–approved amplifier 
for neuronal data acquisition in the human brain. The five electrodes 
varied across the days and were selected before the recording ses-
sion based on the largest amplitude and most promising single-unit 
isolation. The 5- or 10-min traces were bandpass-filtered (300 to 
6000 Hz) using a noncausal elliptic filter offline. Because we selected 
5 of 16 electrodes with the highest unit activity each day before data 
logging, we are unable to claim the identity of single units across 
different days. Simultaneous LFP was sampled from all the five elec-
trodes filtered digitally by a noncausal filter (“filtfilt” function in 
MATLAB) between 1 and 300 Hz (6, 13).

Spike detection
We applied Wave_clus offline spike detection and spike sorting (76). 
Spike detection was followed by isolation of single-unit activity us-
ing an unsupervised spike-sorting method. For spike detection, we 
applied a threshold fitted to the median SD of the data (Eq. 1)

   Thr = 4    n  ;    n   = median {     ∣x∣ ─ 0.6745   }     (1)

where x is the bandpass-filtered signal and n is an estimate of 
the SD of the background noise. In cases when the amplitude 
threshold did not provide a clear separation between single and 
multiunit activity, the multiunit activity generated a large “noise 
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cluster” in the wavelet coefficient space at near-zero amplitude. 
This isolated noise cluster enabled us to separate single-unit clusters 
from noise with high confidence. We only included single-unit 
activity in our dataset if it was separated from the noise cluster by 
d > 20, where d is the Mahalanobis distance (6, 13).

Spike sorting
Spikes different from noise were sorted using the WaveClus method 
that uses superparamagnetic clustering as a nonparametric classify-
ing engine (76). WaveClus is the second most popular semisuper-
vised method worldwide, used by more than 110 publications, and 
the most efficient among the bench-marked spike sorting methods 
(77). The wavelet transform is defined as the convolution between 
the signal x(t) and a Haar wavelet functions a,b(t)

  WX(a, b ) = x(t ) ∣   a,b  (t)  (2)

where a,b(t) is dilated (contracted) and shifted versions of a unique 
wavelet function (t)

      a,b  (t ) =  ∣a∣    
1 _ 2    (     t − b ─ a   )     (3)

where a and b are the scale and translation parameters, respectively. 
Last, we obtained 12 wavelet coefficients and reduced those to four 
dimensions with the highest multimodality and deviation from nor-
mal distribution. These were the dimensions best discriminating the 
spikes in wavelet coefficient space. Each spike was associated with a 
combination of these k most informative wavelet coefficients and 
hence represented by a point in the k-dimensional space. The data 
using superparamagnetic clustering resulted in clusters associated 
with spikes of similar waveforms, where k = 12 for all present data-
sets. The spike times of classified waveforms were tested against 
4-ms refractoriness before being associated with putative neurons. 
We only included neurons where the Mahalanobis distance between 
the centroid of the noise cluster and the elements of a single-unit 
cluster or between the centroid of a given single-unit cluster and the 
elements of another cluster was d > 20. We refer to these single-unit 
clusters as the activity of putative “neurons” (Fig. 1A). Spike times 
were rounded to the nearest 1-ms interval and expressed in 1-ms 
precision (6, 13).

Computational methods
Characterizing the avatar’s movement in space
The subject’s task in the game was to navigate the avatar to pick up 
randomly displaced space aliens and reach memorized targets with 
them. During the navigation, some areas were visited more often than 
others, resulting in an inhomogeneous distribution of sampling of 
the environment. The    v ̄    (x,y)    expressed the distribution of direction 
crossing at (x,y) area of the environment. The map of directions 
   v ̄    (x,y)    and the RVL (    v ̄    (x,y)   ) quantified the avatar’s movement in four 
dimensions as the X-Y location, the mean heading direction    v ̄    (x,y)    
(angle), and the RVL of heading direction  1 /    v ̄    (x,y)    (the inverse of 
the variance of directions), given that the avatar was moving with a 
constant speed. The mean heading direction quantified the angular 
mean direction of all pathways taken by crossing a unit area regard-
less of the uniformity of directions, whereas the RVL quantified the 
unidirectionality of those crosses (6, 13).

Computing heading direction and resultant vectors
The X-Y coordinates of the avatar’s movements and heading direc-
tions in the environments were up-sampled to 1 kHz by cubic spline 
interpolation to match with the temporal resolution of neuronal 
data. Data synchronization was achieved through audio trigger 
pulses generated by the tablet and recorded through an analog aux-
iliary input of the data acquisition computer [for method details, 
see (6)]. From the positions and facing directions (in angular de-
grees), we constructed a probability density of visits over each unit 
area of an environment during each game. For the construction 
of these maps, we divided each environment uniformly by a square 
grid that was proportional to the size of environments (0.7   m ̄    by 
0.7   m ̄    for the small BY, 2 m by 2 m for the large LX and LV, and 3 m 
by 3 m for the largest OS environments). Next, we determined the 
total amount of time spent in each square area, the number of cross-
ings in that area, the circular mean direction of movement     ̄    k    from 
a set of vectors representing the avatar passing through at a given ij 
unit area, and the resultant vector of all passes. The length of the 
resultant vector served as an estimate of the consistency of heading 
directions over an area. Conversely, the inverse of the RVL de-
scribed the variance of directions of passing. The average direction 
    ̄    ij   = 1 / N  ∑ k=1  N       k    was defined as the mean direction of vectors at a 
given unit area. The mean direction informed us how stereotypical 
the view was from that location, and the RVL informed us directly 
about the variance of the directions the avatar took by crossing the 
place. Given the average constant speed of the avatar, a small result-
ant vector mij indicated a large variance of directions, while large 
mij implied consistent directions. Direction and resultant vectors were 
all normalized by the number of vectors in the area. Four types of 
correlations with phase of spikes were computed: (i) circular cor-
relation between phase angles and motion direction angles (78), 
(ii) circular to linear correlation between the spike phases and RVL, 
(iii) independence of spike phase and motion direction distribu-
tions vectors using 2 tests, and (iv) independence of spike phase 
and RVL distributions using 2 tests (6, 13).
Circular to linear correlation between spike phase 
and movement resultant vectors
To correlate the average neuronal activity (FRs or spike phases) with 
movement parameters (heading direction or resultant vector) at 
any spatial location, we counted the spikes and trajectory segments 
over small areas each environment was divided into. All trajectory 
segments crossing a given area were aggregated, and average direc-
tion and resultant vectors were computed. Likewise, all spikes with-
in that area were aggregated, and the mean circular phase of spikes 
was computed. Next, we computed the correlation between mean 
spike phases and the RVL as circular to linear correlation (78). If 
our data consist of n pairs of movement velocity (m11, m12, m1n) and 
spike phase angle (a21, a22, a2n), then the circular correlation is de-
fined (79).

   r  c   l =   
 ∑ k=1  n   (sin(   ̄    1k   ) −  m  1,1   ) (sin(   ̄    2k   ) −  m  2,1  )

   ────────────────────────    
 √ 

________________________________
     ∑ k=1  n   (si n   2 (   ̄    1k   ) −  m  1,1   ) (si n   2 (   ̄    2k   ) −  m  2,1  )  

    (4)

Correlation between movement direction and spike phase
Let assume our data consist of n pairs of movement angular velocity 
(11, 12, 1n) and spike phase angle (21, 22, 2n). The circular 
correlation is defined (79, 80).
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   r  c   =   
 ∑ k=1  n   sin(   ̄    1k   −    1,1   ) sin(   ̄    2k   −    2,1  )

   ─────────────────────   
 √ 
____________________________

    ∑ k=1  n   si n   2 (   ̄    1k   −    1,1   ) si n   2 (   ̄    2k   −    2,1  )  
    (5)

where 1,1 and 2,1 are the grand mean direction of the movements 
and spike phases, respectively. The estimated P value associated 
with the correlation is based on the assumption that zr is distributed 
as standard normal

   z  r   =  r  c    √ 
_

   n    20      02   ─    22        (6)

and

     ij   =   1 ─ n     ∑ 
k=1

  
n
   si n   i ( a  1k   −  T  1,1   ) si n   j ( a  2k   −  T  2,1  )  (7)

where T1,1 and T2,1 denote appropriate angular sample means.
Binning the space for FR maps and phase maps
To elucidate the spatial aspect of spike phase (), the navigation are-
na was divided into uniformly sized (1 m by 1 m, 2 m by 2 m, or 3 m 
by 3 m) squares (unit areas) proportional to the total area of the 
environment. The size of the unit area did not influence the results 
within a range of 0.5 m by 0.5 m to 3 m by 3 m (6). For each of those 
areas, we determined the times of visiting and the number of spikes 
generated inside the area. The computation of FR maps and phase 
maps is described in the “Computing spike to LFP phase” and “Spa-
tial FR maps” sections, respectively (13).
Computing 2D entropy
Instead of using traditional grid-score metrics (81, 82), we used en-
tropy for comparing phase maps of original spike trains with surro-
gate spike and LFP processes [(13). The advantage of entropy over 
gridness is that it is (i) more general than gridness; (ii) less sensitive 
to specific features such as rotational symmetry; (iii) agnostic to the 
grid distance and rotation symmetry unlike gridness, while it is still 
sensitive to the periodic structure of the 2D image; and (iv) easy to 
interpret and straightforward to compute. If p(zi) is the gray-level 
histogram of the phase map, then the entropy of the image is (83)

  e − ∑ p( z  i  )  log  2   p( z  i  )  (8)

Analysis of grid parameters
FR maps, spatial autocorrelograms (ACs), and autoperiodograms 
were computed using standard methods (6, 75, 81, 82, 84). We 
quantified grid scores by precisely following the method outlined 
by Barry and Bush (81), Sargolini et al. (75), and Krupic et al. (82). 
Grid distance was determined on the basis of the autoperiodo-
gram and manually cross-validated with the ACs. To compute the 
confidence intervals for statistical significance of gridness scores, 
we applied a standard Poisson bootstrap method and shuffled 
spike times 1000 times (not to be confused with the method of gen-
erating surrogate spike trains for phase maps in the “Generating 
surrogate spike trains” section). Validation of spatial periodicity against 
the by-chance was done using a Monte Carlo method by comparing 
the spectral modulation depth of each AC against the distribution 
of gridness scores of 1000 randomized AC generated from mix-
tures of 2D Gaussian distributions (6, 13).

Computing the FR grid period (grid distance)
Grid period is the wavelength of the spatially periodic single-unit 
activity. It is equivalent with distance between adjacent nodes of the 
AC. Since ACs are periodic by construction, this spatial wavelength is 
defined as the inverse of the predominant spatial frequency compo-
nent and could also be measured by hand as the average grid distance 
(2). Grid distances were measured following the method outlined 
in Nadasdy et al. (6). Briefly, after the removal of the central peak 
from the AC (nonspecific to the spatial pattern), we computed the 2D 
spectral density of the ACs by taking the complex conjugate of the 
inverse 2D Fourier transform (82). We next averaged the 2D spectral 
distribution across the X and Y coordinates and determined the larg-
est amplitude peak positions. The peak position corresponds to the 
predominant spatial frequency component of the grid. This method 
was chosen because it is more precise and less biased than measuring 
the distance between the nodes by hand. Dividing the dimensions of 
the AC by the spatial frequency provided the distance of the X-Y peak 
in spatial bins. We then computed the Euclidean distance of the peak 
(defined by its X and Y coordinates) from the origin, the center of the 
autoperiodogram. This distance was multiplied by the scalar bin size 
(in meters) to give the main grid period . Grid frequencies were 
computed for ACs generated by each neuron and compared between 
environments. Not to confuse the FR grid distance with the “grid phase 
node distances” (described in the “Computing grid iso-phase node dis-
tance” section) (6, 13).
Computing grid iso-phase node distance
In the lack of a standard method for quantifying the spatial distribu-
tion of spike phases projected onto a 2D plane, we applied a manual 
method. First, we plotted the color-coded phase maps for every single 
unit that exceeded an average FR of 1 Hz, providing n ≥ 300 spikes 
during a 5-min navigation session. The justification for the 1-Hz FR 
threshold was empirical, as it provided the sufficient coverage for gen-
erating continuous phase gradients and discernible iso-phase nodes, 
i.e., areas where the same phase repeats. We calibrated each phase 
map according to the size of the virtual environment and digitized 
the position of iso-phase nodes relative to the edges of the envi-
ronment. Defining iso-phase nodes started with dividing the phase 
spectrum to four equal segments (1° to 90°, 91° to 180°, 181° to 270o, 
and 271° to 360°) corresponding roughly to blue, red, yellow, and 
green colors of the hue, saturation, value (HSV) color map. Next, 
we asked unbiased volunteers to mark the centroids of areas on 
the phase maps where one of the four colors is represented by at 
least three connected pixels and enter the coordinates into separate 
spreadsheets. To avoid a bias, the volunteers were blinded to the pur-
pose of the study and the goal of measurements. Once the phase maps 
were digitized, we computed the Euclidean distances between each 
node (N) of the same color and determined the inter node distances 
between them. The total number of distances within an iso-phase 
node graph is  N =  n * (n − 1) _ 2   . Next, we constructed the distribution of 
these distances. For a periodic graph, the distribution of internode 
distances formed several prominent peaks with subharmonics. The 
first peak in the distribution provided the average nearest neighbor 
internode distance [  d ̄   ; the mean of   d ̄    across the four phase ranges 
(color) was used to express the iso-phase distance (  D ̄   )] (13).
Datasets and statistical methods
To compare grid scores and grid periods across environments, the 
general linear model ANOVA and its nonparametric version the 
Kruskal- Wallis test (MATLAB, MathWorks, Nattick, MA) were ap-
plied. The main factor was the environment (BY, LV, LX, and OS), 



Nadasdy et al., Sci. Adv. 8, eabm6081 (2022)     4 May 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

16 of 21

and the dependent variables were grid period and phase internode 
distance (6, 13). We performed Rayleigh tests for testing nonuniformity 
of circular data and Watson’s goodness of fit test for testing conformity 
with the von Mises distribution [MATLAB Circular Statistics 
Toolbox (78)].
Processing LFPs
Wide-band signals were recorded from all five electrodes, but we 
computed the phase of single-unit activity relative to the LFP from 
only a single dedicated electrode, referred to as El 5. For this elec-
trode, we down-sampled the original wide-band recording from 24 
to 1 kHz and digitally filtered the LFP between 1 and 300 Hz for 
broad spectrum overview using a noncausal, zero phase digital filter 
implemented in MATLAB as filtfilt (www.mathworks.com/help/
signal/ref/filtfilt.html). LFP was then further filtered at specific fre-
quency bands by also using filtfilt for theta (2 to 12 Hz) and gamma 
(25 to 35 Hz). These frequency intervals were determined on the 
basis of the prominent frequencies of the fast Fourier transform 
(FFT) (Fig. 1B). We selected epochs for the phase analysis when 
the spectral density function at theta or gamma band deviated by ± 2 
standard deviations from the 1/f regression. Hence, the num-
ber of epochs included in the theta and gamma phase analysis dif-
fered (13).
Computing spike to LFP phase
To get a precise phase estimate of the spikes, we sampled the spike 
waveform at a 24-kHz sampling rate. We determined the spike time 
based on the largest first derivative of the positive going component 
of action potentials. This time point was then rounded to the near-
est 1-ms scale and associated with the LFP also sampled at 1 kHz. 
Next, to obtain the instantaneous phase, the Hilbert transforms of 
both theta and gamma frequency-filtered signals were computed 
using the “hilbert” function of MATLAB (www.mathworks.com/
help/signal/ref/hilbert.html). The Hilbert phase at spike times (both 
defined at 1-ms precision) served as instantaneous phase estimate 
of spike relative to the theta or gamma oscillation (13).
Spatial FR maps
The spatial tuning of single-unit activity was characterized by FR 
maps and their spatial autocorrelation functions. For the FR map, 
the game area was divided into 1 m–by–1 m, 2 m–by–2 m, or 3 m–
by–3 m spatial bins, depending on the size of the virtual environ-
ment (Table 2). For each of those spatial bins, we determined the 
duration of time spent and the number of spikes generated during 
crossings. By normalizing the number of spikes by the time spent, 
we obtained the FR in spikes per second (in Hertz). Binning had no 
significant effect on the grid parameters (6, 13).
Computing phase maps
Besides the local FRs, the circular average phase of spikes () rela-
tive to the theta and gamma bandpass-filtered LFP was computed. 
Because the frequency of visits varied area to area, including no vis-
it at all, the reliability of () estimate also varied with the number of 
visits. Therefore, we computed the mean and variance () of the 
phase estimate for each area. By spatially integrating the local phase 
estimates, we constructed a global map (   ̂        ), where the mean phase 
estimate [   ̂     (x,y)   ] at any given area was associated with a color of the 
HSV color cylinder (red = −, green = 0, and red = ), while [   (x,y)  

    ] 
was represented by the value (max = 2= black and min = 0 = maxi-
mum hue) (Figs.  1H and 2C). We refer to the variance-weighted 
spatial distribution of a phase plot as phase map denoted by () 
(13). The variance-weighted representation of phase is equivalent to 
the resultant vector of spike phase (48).

Computing autocorrelation
To compute the autocorrelation, the FR map was first smoothed with 
a Gaussian filter [5 by 5 bin neighborhood, ( = 0.8)], and non-
visited bins, originally assigned with NaN, were replaced by FR = 0 
spikes/s. Autocorrelograms were computed as follows. Given that 
the original FR map is f and the number of overlapping bins be-
tween the original and shifted FR maps at a given x, y offset is n, 
the equation for the 2D discrete autocorrelation is as follows

 r(   x  ,    y   ) =   
n∑ f(x, y ) f(x −    x  , y −    y   ) − ∑ f(x, y ) f(x −    x  , y −    y  )    ──────────────────────────────────────     

 √ 
___________________

  n∑ f  (x, y)   2  −  (∑ f(x, y ))   2     √ 
________________________________

   n∑ f  (x −    x  , y −    y  )   2  −  (∑ f(x −    x  , y −    y   ))   2   
   

 (9)

where r(x, y) is the autocorrelation. Correlations were estimated 
for all values of n. The central peak of the autocorrelogram was re-
moved before computing the gridness (84, 85).
Computing grid scores
We quantified canonical “gridness” based on the autocorrelograms 
(ACs) by computing a 60° gridness score (g) step by step following 
the exact procedure outlined by Barry and Bush (81), Sargolini et al. 
(75), and Krupic et al. (82) as described in our earlier study (6). We 
first normalized the FR maps by the sizes of environments that al-
lowed for equal spatial resolutions for the ACs of different environ-
ments, but we kept the aspect ratio differences. Next, we computed 
the 2D ACs by applying 2D cross-correlation to the FR maps (6). 
After centering and clipping the AC to a 100 by 100 matrix, we 
located the largest peak after the removal of central peak, which de-
fined a concentric ring containing the circular or ellipsoid arrange-
ment of the first set of autocorrelation peaks at radius R. The outer 
radius of the ring was, based on the Barry-Krupic (BK) method, chosen 
to be 2.5R (6, 13, 75, 81, 82). For the computation of gridness scores, 
we followed the method by Sargolini et al. (75). Accordingly, we 
filtered the AC with the above-defined ring. Then, we rotated the 
extracted ring from 1° to 180° and computed the Pearson’s correla-
tion coefficients     r ̄     (  1°…180°   )     between the original and rotated matrix 
with an eight-point moving average applied to it. We determined 
gridness g as the difference between the minimum of r60° or r120° 
and the maximum of r30°, r90°, or r150°. This function of gridness as-
sumed a 60° modulation of AC as it expresses the modulation depth 
relative to 60° rotation symmetry. Because r modulation extended 
between 0 and 1, therefore, g was also bounded between 0 and 1.
Generating surrogate spike trains
For testing the deterministic spike-LFP phase relationship against 
by-chance phase coincidences, we generated surrogate spike trains. 
To preserve the ISI statistics of the original spike train yet decouple 
spike times from the phase of LFP, we resampled the ISIs from the 
ISI histogram and distributed them randomly during the interval of 
the LFP. We refer to this surrogate as “ISI shuffling.” The first ISI of 
the original spike train was considered relative to time 0. ISI shuf-
fling provided a Null to test the topographical consistency of 
spike-LFP phase relationship. We reasoned that if the observed 
spike-LFP phase coupling is topography preserving, then random-
izing the phase relationship while retaining the statistics of both ISIs 
and LFP should lead to a dispersion of topography. Phase topography 
preservation was tested by cross-validation (see the “Testing the con-
sistency of phase topography by cross-validation” section). Even if 
spike trains were highly periodic (with a narrow ISI histogram) and 
potentially increase the by-chance phase coupling between spikes 

http://www.mathworks.com/help/signal/ref/filtfilt.html
http://www.mathworks.com/help/signal/ref/filtfilt.html
http://www.mathworks.com/help/signal/ref/hilbert.html
http://www.mathworks.com/help/signal/ref/hilbert.html
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and LFP, the ISI shuffling would retain that by-chance coupling. In 
addition, to test whether periodic spike processes are sufficient to 
model the observed spike to LFP phase relationship, we created 
spike trains with uniform ISIs by determining the average ISI (1/f) 
and distributed the same number of spikes evenly within the re-
corded interval. Because trajectories were controlled by the non-
deterministic placements of navigation targets, we can rule out 
any systematic or periodic coupling between the avatar’s positions 
and spike processes. Hence, the periodic spike processes alone 
cannot account for topography-preserving spike-LFP phase rela-
tionship (13).
Generating surrogate LFP
Testing the deterministic contribution of LFP to the observed spike 
to LFP phase relationship, we generated LFP surrogates by phase 
randomization of the LFP. We applied a phase decomposition of the 
original LFP, which preserved the original power spectral density, 
except that the phases of oscillatory components were randomly shifted 
relative to the original. If spike processes were coordinated with the 
phase of any LFP component, then that relationship was dissolved 
by phase randomization. As a result, the observed topographic struc-
ture of spike to LFP phase relationship should have been com-
promised in the surrogate. To remove the low-frequency coherence 
between spikes and LFP, we reversed the phase-randomized LFP in 
time. As a result, the phase-randomized and time-reversed LFP 
should destroy any systematic phase relationship between spikes 
and LFP (13).
Comparing phase maps of original to surrogate spike and LFP
We compared the original () with those of constructed from sur-
rogate spike trains and surrogate LFP with respect to (i) correlation 
of phase (x, y) and variance of heading direction [    v ̄    (x,y)   ] (the inverse 
of RVL), (ii) grid entropy, and (iii) the power of the low-frequency 
components of the autocorrelation of (). Statistics were summa-
rized in Table 4. While random LFP phases significantly decreased 
the covariance of local spike phase with the RVL [zvalsubj1 = 10.5241, 
P(n = 910)= 0.0 and zvalsubj2 = 7.8262 P(n = 1004) = 0.0], ISI permutation 
did not [zvalsubj1= − 0.6207, P(n = 910) = 0.5348 and zvalsubj2 = 0.2321, 
P(n = 1004) = 0.8165] (fig. S5A). Similarly, random LFP phase increased 
the entropy of (), while ISI permutation did not [zvalsubj1=0.3204, 
P(n = 910) = 0.7487 and zvalsubj2 = 0.9118, P(n = 1004) = 0.3619] (fig. S5B). 
Moreover, the original () patterns displayed a significantly larger 
low-frequency power of the 2D Fourier transform of phase maps 
than the ISI-shuffled and phase-randomized LFP [ISI shuffling: 
zvalsubj1=2.6879, P(n = 697) = 0.0072 and zvalsubj2 = 11.8777, P(n = 1004) = 
0.0; phase-randomized LFP: zvalsubj2 = 8.6097, P(n = 1004) = 0.0], 
except subject 2 for LFP phase randomization [zvalsubj1 = 1.6668, 
P(n = 697) = 0.0956] (fig. S5C).
Testing the consistency of phase topography by 
cross-validation
To test for temporal stability, we split a 300-s spike and LFP data 
into two nonoverlapping 150-s duration epochs and computed an 
element-to-element correlation between the phase maps (fig. S4, A 
to D). We excluded the nonvisited areas from the correlation that 
would otherwise generate spurious correlation. For the 2D cross- 
correlation, we applied Pearson’s correlation between the two vec-
torized maps following 2D cross-correlation formula

   r(A, B ) =   1 ─ N − 1     ∑ 
i=1

  
N

    (      A  i   −    A   ─    A     )   (      B  i   −    B   ─    B     )     (10)

where r(A, B) is the cross-correlation; A and B were matrices repre-
senting the two phase maps; A and A are the mean and SD of A, 
respectively; and B and B are the mean and SD of B. For circular 
correlation, the same formula was used as above except that (11, 
12, 1n) and (21, 22, 2n) are the gamma phases of corresponding 
elements in the two matrices A and B representing the means and 
A and B were the variance of A and B matrices, respectively (79).

For testing the robustness of the spike-gamma phase association, 
first, we eliminated the odd numbered spikes followed by the even 
numbered spikes and then constructed phase maps A and B. First, 
we eliminated the odd numbered spikes, then the even numbered 
spikes second, and then constructed phase maps A and B (fig. S4, A 
and E to G). Next, we computed the element-wise 2D correlation 
coefficients between the two matrices, similar to what we did to the 
split-half dataset above (13).
Generating autocorrelograms of surrogate spike to LFP phases
The topographic maps of spike to LFP phase relationship are affected 
by the inhomogeneous coverage of space by the time-limited navi-
gation, regardless of whether we were using the original spike trains 
and LFPs or the surrogate counterparts. All reflected the pattern of 
spatial coverage, hence increased the correlation between original 
and surrogate patterns (path correlation). To remove the path cor-
relation confound when evaluating the difference between surrogate 
and original spike and LFP processes, we constructed autocorrelo-
grams between the spike-LFP phase maps. The nonvisited areas of 
maps were rendered by random phase values, hence resulted in low 
average correlations, while visited areas reflected true correlations 
between original spike/LFP and surrogate spike/LFP. We constructed 
autocorrelograms of true spike to LFP phase maps, surrogate spike to 
true LFP phase maps, and true spike to surrogate LFP phase maps (13).
Computing the speed of propagation of gamma field
We were interested to compute the speed of gamma wave propaga-
tion between electrodes. The 4 by 4 microelectrode grid represents 
120 (n = 16 × 15/2) speed measurement options between any two 
electrodes i and j. Given the known electrode grid geometry and inter-
electrode distances (), the frequency of the gamma carrier wave (f), 
and the time difference of nearest gamma peaks detected on the 
electrode pair ij, we can compute the local speed of propagation as 
the fraction of distance over time

   v ̄   = x / t  (11)

where x =  and t = (i − j)/2 × 10e2/f. Given that the gamma 
spectrum was set to low gamma (between 25 and 60 Hz) and that 
the nearest interelectrode distance of our microelectrodes was 0.9 mm, 
the i − j = 60°, and the speed of propagation was found to be 
between 0.3241 mm/ms (at 60 Hz) and 0.1350 mm/ms (at 25 Hz), 
also consistent with the literature (45).
Decoding of position and heading direction from spike phase
In preparation for phase decoding, we assume that all spike time 
data (T) have been converted to spike phase data ()

   T  i   ⇒    i    (12)

It was also assumed that the navigation area was divided into 
spatial bins as described earlier, except that for all four environments, 
we used a uniform 2 by 2   m ̄    binning of the area. Hence, the notation 
ij refers to the ith and jth position of the area of navigation. For 
predicting the next position of the avatar, we used the actual position 
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at the time of spike (xTi, yTi), the phase of the subsequent spike Ti+1, 
and the phase probability map  (including the variance). To ob-
tain a reliable estimate of the phase distribution in space () at each 
visited spatial bin, we combined the spikes across all units and elec-
trodes for given navigation session per day and per environment

     (ij,1…n)   =   
 ∑ k=1  E    ∑ l=1  N       kN+l    ─ EN    (13)

where E is the number of electrodes and N is the number of units 
detected from each electrode.

To ensure that the spike pool used for constructing the phase 
probability map () was nonoverlapping with the test set, i.e., 
the spike pool  used for decoding, we used every even and odd 
numbered spike for the test set and for the phase probability map, 
respectively

   ∉   (14)

Next, we integrated the phases across spatial bins of ij into a phase 
probability map by computing the circular average of spike phases 

   =  ∫i  
L
    ∫j  

M
       (ij,1,3,5…n)    (15)

where L and M defines the size of the environment. Next, we com-
puted the von Mises mean of phases in the space over each spatial 
bin that provided the phase probability map prior

     ij   =   
 ∑ k=1   n  ij         ijk  

 ─  n  ij      (16)

The Bayesian decoding started by reading the first spike position 
(xT1, yT1) of the vector of positions and the phase of the second spike 
2 of the phase vector and loading the phase vector of the next 20 
(i = 2…21) spikes from the average phase map (2…21) based on their 
[x(2…21), y(2…21)] spatial bin coordinates. The upcoming position of 
the avatar was predicted as the position with the largest Bayesian 
probability of positions among the next 20 positions. The Bayesian 
probability of the avatar’s position at x,y given that the spike was 
fired at a phase of i was defined as the product of the likelihood of 
that phase at that location (x, y and the prior probability of visiting 
that location divided by the marginal likelihood of that specific phase 
occur relative to all the phase values)

  p( x  i  ,  y  i  ∣   i   ) =   
p(∣ x  i  ,  y  i   ) p( x  i  ,  y  i  )  ──────────── p()    (17)

Since we already computed the phase probability map , the sim-
plified Bayesian probability is the weighted product of  and the prob-
ability of occupying the x, y position divided by the probability of phase

  p( x  i  ,  y  i  ∣   i   ) =   
p(   x,y   ) p( x  i  ,  y  i  )  ─ p()    (18)

where i was the observed phase of the ith spike and x, y was the 
average phase at the (x, y) spatial bin of the environment. The predicted 
position was the maximum of the Bayesian probabilities among 
the 20 upcoming spikes

   ( x  i  ,  y  i   ) = arg max (  p( x  (i,…i+20)  ,  y  (i,..i+20)  ∣   (i,…i+20)  )   (19)

From (xi, yi) and (xi − 1, yi − 1), we computed the direction of 
heading as

   = atan( x  i   −  x  i−1  ,  y  i   −  y  i−1  )  (20)

The reason we used only 20 as opposed to all of the spikes was 
that phase maps were periodic; hence, the same phase value could be 
mapped to multiple spatial locations. The choice of 20 spikes ensured 
that the Bayesian prediction will find a local solution within the 
proximity of the previous spike. We always predicted the upcoming 
position of a spike relative to the actual spike; hence, we were able to 
generate vectors of heading directions, which were directly compared 
to the actual heading direction allowing for statistical estimates 
of the decoding performance to be made (fig. S12, C to F).
Decoding of position and heading direction from FR
While the firing data are prepared differently, ultimate decoding of 
position and heading direction information from FRs followed the 
same procedure as from spike phase (see the “Decoding of position 
and heading direction from spike phase” section). Because spike 
density for most neurons was sparse as the pyramidal neurons’ FR 
is less than 1 Hz, we first estimated the continuous FR function 
from the actual spike times by computing the instantaneous FR at 
the time of spike FRi = (ti − ti − 1)/1000 in hertz and resampled the 
nonuniform data at 1.0 kHz by the “resample” function of MATLAB 
(MathWorks, Nattick, MA), which uses a polyphase anti-aliasing 
filter. Next, we resampled the data again in 100-ms intervals using 
the Savitzky-Golay filter, a generalized moving average with filter 
coefficients determined by an unweighted linear least squares re-
gression and a polynomial model of second degree

  ( T  i   ⟹  t  resampled   ⟹ F R  i  )  (21)

Then, we treated FRi exactly as i and Eqs. 15 to 20 from the 
“Decoding of position and heading direction from spike phase” sec-
tion was applied. Note that FR is a bounded variable between 0 and 
max(FR), as opposed to phase, but the rest of the data analysis and 
the Bayesian decoding model was agnostic to this difference.
Construction of CMs of position and heading direction 
from spike phase
To compare predicted position with observed position, and likewise 
the predicted heading direction with observed heading direction, 
we computed the CMs. The CMs represent the observed values 
(position or direction) on the x axis and the predicted values (posi-
tion or direction) on the y axis. The resulting 2D histograms repre-
sent the aggregate of the pairs of the observed and predicted values 
at the observed (x) and predicted (y) coordinates for each spike. The 
scale of the heading direction CM was x = y = [1...360]°, while the 
position was [0...60]   m ̄   .
Construction of angular histograms of aggregate difference 
between the observed and predicted heading directions
The aggregate differences between actual heading direction vectors 
and predicted direction vectors constructed a von Mises distribu-
tion. The mean of the difference was close to zero if the prediction 
was correct. We also computed the 360° CM between the predicted 
and observed directions of heading.
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Dependency of decoding on the curvature of trajectories
Because the avatar’s movement depended on the location of pro-
grammed targets, such as the alien and the spaceships, the avatar’s 
trajectory varied between straight lines and sharp turns. Hence, the 
spatial distribution of the spikes along the trajectory as potential 
targets of the next move (among the 20 upcoming spikes) was highly 
sensitive to the curvature. As a result, when the trajectory was close 
to a straight line, the 20 upcoming spikes, as possible targets, lined 
up along the trajectory with a relatively small variation in heading 
directions and a larger variation in position, while the effect of the 
large curvature trajectory segments was the opposite. Consequently, 
the curvature affected the prediction error for direction and for 
position in an opposite fashion. Small curvature made direction 
errors small and position errors large, owing to the small directional 
variance and large positional variance of spike scatter along the 
straight trajectory. Hence, straight trajectories introduced a direc-
tion decoding bias during navigation, while highly curved trajecto-
ries introduced a position decoding bias. To compensate for these 
biases without changing the trajectory, we introduced two inter-
ventions: to constrain the decoding to mid-range trajectories and to 
generate a surrogate spike train (Null) as a control spike dataset 
described below.
Computing path curvatures
Curvature was defined on every Pi − 1, Pi, Pi + 1 triplet of trajectory as 
i = 1/Ri; hence, Ri = 1/i, where R is the radius as estimated by the 
circumcenter of the triangle defined by the three points on the osculat-
ing circle (by A. Mjaavatten, MathWorks File Exchange). Regarding 
the curvature constraints on decoding, we selected trajectory seg-
ments where the radius of curvature was larger than 0 and smaller 
than 15 m and performed all the decoding on these segments. This 
treatment of using paths with middle-range curvatures served to 
minimize the influence of curvature on the phase decoding.
Construction of the Null spike dataset
To compensate for any behavioral bias, including the trajectory cur-
vature bias, we generated a dataset (Null) that contained the same 
number of spikes and same time stamps as in the real data except 
that spike phases were shuffled. The Null dataset eliminated the 
association between the spike phase and the avatar’s location. To 
obtain an unbiased estimate of the decoding performance from the 
shuffled phase dataset, we constructed a CM from the Null. The 
CM depicted the density of combinations of all observed and de-
coded movement directions in 360° space and position differences 
relative to the axes of the environment. When we subtracted the 
Null from the observed CM (Fig. 4, A and B), the difference repre-
sented the unbiased CM. We quantified the decoding by the resul-
tant vector of the polar distribution of angle difference between 
decoded and true angles. Last, we computed the Kuiper two-sample 
statistic of the original and Null CMs, as well as the correlation and 
statistical difference between the decoded true positions and posi-
tions decoded from the Null dataset.
Determine precision of position decoding
If pos represents the precision of location decoding from phase, A1, 
A2, A3, and A4 are the areas of four different environments, and ngrids 
represent the average number of grid nodes, then the P(dx, dy∣) 
probability of the location given a specific spike phase is

  P(dx, dy∣ ) =   
   pos   * 1 / 4 * ( A  1   +  A  2   +  A  3   +  A  4  )

   ─────────────────   n  grids      (22)

Because the pos was different for each individual subjects and the 
rest of the parameters were fixed, the 1/4 * (A1 + A2 + A3 + A4) = 
2857 and ngrids = 8, the formula of computing the probability of by 
chance, i.e., getting the correct location right from a random code is 
P(dx, dy∣) = pos * 357.1250.
Statistical evaluation of CMs by 2 statistics
We constructed four different CMs for both subjects (a total of 
eight CMs), representing the direction decoding from phase, posi-
tion decoding from phase, direction decoding from FR, and position 
decoding from FR. For a statistical evaluation of these CMs, first, we 
eliminated the negative values resulted from subtracting the ran-
domized contingency matrices from the original ones

  CM =  √ 
_

  (M ∘ M)  ij      (23)

Second, we split the CM into 2 by 2 quadrants (Q1, Q2, Q3, Q4) 
and summed the values within each quadrant generating a 2 by 
2 contingency table (nq1, nq2, nq3, nq4). Then, the test of independence 
boils down to a 2 statistics. If the decoding of position or direction 
as an expected variable was independent from the avatar’s observed 
position or direction, then the observed quantities in (nq1, nq2, nq3, 
nq4) quadrants should be no different from the expected distribu-
tion based on the marginal sums. However, if the decoding works 
and the expected and observed values are concordant, then the 
diagonal sum (NB, NC) should be significantly larger than chance. 
With the 2 test, we computed the probability of rejecting H0: the 
independence of true and decoded movement parameters, i.e., 
position or direction

      2  =   ∑ 
k=1

  
n
       ( O  k   −  E  k  )   2  ─  E  k      (24)

where Ok is the observed and Ek is the expected value in the kth 
quadrant (n = 4). We remark, while 2 test quantitatively confirmed 
the visual observation of the CMs, the 50 by 50 CMs contain much 
more information than that captured by the 2 by 2 2 test.
Statistical evaluation of CMs by Kolmogorov-Smirnov test
To compare the true CMs with the CMs obtained from the Null 
dataset, we used the Kolmogorov-Smirnov tests. The Kolmogorov- 
Smirnov test computes the distance between the two cumulative 
probability distributions of the two samples and tests the Null 
hypothesis that the two samples were drawn from the same distri-
bution against the alternative that they are not

   D   *  =  max  x   (∣   ̂  F    1  (x ) −    ̂  F    2  (x ) ∣)  (25)

where     ̂  F    1  (x)  and     ̂  F    2  (x)  are the empirical distribution functions rep-
resenting the proportion of ×1 values less than or equal to x and     ̂  F    2  (x)  
the ×2 values less than or equal to x, respectively. If the D* statistics 
is larger than the critical value, then we reject the Null and accept 
the H1 that the two samples were deriving from two different dis-
tributions. Our hypothesis was that if the phase of spikes is in-
formative about the position of the avatar, then the pairs of 
decoded and actual positions will distribute near the unity line of 
the CM, while the phase randomized dataset will distribute broadly. 
Because we generated 100 Null dataset with randomized phases, 
we obtained not only one but also the statistics of 100 Kolmogorov- 
Smirnov tests, the distribution of which was computed as a bar chart 
of P values.
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Statistical evaluation of CMs by ROC test
In addition to 2 statistics and Kolmogorov-Smirnov test, we quan-
tified how well an ideal observer would discriminate the decoding 
performance of spike phase code from the decoding of random 
(shuffled) phases. If the difference between the two distributions is 
discernible, then the ROC analysis should be able to determine the 
specificity and sensitivity of the phase code. First, we partitioned the 
CM to two areas: (i) the diagonal strip defined as x = y ± 2, also 
called the identity line; and (ii) everything else around it. If the spike 
phase decoder worked perfectly, then all the decoded positions or 
directions would have concentrated along the diagonal. All other 
scenarios would generate a dispersion of x ≠ y values. Since we sub-
tracted the random phase CM from the true phase CM to reduce 
trajectory bias, if the decoder was operating by chance, then the 
diagonal confidence interval would have contained close to equal 
number of positive and negative values, i.e., values reflecting surplus 
correct decoding and values where the random spike phases would 
yield to correct position estimates, respectively. Hence, an excess 
number of positive values would represent a surplus of correctly 
decoded directions or positions (fig. S15C). In contrast, the negative 
values would represent correct by-chance decoding performance 
from random phase distributions, i.e., the false positives (fig. S15D). 
Likewise, positive values outside of the confidence interval would 
represent targets missed by the decoder, while negative values off- 
diagonal represent correctly undetected targets, i.e., negative surplus 
values from random phase decoding. To compute the ROC curves 
and the area under that, we plot the function of the number of sx, y < 
0 values of false positives (fig. S15D) against the number of correctly 
decoded direction or position parameters (fig. S15C). If the area 
under the curve is significantly larger than 0.5, then we have a good 
reason to believe an ideal observer could easily discriminate be-
tween decoding of real location or heading direction from decoding 
randomized spike phase data. The ROC curve enables us to quanti-
fy how an ideal observer would be able to discriminate between the 
two distributions.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/sciadv.
abm6081

View/request a protocol for this paper from Bio-protocol.
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