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Abstract

Background: Natural immunity to Plasmodium falciparum has been widely studied, but its effects on parasite dynamics are
poorly understood. Acquisition and clearance rates of untreated infections are key elements of the dynamics of malaria, but
estimating these parameters is challenging because of frequent super-infection and imperfect detectability of parasites.
Consequently, information on effects of host immune status or age on infection dynamics is fragmentary.

Methods: An age-stratified cohort of 347 individuals from Northern Ghana was sampled six times at 2 month intervals.
High-throughput capillary electrophoresis was used to genotype the msp-2 locus of all P. falciparum infections detected by
PCR. Force of infection (FOI) and duration were estimated for each age group using an immigration-death model that allows
for imperfect detection of circulating parasites.

Results: Allowing for imperfect detection substantially increased estimates of FOI and duration. Effects of naturally acquired
immunity on the FOI and duration would be reflected in age dependence in these indices, but in our cohort data FOI
tended to increase with age in children. Persistence of individual parasite clones was characteristic of all age-groups.
Duration peaked in 5–9 year old children (average duration 319 days, 95% confidence interval 318;320).

Conclusions: The main age-dependence is on parasite densities, with only small age-variations in the FOI and persistence of
infections. This supports the hypothesis that acquired immunity controls transmission mainly by limiting blood-stage
parasite densities rather than changing rates of acquisition or clearance of infections.
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¤b Current address: London School of Hygiene and Tropical Medicine, London, United Kingdom

Introduction

In highly endemic areas, the transmission of Plasmodium

falciparum malaria is in a state of endemic equilibrium, implying

that each infection on average replaces itself with a single infection

in the next parasite generation. This is despite basic reproduction

numbers that can be in the thousands. This control of transmission

is achieved by naturally acquired immunity, the effects of which

must therefore be considered in models for P. falciparum dynamics

in endemic settings [1]. Different malariologists make different

assumptions, often implicitly, about what are the effects against

different parasite stages of naturally acquired immunity and how

this translates into control of transmission. These assumptions,

about the persistence of infections, infectiousness, and the effects of

exposure to the parasite on the risk of subsequent super-infection,

are critical components of models of parasite dynamics and of the

impact of preventive interventions.

The clearest manifestations of acquired immunity are on

asexual parasite densities and incidence of clinical disease. Some

models of malaria dynamics, for instance [2,3], invoke major

effects of natural immunity on the rate at which infections are

acquired (pre-erythrocytic immunity) or cleared. There have been

very few empirical comparisons of acquisition and duration of

natural infection between groups with different immune status or

histories of exposure.

The lack of a general immunological correlate of protection,

and the challenge of measuring histories of exposure at the

individual level means that the most practicable exposure measure

is often the host age. In endemic areas, levels of anti-malarial

antibodies and other effectors generally increase with age [4–6],

(though specific responses vary in persistence and age profiles),

making age a rough proxy of immune status.

The acquisition of infection can in principle be easily measured

in relation to host age by clearing infections and observing time to

re-infection, but there is only one available dataset of this type for

the whole age-range of hosts. This is from Garki study [7] and

suggests that the force of infection (FOI; defined as the average
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number of new infections acquired by a host per unit time)

increases with host age over the first few years of life [8], consistent

with data indicating that larger people are bitten by more

mosquitoes [9,10]. These data also suggest that FOI is reduced in

older hosts, presumably due to acquired immunity.

The duration of infection was studied in the mid-20th century

by interrupting transmission and examining the time taken for

infections to clear [11]. However time to clearance depends on the

number of co-infecting parasite clones (multiplicity of infection,

MOI), which could not be determined before the advent of

genotyping. The duration of a clonal infection is difficult to

determine in field samples from endemic areas because of frequent

super-infections, and in longitudinal studies with short term

sampling (daily or weekly) of asymptomatic individuals, individual

parasite clones frequently appear to be lost only to reappear again

[12]. Part of the explanation is sequestration of cyto-adhering late-

stage parasites, so that well-synchronised parasite clones can

escape detection. A parasite clone can also be undetected because

its density falls below the detection limit, even that of nested PCR

(nPCR). Temporary absence from the peripheral blood must be

distinguished from parasite clearance, and estimates of both FOI

and duration that fail to account for imperfect detection (e.g. [13–

15]) are strongly biased downwards.

Standard molecular methods detect at most about half of all

clones present in the host [16–18], mainly because there is often

no template in the blood volume analyzed. Increasing the blood

volume for DNA extraction augments detectability, but this will

never reach 100% because of sequestration of some clones. More

clones can be collected by repeated sampling at short intervals but

even collection of four samples over eight days does not guarantee

detection of all the clones in a host [18]. The challenge of

imperfect detection of DNA thus needs to be addressed by

statistical methods that simultaneously consider both the parasite

dynamics and detection process [16,18–20]. Such statistical

methods recognize that failure to detect a particular genotype at

a date between two positive samples is consistent with the presence

of the parasite at a density below the detection limit.

Until recently there were no datasets covering the whole range

of ages, from which patterns of FOI and duration with age could

be estimated using these approaches. We therefore carried out a

cohort study of an age-stratified sample of 347 people in a highly

endemic setting in Ghana. Blood samples were collected in two-

monthly intervals over one full year. The genotyping data

obtained in a pilot sub-sample of 69 of these individuals was used

for analysis of FOI and duration by age [20,21,21,22], but was too

sparse to allow us to fit separate models to different age groups and

to analyze non-monotonic patterns of age dependence.

We also recently established a high though-put genotyping

technique based on PCR fragment sizing by capillary electropho-

resis (CE) facilitating longitudinal tracking of multiple infections

using an automatic readout [17]. We used this to expand the pilot

analyses of parasite typing and dynamics to include data from all

347 individuals. This has enabled us to compute age-specific

estimates of FOI, infection duration and detectability, and hence

to test the conjecture that both FOI and clearance rates vary non-

monotonically with age in endemic areas.

Materials and Methods

Study Site and Field Methodology
The study was carried out in Kassena-Nankana District

(KND), northern Ghana where P. falciparum transmission levels

(Entomological Inoculation Rates) of over 300 infective bites per

person per annum have been documented. The main vectors

are Anopheles gambiae s.l. (both An. gambiae s.s. and An. arabiensis

and An. funestus. P. falciparum infection in KND shows seasonal

peaks and troughs in prevalence and clinical malaria incidence,

with an incidence density of infection of 5 infections per person-

year in the dry season to as high as over 7 cases per person-

year in the wet season [22–23]. Sampling methods were

described previously [22]. Blood samples were collected on

DNA ISOCodeTM Stix (Schleicher & Schuell) at intervals of

two months, starting in 2000, resulting in a total of 6 samples

per participant (R1-R2-R3-R4-R5-R6). Participants who were

sick at a survey date were referred to routine health services.

No antimalarial treatments were administered by the research

team. Informed consent was obtained from participants by

signature or thumbprint in the presence of a witness. Ethical

clearance for this study was obtained from the Ghana Health

Service Ethics Committee.

Laboratory Methods
DNA extraction and PCR were described previously [17,24].

The CE-based genotyping technique used differentially labeled

fluorescent dyes for the two allelic families of the polymorphic

marker gene msp-2. This typing technique had been validated with

a subset of our samples [17]. An in-house generated program was

used to classify peaks sized by GeneMapperH software. Post-

processing procedures were described previously [17].

Data Analysis
The genotyping data were first analyzed by calculating observed

frequencies of apparent gain, loss and persistence of infecting

clones. An infection present in the survey at time t, but not

detected in the subsequent survey t+1 was considered a ‘‘loss’’ (+
2), whereas a ‘‘gain’’ (2 +) was counted when an infection was

observed in round t but not in the previous round t-1. Where

infections were observed in consecutive surveys, this was recorded

as ‘‘persistence’’.

This exploratory analysis did not allow for imperfect detection.

Two different methods were used to simultaneously estimate

detectability and duration of infection allowing for undetected

infections. Comparing the results of the two analytical approaches

makes it possible to distinguish real effects from any artifacts

specific to one or other statistical model.

For the ‘‘triplet’’ approach the data were arranged as records of

presence or absence of individual parasite genotypes in sequences

of up to three successive samples from the same individual. A

sliding window of three consecutive samples was used so that each

sample could appear at any position in the triplet. Four types of

patterns were counted (++x; +2+; +2; +2?; where + represents

positive, – negative, ? missing, and x can be any of the three). The

expected relative frequencies of these patterns were calculated

assuming parasite persistence to be a homogeneous first order

Markov process, and parasite detection to be described by a

constant detectability parameter [16]. Bayesian estimates of both

detectability and clearance rates were made assuming a multino-

mial distribution for the frequencies of the different kinds of

triplets. Separate estimates were made for each age group using

the software Winbugs version 1.4 [25].

The second approach, an immigration-death (ID) model,

considered patterns consisting of sequences of all six observa-

tions allowing for seasonal variation in the force of infection and

imperfect detection of an infection at some of the time points

[20,21]. Detectability, FOI and duration of an infection were

simultaneously estimated by maximum likelihood fit to the

frequency distributions of the patterns of six observations for

each observed infection. n(a), the expected number of distinct

Infection Dynamics of Plasmodium falciparum
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genotypes (or the expected true MOI) within an individual of

age a is given by the differential equation [20,21]:

dn(a,t)

da
~l(a,t){m(a)n(a,t)

where l(a,t) is the infection rate and m(a)is the clearance rate

at age a. We assumed that this process has continued since

birth, and that n(0)~0, leading to dynamics corresponding to

the McKendrick-von Foerster population model [26].

In previous analyses [21], for which only the pilot dataset was

available, we considered 12 such ID models in which the clearance

rate was either age independent or a monotonic function of age.

FOI was either constant, varied seasonally, or varied monoton-

ically with age. The best fitting model had seasonally varying FOI

and constant clearance rate. With the much larger dataset now

available we extended the analysis to consider non-monotonic

relationships with age (binned into 8 categories) in both l(a,t) and

m(a).

In the previous best fitting model [21], the clearance rate, m, was

an exponential function of age, while in the current analyses we

fitted separate clearance rates ma, for each age group a, where the a

denotes the age on acquisition of the infection.

We fitted the two distinct ID models with different parameter-

izations of the infection process:

l(a,t)~lt Model A,

corresponding to the previous(4) best fitting model, where lt is a

season-specific FOI, or:

ln (l(a,t))~ ln (la)z ln (lt) Model B

where la is the age-specific FOI for age group a (relative to the

oldest age group). This allows for more flexibility in representing

the dependence of FOI on age of the host and allowed us to test

whether FOI peaks at intermediate ages.

Following the previous analyses [21], we parameterized the

detectability s in both Model A and Model B as a logistic function

of age, i.e.:

logit(s(a))~s0zs1(a{�aa)

where �aa is the mean age and s0 and s1 are parameters to be

estimated. We compared the fit of models A and B, and with the fit

of the previous best fitting model, using the Akaike Information

Criterion (AIC) [21]. Further details of this statistical approach

were described previously [20,21]. The present study is the first

analysis that tests whether there is a maximum in the duration at

some intermediate age when allowing for varying detectability.

A JAVA program implementing the ID models is available at:

https://bitbucket.org/mthbretscher/amalid.

Figure 1. Mean multiplicity of infection (MOI) and prevalence by PCR. (a) by age and (b) by survey. Mean multiplicity is calculated from PCR
positive samples only. Error bars correspond to approximate 95% confidence intervals.
doi:10.1371/journal.pone.0045542.g001

Figure 2. Sampling intervals and rainfall in Navrongo during
the study period. Blue triangles represent weekly rainfall, the black
line shows the 5 weeks moving average of rainfall. Grey bars represent
the six sampling periods.
doi:10.1371/journal.pone.0045542.g002
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Results

Data Description
From the 347 individuals enrolled at baseline, 1902 blood

samples were collected during the one year follow-up in two-

monthly intervals (Supplementary Table S1). All 1386 PCR

positive blood samples were genotyped by our highly accurate

technique. This amounted to a total of 6386 detected PCR

fragments. The GeneMapperH analysis distinguished 103

different msp2 genotypes (Supplementary Table S1). 28

belonged to the FC27 allelic family and 75 were of 3D7-type.

FC27-type alleles generally reached higher allelic frequencies

than 3D7 genotypes. The most frequent genotype represented

10.2% of all fragments detected (651/6386) and was of FC27

type. The most frequent 3D7 genotype represented 3.6% of all

fragments.

In the overall data set P. falciparum prevalence was 57.5% by

microscopy and 73% by PCR. The age distribution of PCR

positivity showed a peak in the 5–9 year old children with 93% of

these children being parasite positive (Figure 1a). Mean multiplic-

ity of infection (MOI), measured in PCR positive blood samples,

also peaked in the age group of 5–9 years. Both prevalence and

MOI were lowest in the 60+ age group. The highest prevalence by

PCR (88%) and highest MOI (a mean of 5.5 clones per individual)

was observed in Round 2 (Figure 1b). These peaks coincided with

the rainy season as sampling for Round 2 started just after the

rainfall had reached a maximum (Figure 2). Prevalence was lowest

(67%) in Round 6, which marked the beginning of the next rainy

season.

The apparent dynamics of P. falciparum infections can be

described by the observed rates of clone appearance and

disappearance (Figure 3). This analysis ignores effects of

imperfect detectability. Rates of gain were higher in children

than in adults, with a peak in children aged 5–9 years. The

observed rate of clone disappearance showed an opposite trend.

More clones were lost between two surveys in older individuals

than in young children. The apparent persistence of clones thus

decreased with age.

Detectability
The data set used in the present analysis to estimate detectability

and duration of infection from longitudinal genotyping data

contained 240 individuals with complete records for each round

and at least one parasite positive sample (Table 1). A total of 3485

different infections (corresponding to different host/msp-2 geno-

type combinations) were detected in these 240 hosts, with the

frequencies of the different patterns of appearance and reappear-

ance in the six surveys given in Table 2. Both statistical methods

for estimating detectability found that even highly sensitive nPCR

combined with precise CE- GeneMapperH based fragment sizing

detected less than half of the clones present at a given time in an

individual (Figure 4a, Table 3). Both statistical methods also

agreed that in younger age groups ,10 years, detectability was

higher than in older ages, reaching a minimum of 17% in the

oldest individuals. This age-dependent decline of detectability is

also in line with microscopic parasite density decreasing with age

(Figure 4a). Our implementation of the immigration-death model

constrained the relationship of detectability with age to be

monotonic, leading to a decrease in detectability with age. Overall

mean detectability in all six rounds was estimated to be 30% by the

ID model.

Figure 3. Transition types observed between two consecutive survey rounds by age group. Transitions are gains or losses of parasite
clones.
doi:10.1371/journal.pone.0045542.g003
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Multiplicity of Infection
Estimates of the age profile of MOI also need to be corrected for

the effects of imperfect detection of parasite clones. Figure 4b

shows the observed versus the true MOI corrected for imperfect

detection by both models. The age pattern of MOI, adjusted for

detectability, was similar, whichever model was used to estimate

detectability. Estimated MOI in infants was lowest at roughly 10

infecting clones per child. There was a peak in 5–9 year old

children with about 19 concurrent infections per child. All ages

.20 years showed a lower MOI when adjusted for detectability by

the ID model (model A). Overall, correction with the immigration

death model provided higher estimates of MOI and gave estimates

of overall mean MOI reaching a maximum of 18 at the end of the

wet season and a minimum of 14 at the end of the dry season,

assuming an average detectability of 0.3.

MOI observed in our study population was thus high, though

when age-adjusted it was lower than that in other studies in Ghana

[27]. Even in high transmission areas MOI is generally low in the

youngest children, and shows a peak at about the same age as the

prevalence assessed by microscopy [22,28,29]. In lower transmis-

sion areas (including another area in Ghana [30]), MOI is both

lower [31,32] and less age-dependent [33]. This is consistent with

the observed patterns of parasite densities by age (Figure 4a) which

clearly imply that there is much more PCR template per clone in

young children than in adults.

Duration of Infection
The duration of infection was estimated by both modeling

approaches (Figure 4c, Table 3). The ‘‘triplet’’ model gave

estimates of duration much longer than those based on direct

observations in blood samples, averaging 168 days (95% CI 144,

202) over the whole age range. Even longer estimates of mean

duration (194 days, 95% CI 191, 196) were obtained using the ID

approach. The ID approach makes more efficient use of the data

and adjusts for seasonality in the infection process, and hence this

estimate is to be preferred. Both models could also consider each

age group separately and thus allow for non-monotonic age effects,

and both indicated a peak in duration of infection in children 5–9

years of age (Figure 4c). Infection duration for infants and older

ages were shorter. For the youngest age groups, short durations

may partly reflect effects of antimalaria treatment, mainly affecting

,2 years old children. Treatment was infrequent but could not be

formally incorporated into the models because of absence of

comprehensive individual-level data.

The fit of ID model A, which allowed for non-monotonicity in

duration, was much better (AIC = 8005.1) than that of the

previously best fitting ID model (model 6 in the analyses of the

pilot dataset [21]), which gave an AIC value of 8127.4 when fitted

to the full dataset [34].

Table 1. Characteristics of Cohort Studied.

No. individuals enrolled 347

No. of samples collected 1902

No. of samples analyzed by PCR 1803

No. of individuals with a complete set of 6 samples 269

No. of these individuals with at least one PCR positive sample 240

No. of these individuals with more than one parasite-positive blood sample. 216

% Female 53

P. falciparum positivity by microscopy (proportion)

,1yr 0.453

1–2 yrs 0.797

3–4 yrs 0.786

5–9 yrs 0.739

10–19 yr 0.624

20–39 yrs 0.469

40–59 yrs 0.368

.60 yrs 0.328

overall 0.575

P. falciparum positivity by PCR, all ages 0.729

Geometric mean parasite density by age group (95% CL)

,1yr 770.6(500.1, 1187.6)

1–2 yrs 1053.6(766.7, 1447.9)

3–4 yrs 1064.5(805.3, 1407.2)

5–9 yrs 420.5(344.5,513.2)

10–19 yr 291.0(233.4, 362.9)

20–39 yrs 111.4(84.5, 146.9)

40–59 yrs 119.8(84.2, 170.4)

.60 yrs 116.8(89.9, 151.8)

doi:10.1371/journal.pone.0045542.t001
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Force of Infection
Estimates of FOI by age group were available only from Model

B, where FOI increased somewhat with age (Figure 4d). This

contrasts with the earlier analyses, not allowing non-monotonicity

in durations, which suggested that FOI might decrease slightly

with age [21]. The AIC for Model B was 8012.7, higher than that

of model A, indicating no statistically significant improvement in

fit compared with the model that treated FOI as age-independent.

Discussion
Age patterns of FOI, detectibility and duration of infection in P.

falciparum result from the interplay of infection and clearance

processes, but their analysis is complicated by imperfect detection

of parasites. Our study brings together laboratory and statistical

methods able to assess these and applies these to a large field study

of a representative sample of people in an endemic setting. CE for

sizing of PCR fragments enables accrual of much larger and more

accurate longitudinal datasets than was possible with traditional

side-by-side runs of PCR products or RFLP fragments on gels.

This increases our confidence that effects of parasite clearance can

be separated statistically from those of imperfect detection,

allowing us to make much more precise estimates of the age-

dependence in these parameters, in particular allowing us to test

non-monotonic age dependency.

Analyses of longitudinal typing studies can be confused by the

complex patterns of intermittent appearance of individual clones,

which have sometimes been interpreted as rapid turnover [12].

Our studies strongly suggest that this is the result of imperfect

detection. Both indirect evidence and common sense) suggests that

this is likely to be related to fluctuations in density of persisting

infections, which often fall below the detection limit of nPCR,

rather than reinfection with an indistinguishable clone. The low

frequencies of each individual genotype (Supplementary Table S1)

imply that super-infections can usually be distinguished from other

infections in the same host.

Table 2. Frequencies of different observed patterns of
appearance and re-appearance of parasite genotypes.

Survey number Frequency

1 2 3 4 5 6

2 2 2 2 2 + 271

2 2 2 2 + 2 257

2 2 2 2 + + 59

2 2 2 + 2 2 390

2 2 2 + 2 + 41

2 2 2 + + 2 46

2 2 2 + + + 25

2 2 + 2 2 2 445

2 2 + 2 2 + 29

2 2 + 2 + 2 25

2 2 + 2 + + 19

2 2 + + 2 2 73

2 2 + + 2 + 23

2 2 + + + 2 16

2 2 + + + + 18

2 + 2 2 2 2 577

2 + 2 2 2 + 34

2 + 2 2 + 2 28

2 + 2 2 + + 12

2 + 2 + 2 2 49

2 + 2 + 2 + 9

2 + 2 + + 2 8

2 + 2 + + + 11

2 + + 2 2 2 71

2 + + 2 2 + 12

2 + + 2 + 2 13

2 + + 2 + + 10

2 + + + 2 2 29

2 + + + 2 + 11

2 + + + + 2 8

2 + + + + + 15

+ 2 2 2 2 2 454

+ 2 2 2 2 + 23

+ 2 2 2 + 2 18

+ 2 2 2 + + 4

+ 2 2 + 2 2 25

+ 2 2 + 2 + 6

+ 2 2 + + 2 8

+ 2 2 + + + 4

+ 2 + 2 2 2 49

+ 2 + 2 2 + 9

+ 2 + 2 + 2 5

+ 2 + 2 + + 3

+ 2 + + 2 2 15

+ 2 + + 2 + 8

+ 2 + + + 2 4

+ 2 + + + + 6

Table 2. Cont.

Survey number Frequency

+ + 2 2 2 2 75

+ + 2 2 2 + 9

+ + 2 2 + 2 11

+ + 2 2 + + 8

+ + 2 + 2 2 10

+ + 2 + 2 + 6

+ + 2 + + 2 7

+ + 2 + + + 5

+ + + 2 2 2 20

+ + + 2 2 + 6

+ + + 2 + 2 6

+ + + 2 + + 3

+ + + + 2 2 8

+ + + + 2 + 14

+ + + + + 2 4

+ + + + + + 18

The frequencies of the patterns are summed over all hosts and genotypes. +
indicates detection of the genotype by CE; - indicates that it was not detected
at that survey. Each of the 63 possible patterns occurred at least 3 times.
doi:10.1371/journal.pone.0045542.t002
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A key result of this analysis is that, once age-dependence in

detectability is allowed for, FOI tends to increase, though not

statistically signficantly, over the whole age range. This is in

agreement with re-infection studies carried out in Navrongo over a

decade ago. These studies found similar FOI in adults [35], and in

young children [36], albeit during different time periods. This

pattern is discordant with the data from the Garki project, in

which FOI increased with age over the first decade of life but was

lower in adults than in children. These appear to be the only

empirical studies that include adults, for how this important

parameter varies with age in endemic settings.

Estimates of the age-dependence of duration are also strongly

modified by allowing for age-dependence in detectability. When

this is ignored, parasite persistence appears to decrease strongly

with age, corresponding to the idea that stronger immunity in

older individuals clears infections. In a study in Papua New

Guinea that did not consider detectability a median duration of

clonal infections of .60 days was estimated in 4 year olds, but a

median of only 15 days was estimated for children of 5–14 years

[15].

By allowing for imperfect detection, the present study found a

very different pattern, with the duration of infection somewhat

shorter in infants than in older children (Figure 4c). This is in

Figure 4. Age dependence of parameter estimates. a. Estimated detectability by age (Model A and triplet model), and Williams mean parasite
densities by age group assessed by microscopy. The grey area is the 95% confidence envelope for the detectability. (The Williams mean of N
observed densities y is calculated as ~yy~ exp (

P
ln (yz1)=N){1). b. Observed mean multiplicity of infection (MOI) by age group in northern Ghana

and estimated MOI allowing for imperfect detection. MOI was determined from PCR positive blood samples only. c. Estimated average duration of an
infection by age group (Model A). Error bars are approximate 95% confidence intervals. d. Estimated force of infection by age group (Model B).
Estimates are rates expressed relative to that in the oldest age group. Error bars are approximate 95% confidence intervals.
doi:10.1371/journal.pone.0045542.g004
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agreement with our earlier findings of a decrease in estimated

clearance rates with age during the first few years of life in

Tanzanian children [16,19]. However durations decreased again

in semi-immune adolescents and adults, though the oldest

individuals had increased persistence. Overall, therefore there

was no simple age-trend in duration, and the estimates of mean

duration were all of the same order as the value of around 200

days for artificial P. falciparum infections in malariatherapy patients

[37,38]. This is also consistent with persistence of sub-patent

asymptomatic infections in adults throughout the dry season in

areas where transmission is restricted to only a few weeks per year

[39].

Overall, therefore, age patterns in both FOI and in duration

are not very marked when the analysis allows for age

dependence in detectability. The generally higher parasite

densities in children provide the most obvious explanation of

why detectability decreases gradually with age [40], although

detectibility and density do not seem to have exactly the same

age-dependence. We conclude therefore, that most of the age-

dependence in the patterns of appearance and disappearance of

parasite clones is driven by the age-pattern of asexual parasite

densities.

On the basis of well established results from elsewhere, the

age patterns of parasite densities are the outcome of naturally-

acquired anti-blood stage immunity. By implication, the effects

of acquired immunity on the rates of acquisition and clearance

of parasite clones are not very pronounced. At first sight it is

difficult to understand how acquisition of immunity could have

so little effect on persistence, but this ignores the complex

dynamics of single infections driven by antigenic variation [41].

The models used here significantly simplify these dynamics, for

instance, by treating parasite clearance and detection as

independent of age of the infection, equivalent to assuming an

exponential distribution of durations. In fact, further analyses

have found that Gompertz or Weibull distributions of the

duration are more realistic than the exponential ones [21,34]

but provide similar estimates of average duration (while being

more difficult to fit).

These age patterns challenge the ideas that transmission in

endemic areas is controlled by acquired pre-erythrocytic

immunity, or by rapid clearance of infections in semi-immune

hosts. We contend that most of the effect of acquired immunity

on transmission is also likely to mediated by effects on parasite

densities. Immunity also has direct effects on sexual stages of the

parasite [42] but since the gametocyte stages of the parasite

arise by developmental switching of asexual parasites, reduction

in asexual biomass leads to fewer gametocytes and hence less

potential to transmit to mosquitoes. This can be seen clearly in

the data from artificial infections of humans [43]. A

consequence is that the infectiousness of the humans host in

Table 3. Parameter Estimates of Statistical Models.

Parameter Unit Value

ID model Triplet model

l1 Force of Infection Aug/Sep per yr 44.8 (CI 44.7, 44.9) n.a.

l2 Force of Infection Oct/Nov per yr 19.2 (CI 19.1, 19.3) n.a.

l3 Force of Infection Dec/Jan per yr 18 (CI 17.8, 18.2) n.a.

l4 Force of Infection Feb/Mar per yr 7.5 (CI 7.4, 7.6) n.a.

l5 Force of Infection Apr/May per yr 12.3 (CI 12.2, 12.3) n.a.

l6 Force of Infection Jun/Jul per yr 39.6 (CI 39.3, 39.8) n.a.

1/m1 Duration of infection (,1 yr) days 155 (CI 128, 183) 129 (CI 108, 160)

1/m2 Duration of infection (1–2 yrs) days 256 (CI 254, 259) 198 (CI 143, 322)

1/m3 Duration of infection (3–4 yrs) days 257 (CI 254, 259) 196 (CI 162, 247)

1/m4 Duration of infection (5–9 yrs) days 319 (CI 318, 320) 216 (CI 169, 297)

1/m5 Duration of infection (10–19 yrs) days 176 (CI 156, 196) 189 (CI 143, 279)

1/m6 Duration of infection (20–39 yrs) days 129 (CI 124, 134) 124 (CI 93, 186)

1/m7 Duration of infection (40–59 yrs) days 126 (CI 113, 139) 158 (CI 95, 472)

1/m8 Duration of infection (.60 yrs) days 131 (CI 114, 148) 190 (CI 97, 5,924)

s0 Logit detectability at 20 yrs 20.84 (CI 20.91, 20.78) n.a.

s1 Change in logit detectability per 10 yrs 20.17 (CI 20.21, 20.13) n.a.

q1 Detectability (,1 yr) percent n.a. 61 (CI 48, 74)

q2 Detectability (1–2 yrs) percent n.a. 46 (CI 34, 58)

q3 Detectability (3–4 yrs) percent n.a. 46 (CI 39, 52)

q4 Detectability (5–9 yrs) percent n.a. 40 (CI 34, 47)

q5 Detectability (10–19 yrs) percent n.a. 33 (CI 26, 41)

q6 Detectability (20–39 yrs) percent n.a. 33 (CI 19, 48)

q7 Detectability (40–59 yrs) percent n.a. 22 (CI 09, 35)

q8 Detectability (.60 yrs) percent n.a. 13 (CI 03, 23)

ID, immigration-death, model A; n.a., not applicable, i.e. the estimation method did not provide these estimates. The force of infection estimates include a scale factor to
allow for the exclusion of uninformative individuals (those with no detected infections) from the analysis.
doi:10.1371/journal.pone.0045542.t003
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endemic areas depends on the age of the host, with adults

transmitting less than children [44]. Reduction of asexual blood

stage densities is very likely the main effect of immunity driving

the difference between naive and highly exposed hosts in the

extent to which P. falciparum infections are propagated.

Both vector control and chemotherapeutic interventions act

on transmission by changing FOI and/or duration of infection.

Studies of these quantities therefore underpin models of the

natural history of P. falciparum that are needed for projecting the

likely impact of novel interventions and scale-up of existing

ones. Apart from the Navrongo studies, we have so far applied

methods allowing for imperfect detectability only to data

covering only limited age ranges from Tanzania. There is need

to test generalisability to areas with different patterns of

transmission, if possible, linking estimates of FOI and duration

to better measures of immune status and exposure.
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