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Abstract

Dispersal costs need to be quantified from empirical data and incorporated into dispersal models to improve our
understanding of the dispersal process. We are interested in quantifying how landscape features affect the immediately
incurred direct costs associated with the transfer of an organism from one location to another. We propose that least-cost
modelling is one method that can be used to quantify direct transfer costs. By representing the landscape as a cost-surface,
which describes the costs associated with traversing different landscape features, least-cost modelling is often applied to
measure connectivity between locations in accumulated-cost units that are a combination of both the distance travelled
and the costs traversed. However, we take an additional step by defining an accumulated-cost dispersal kernel, which
describes the probability of dispersal in accumulated-cost units. This novel combination of cost-surface and accumulated-
cost dispersal kernel enables the transfer stage of dispersal to incorporate the effects of landscape features by modifying
the direction of dispersal based on the cost-surface and the distance of dispersal based on the accumulated-cost dispersal
kernel. We apply this approach to the common brushtail possum (Trichosurus vulpecula) within the North Island of New
Zealand, demonstrating how commonly collected empirical dispersal data can be used to calibrate a cost-surface and
associated accumulated-cost dispersal kernel. Our results indicate that considerable improvements could be made to the
modelling of the transfer stage of possum dispersal by using a cost-surface and associated accumulated-cost dispersal
kernel instead of a more traditional straight-line distance based dispersal kernel. We envisage a variety of ways in which the
information from this novel combination of a cost-surface and accumulated-cost dispersal kernel could be gainfully
incorporated into existing dispersal models. This would enable more realistic modelling of the direct transfer costs
associated with the dispersal process, without requiring existing dispersal models to be abandoned.
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Introduction

Dispersal is an important process for ecology and evolution,

affecting organisms at the individual, population, and species levels

by influencing population dynamics and gene flow. Conceptually,

dispersal can be viewed as a combination of three stages:

departure, transfer, and settlement. Each stage imposes energy,

time, risk, and opportunity-based costs on the disperser that can

either be direct and incurred immediately, or indirect and

incurred subsequently [1]. These costs need to be quantified from

empirical data and incorporated into dispersal models to improve

our understanding of the dispersal process [2].

We are interested in quantifying the direct costs associated with

the transfer stage of dispersal, in which an organism moves from

one location to another. Traditionally a distance-based dispersal

kernel, calibrated from data on straight-line distances between the

start and end locations of known dispersal events (Figure 1), is used

within dispersal models to quantify the likelihood of an organism

dispersing a given distance in any direction [3]. However, this

approach assumes that the landscape does not affect dispersal

directions or distances. Wiens [3] presents a contrasting view,

where during the transfer stage of dispersal ‘‘a landscape can be

viewed … as a cost-benefit surface in which there are ‘peaks’

where benefits outweigh costs and ‘valleys’ where costs exceed

benefits’’. This representation of the landscape as a cost-benefit

surface fits nicely with both the conceptual model of the direct

energy, time, or risk costs associated with the transfer stage of

dispersal [1], and also with measuring connectivity using least-cost

modelling [4,5].

Least-cost modelling is based upon a geographic information

system (GIS) raster called a cost-surface (otherwise known by

combinations of: cost, friction, permeability, or resistance, and;

layer, grid, map, raster, or surface). Cost-surfaces are developed

using a variety of approaches [6] and are used to represent the

difficulty associated with traversing different parts of a landscape.
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Cells with higher costs represent species-specific factors such as

greater mortality risk, energy expenditure, or behavioural aversion

that impede movement. Given a starting cell location, least-cost

modelling calculates least-cost paths (LCPs) that are routes of

maximum efficiency from the start cell to each other cell as a

function of the distance travelled and the costs traversed.

Connectivity between the start and end cell are expressed using

the accumulated-cost of the LCP.

Given a cost-surface and the same start and end locations of

known dispersal events that are typically used to calibrate a

distance based dispersal kernel, we can envisage a least-cost

modelling approach to quantifying direct transfer dispersal costs. If

LCPs are calculated between the start and end locations, then the

accumulated-cost of the LCPs could be used to calibrate an

accumulated-cost based dispersal kernel. This novel combination

of a cost-surface and its associated accumulated-cost dispersal

kernel would then enable the transfer stage of dispersal to

incorporate the effects of landscape features, by modifying the

direction of dispersal based on the cost-surface and the distance of

dispersal based on the accumulated-cost dispersal kernel.

Therefore, in contrast to the straight-line distance approach to

modelling dispersal that assumes that the landscape does not affect

dispersal directions or distances, a least-cost modelling approach to

quantifying the direct transfer costs of dispersal would enable

landscape features to be taken into account. This would help in

moving towards a new generation of dispersal models that are

more empirically based [2]. Such a change would not even require

existing dispersal models to be abandoned, as it would only be the

way in which an organism disperses from a start to an end location

that changes, meaning existing dispersal models could be easily

adapted.

To demonstrate how the direct transfer costs of dispersal can be

quantified using least-cost modelling, we apply our proposed

approach to the common brushtail possum (Trichosurus vulpecula), a

nocturnal marsupial, about 70–90 cm in length and 2–3.5 kg in

weight, which has become a notorious invasive species since its

introduction to New Zealand from Australia during the late 1800s

and early 1900s [7]. Using empirical dispersal data collected by six

dispersal studies located across the North Island of New Zealand

(Figure 2), we demonstrate how it is possible to develop a cost-

surface and an associated accumulated-cost dispersal kernel.

Methods

Our least-cost modelling approach consisted of three main

steps. First, a set of GIS rasters that represented landscape features

likely to affect possum dispersal were created. Second, a widely

used landscape genetics approach that compares the genetic

distance and LCP accumulated-cost between locations was used to

calibrate, rank, and evaluate a variety of cost-surfaces made from

differing combinations of landscape features and costs. Finally, in

the novel third step of our approach, accumulated-cost dispersal

kernels for the best cost-surfaces were calibrated based on the LCP

accumulated-cost between the start and end locations of dispersal

events recorded using radio-telemetry.

GIS data processing
Based on a review of possum movement and dispersal studies

[8–13], we began by creating six GIS raster datasets that

represented landscape features that we thought were likely to

affect possum dispersal (Table 1). The same GIS data processing

was applied to produce sets of rasters that represented the

landscape features of interest across each of the possum dispersal

data study areas (Figure 2). All source GIS data were at a map

scale of 1:50,000 and in all cases the data used were as

contemporary as possible to the time of collection of the possum

dispersal data from each study. Choice of scale, in terms of both

grain and extent, is important for any spatial analysis. We chose

extents for each possum dispersal study that were as small as

possible to reduce computation times, but which provided

sufficient space around data points to avoid any edge effects that

might influence the least-cost modelling. For grain, as possums are

strictly nocturnal we considered any dispersal event to be the sum

of a series of nightly movements. Therefore, we set the cell

resolution of all the rasters at 70.5 m, which produced cells with an

Figure 1. Straight-line distance based dispersal kernels. These
dispersal kernels are used to model dispersal for male and female
brushtail possums (Trichosurus vulpecula) in New Zealand [52].
doi:10.1371/journal.pone.0088293.g001

Figure 2. The locations of six studies that provided empirical
possum dispersal data. Dispersal of possums was measured either
directly using radio-telemetry or indirectly using landscape genetics,
and each study was associated with a variety of different landscape
environments across the North Island of New Zealand categorised on
the basis of differences in climate, landform, and soils [53].
doi:10.1371/journal.pone.0088293.g002
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area equal to the minimum observed nightly range of possums

[14].

The topographic landscape features of elevation and ridges were

both derived from a digital elevation model (DEM) [15]. To

identify ridges we calculated continuous plan curvature values for

which greater positive values represent more pronounced ridges

and greater negative values represent more pronounced channels

[16]. A cubic spline interpolation was used to resample the

elevation and plan curvature values to the desired resolution.

Tree and scrub cover for each area where possum dispersal data

were gathered was rasterised from the most contemporary of New

Zealand’s landcover databases [17] to produce a raster in which

cell values represented the percentage of the cell consisting of tree

and scrub landcover.

Rivers were differentiated by stream order, assuming that

stream order is relative to river characteristics such as channel size

and discharge [18]. Less ephemeral main rivers with a stream

order greater than four were extracted from a DEM-derived river

drainage dataset [19]. The spatial accuracy of the drainage dataset

was poor at the desired map scale, therefore the river order values

were transferred to the matching river and canal centreline and

polygon objects within the watercourse entity class of the national

topographic database [20,21]. Once rasterised, an algorithm [22]

was run to ensure that no gaps in the river order values had been

introduced during data processing. All rail and road bridges from

the bridge entity class of national topographic database [20,21]

that were associated with any of the main rivers were also

rasterised, with the cells attributed with the length of the bridge’s

vector geometry.

Highway traffic volumes were based on point estimates of

annual average daily traffic (AADT) for state [23] and regional

highways [24,25]. The AADT values were attributed to an

appropriate vertex within a highway network that, because of

temporal changes to the highway network, was developed where

appropriate from a combination of: road centreline objects within

the road entity class of the national topographic database [20,21],

state highway road data [26], and manual digitisation. The

remaining highway network vertices received an AADT value by

using a network-based spatial interpolation approach [27], in

which the interpolated values were calculated from an inverse

distance weighted interpolation [28] based on the distance along

the highway network to the first set of AADT values that were

encountered. The highway network’s AADT values were then

rasterised.

All offshore areas and any features from the lagoon and lake

entity classes of the national topographic database [20,21] that

were at least the area of a single 70.5 m cell were rasterised, and

these areas were treated as null data in the cost-surface, to

represent complete barriers to possum dispersal.

So that the set of rasters could be combined into a cost-surface,

each raster’s values were rescaled to between zero and one such

that a set of relative inter-feature weights could be applied. This

rescaling also provided an opportunity to control the intra-feature

weighting of each landscape variable. With limited knowledge

regarding how possum dispersal may vary across the range of

values associated with each of the features, we assumed a linear

function for rescaling the values of elevation, plan curvature, tree

and scrub cover, and bridge length between zero and one (Figure 3

A–D).

Given evidence from of the barrier effect from traffic volumes

[9], we assumed a linear increase from zero to 5000, and that all

values from 5000 upwards were equal to one (Figure 3E). As the

formation of a river of order n requires two rivers of order n-1 [18],

we used a function in which a river of order n was half that of a

river of order n+1 (Figure 3F). Also, on occasions when rivers and

bridges were included in the same cost-surface, any river cells that

coincided with bridge cells were reclassified to zero to remove the

effect of rivers at these locations.

While other studies have varied the intra-feature weightings

[29], we chose not to do this as it would have resulted in a factorial

increase in the number of landscape representations, and we did

not feel we had any sensible alternatives to the linear functions

used where the relationship was not clear.

Cost-surface calibration and ranking
We used a commonly applied two-stage expert opinion-

landscape genetics approach [6] to calibrate a set of potential

cost-surface landscape representations. The possible range of

relative inter-feature weights (Table 1) was set based on our own

interpretation of the same studies that informed the choice of

landscape features affecting possum dispersal [8–13]. Due to the

uncertainty associated with this process we limited ourselves to

prescribing ranges of possible weights using orders of magnitude

(0.1, 1, 10, 100, 1000) that were constrained only by our perceived

Table 1. The six GIS raster datasets representing the landscape features thought to affect possum dispersal, the ecological
justification for their choice, and the associated weight ranges that represent the perceived relative importance of each landscape
feature.

GIS dataset Dispersal affect Weight range

Elevation Aversion to higher colder elevations. 0.1–10

Plan curvature Preference for drier ridges over wetter gullies. 0.1–10

Tree and scrub cover The absence of cover provided by tree and scrub appears to modify
movement behaviour.

0.1–10

Highway traffic volume Highways with higher traffic volumes present an obstacle to dispersal
that acts through behavioural aversion and direct mortality.

10–100

River order While possums can swim, and have dispersed across rivers, they are disinclined to
enter water, so high order river are thought to be a serious obstacle dispersal.

100–1000

Bridge length Bridges enable possums to avoid the cost associated with crossing a river,
but they may also increase the risk of mortality associated with highways as a
function of length.

0.1–100

doi:10.1371/journal.pone.0088293.t001
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rank importance of the variable, as this is important for robust

least-cost modelling [30].

We then defined 47 different cost-surface landscape represen-

tations that were logical combinations of the six landscape

features. A landscape genetics based optimisation approach in

which multiple cost-surfaces are compared statistically to identify

the cost-surface that best explains the genetic distances [31], was

used to select an appropriate set of inter-feature weights for each

cost-surface landscape representation. We used data from a

landscape genetics possum dispersal study [13] that had measured

genetic distances, in the form of linearised FST [32], between

possums sampled at 31 different locations.

The landscape genetics based optimisation approach is compu-

tationally very demanding, which limits the optimisation process

[6]. Therefore, to reduce computation times instead of using a

more conventional matrix approach, which would require that for

each cost-surface LCP accumulated-costs would need to be

calculated between all 465 possible combinations of possum

sampling locations, we restricted our analysis to a network of

neighbouring possum sampling locations. We defined neighbours

using a Delaunay triangulation [28], but with neighbours that

were greater than 25 km apart removed, as the genetic signal

disappears beyond this point [13]. This created a sample of 77

neighbouring possum sampling locations between which genetic

distance and LCP accumulated-cost from different cost-surfaces

could be compared. Limiting the landscape genetics analysis to a

network of neighbouring locations not only reduces computation

times, but may also improve the ability to detect a meaningful

pattern between the landscape and the genetics [33], and enables

for robust statistical techniques such as regressions and Akaike’s

Information Criterion (AIC) to be used to assess different cost-

surface landscape representations [34].

To find a best fitting set of weights for each of these cost-

surfaces, we generated a Latin hypercube sample (LHS) [35] of

size 1000 for the weight ranges, as this provides an efficient way of

sampling a multi-dimensional parameter space to look for main

effects. Each of the 1000 LHS weight samples were applied to each

of the 47 cost-surface landscape representations using a map

algebra point operation (Equation 1) to create a cost-surface (cs)

from the set of raster landscape features that made up a cost-

surface (S) by multiplying each raster (r) by its associated weight

(wr).

cs~1z
X

r[S

r|wr ð1Þ

To determine the best fitting set of inter-feature weights for each

of the 47 cost-surfaces, the computational efficient irregular

landscape graph approach [36] was used to calculate LCP

accumulated-cost between possum sampling locations. The

ecological grain of the irregular landscape graphs was based upon

habitat specific measures of home-range size [14], the very

important point threshold was set at one, and the possum sampling

locations were included as points of interest. The best fitting set of

weights from the 1000 LHS weight samples for each of the 47

possible cost-surface landscape representations was identified as

that which produced the smallest residual sum of squares (RSS)

from a linear regression between genetic distance and LCP

accumulated-cost. As the sets of weights being compared had

produced accumulated-costs with differing orders of magnitude,

the accumulated-costs were first rescaled to range between zero

and one to enable a fair comparison.

The 47 best fitting cost-surface landscape representations were

then ranked by the corrected small sample AIC (AICc) that was

calculated directly from the RSS values [37]. We also calculated

the Akaike weight (wi) to better interpret the relative strength of

evidence for each landscape representation [37], and the

coefficient of determination (r2) from the linear regressions to

assess the explanatory power. As well as ranking the 47 cost-

surfaces landscape representations, we also included a uniform

landscape representation in which connectivity between the

possum sampling locations was measured using straight-line

distance rather than LCP accumulated-cost. As with the cost-

surfaces, an RSS value was also calculated by fitting a linear

regression between the rescaled distances and the genetic

distances.

To ensure the wi and r2 values derived from RSS value of each

linear regression were reliable, each set of linear regression

residuals were examined for signs of spatial autocorrelation. As the

residuals were associated with links within a network of

neighbouring possum sampling locations, the spatial structure

between the residuals was defined as a binary variable representing

adjacency of the links within the network. The level and

significance of spatial autocorrelation was measured using a

randomisation based global Moran’s I [38].

Dispersal kernel calibration and comparison
A dispersal kernel was calibrated for each of the landscape

representations using the start and end points of dispersal events

Figure 3. Intra-feature cost-surface weightings. The form of the
relationships used to rescale the values of each landscape feature to
between zero and one, and to control the intra-feature weighting of the
values from each landscape feature.
doi:10.1371/journal.pone.0088293.g003
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from 65 (47 = and 18 R) radio-collared possums across five

different studies [10–12,39,40]. A dispersal event was defined as a

movement greater than 2 km, as given the size and shape of

possum home-ranges movements shorter than this could have

represented within home-range movements rather than the

dispersal transfer movements between home-ranges that we were

trying to quantify [41].

Dispersal connectivity was calculated between the start and end

points of all of the radio-collared possum dispersal events as either

straight-line distance for the uniform landscape representation, or

as LCPs for the 47 cost-surface landscape representations. Mann-

Whitney U-tests were used to check for differences in dispersal

connectivity values between sexes, in order to assess whether

different kernels were required for each sex. The dispersal kernel

for each landscape representation was defined by a lognormal

probability distribution fitted to the dispersal connectivity values of

the possum dispersal events via maximum-likelihood [42].

To compare the differing quantifications of dispersal transfer

costs associated with the traditional straight-line distance approach

and our proposed least-cost modelling approach, we produced

maps that visualised the likely dispersal directions and distances

given an arbitrary starting location.

Results

The landscape genetics-based AIC ranking of the landscape

representations (Table 2) showed little support for the uniform

landscape representation (D, in Table 2) for which connectivity

was measured using straight-line distance (Figure 4A). This

representation ranked 46 out of 48, with the wi and r2 values

indicating that there was minimal evidence to support this option

as it does not explain differences in genetic distance (Figure 4B).

This was in stark contrast to the highest ranked cost-surface

landscape representation (DTR, in Table 2) for which connectivity

was measured using the accumulated-cost of LCPs (Figure 4C).

The wi and r2 values of this representation indicated that there was

strong evidence to support this option, as over a third of the

variation in genetic distance could be explained by LCP

accumulated-cost (Figure 4D).

Analyses of the spatial autocorrelation of the regression residuals

support these results. There was only slightly positive and non-

significant spatial autocorrelation present for the top ranked cost-

surface landscape representations (in all cases Moran’s I = 0.05–

0.07, p$0.05 one-tailed) indicating that the wi and r2 values can be

interpreted with confidence. In contrast the uniform landscape

representation’s residuals had significant positive autocorrelation

(Moran’s I = 0.20, p,0.01 one-tailed), indicating that some spatial

factor that influences genetic distances is not accounted for –

which we would argue is clearly the effect of landscape features.

We felt confident that the range of values explored for the inter-

feature weights were appropriate as the weights selected for the top

ranking landscape representations were well within the range of

values explored, suggesting that a wider range of values may not

have produced different results. Based on their occurrence in the

top ranking landscape representations and the wi values, the most

important landscape feature was river order, followed by tree and

scrub cover, with some support for highway traffic volume.

There were notable differences for dispersal events when

measured using straight-line distance for the uniform landscape

representation, or LCPs for the cost-surface landscape represen-

tations (Figure 5). The dispersal connectivity values did not tend to

differ between sexes for any of the landscape representations (in all

cases Mann-Whitney U$345, p$0.26 two-tailed). Therefore,

lognormal dispersal kernels were fitted to the dispersal connectivity

values derived for each landscape representation with the two

sexes combined (Table 2, Figure 6).

The fact that the least-cost modelling approach to quantifying

direct transfer costs was able to incorporate landscape features into

the likely dispersal directions and distances was evident when these

costs were visualised (Figure 7B). This ability was in stark contrast to

Table 2. A summary of the landscape genetics based ranking of the 48 landscape representations, with the parameterisation of
the associated accumulated-cost dispersal kernel.

Representation a E P T R H B Rank b wi r2 mlog slog maxDC

DTR - - 4.78 445.43 - - 1 0.42 0.37 9.74 0.71 79863

DR - - - 259.29 - - 2 0.14 0.31 8.53 0.59 24492

DTRH - - 4.14 345.80 24.40 - 3 0.12 0.34 9.69 0.69 73144

DPTR - 2.65 4.67 793.76 - - 4 0.07 0.34 10.08 0.66 114941

DRH - - - 259.82 13.33 - 5 0.07 0.31 8.57 0.57 25564

DPR - 5.22 - 981.20 - - 6 0.05 0.32 9.73 0.63 89911

DPTRH - 2.44 6.37 638.90 97.94 - 7 0.03 0.32 10.33 0.67 134542

DER 0.11 - - 319.56 - - 8 0.02 0.32 8.55 0.60 27353

DPRH - 4.73 - 830.30 33.00 - 9 0.01 0.31 9.71 0.61 82445

DETR 0.19 - 3.88 476.05 - - 10 0.01 0.34 9.58 0.72 72338

DEPR 0.15 4.88 - 950.56 - - 11 0.01 0.32 9.68 0.63 86879

…

D - - - - - - 46 0.00 0.06 8.33 0.52 12799

aEach landscape representation measured connectivity as a function of distance (D) and the traversal costs resulting from the inter-feature weights of elevation (E), plan
curvature (P), tree and scrub cover (T), river order (R), highway traffic volume (H), and bridge length (B).
bLandscape representations were ranked by their Akaike weight (wi). Only the top ranked cost-surface landscape representations (Swi#0.95) plus the uniform landscape
representation are listed.
r2 = coefficient of determination (in all cases p#0.03), mlog = the mean of the logarithm of the lognormal dispersal kernel, slog = the standard deviation of the
logarithm of the lognormal dispersal kernel, maxDC = maximum observed dispersal connectivity value.
doi:10.1371/journal.pone.0088293.t002
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the straight-line distance approach in which dispersal trajectories

are clearly independent of important landscape features (Figure 7C).

Discussion

The LCP accumulated-cost connectivity values derived from

our cost-surface landscape representations explained about one-

third of the variation in genetic differentiation (Table 2). These

outcomes were heartening given the general limitations with using

a landscape genetics approach to quantify connectivity across a

landscape [31], to which we could add more specific issues such as

geographical variability in possum control operations which could

not be accounted for. However, we do not preclude the possibility

that there could be cost-surfaces that are better representations of

the landscape. For example, the extreme outlying data point for

possum sampling location neighbours 26–28 that was present for

Figure 4. Comparing genetic distance with straight-line distance and accumulated-cost. Examples of two of the 48 landscape
representations used to measure the direct transfer costs between 77 neighbouring possum sampling locations for which genetic distances had been
measured. Assuming (A) a uniform landscape representation (D, in Table 2), connectivity was measured as straight-line distance that (B) explained
little of the variation in genetic distances. By using (C) a cost-surface landscape representation that incorporated transfer costs associated with rivers
and the absence of tree and scrub cover (DTR, in Table 2), connectivity was measured as the accumulated-cost of least-cost paths that (D) explained
approximately a third of the variation in genetic distance.
doi:10.1371/journal.pone.0088293.g004
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the best landscape representation (Figure 4D) would suggest that

the landscape representation could possibly be improved. Such

difficulties in cost-surface calibration are not uncommon, which

emphasises the importance of considering uncertainty when using

cost-surfaces in any ecological application [6].

Assuming that our cost-surfaces are a reasonable representation

of the actual traversal costs for possums on the North Island of

New Zealand, our results are conclusive in demonstrating that a

uniform landscape representation in which dispersal can be based

upon straight-line distance movement is far too simplistic. We feel

confident that this will be the case for other species and locations

as previous studies have also shown that least-cost modelling

derived accumulated-cost values are better than straight-line

distance at explaining ecological patterns that are affected by

dispersal [43–46]. However, unlike previous studies, we have not

only defined a cost-surface, but we have also taken an extra step by

measuring actual dispersal events in terms of accumulated-cost to

also define an accumulated-cost dispersal kernel. It is this novel

combination of a cost-surface and accumulated-cost dispersal

kernel that we can envisage could be used to improve dispersal

models in three different ways.

If a dispersal event is modelled as a single discrete movement,

the probability density function of a dispersal kernel could be used

to describe the likelihood of the dispersal event having a specific

accumulated-cost value. This could then be used in combination

with a cost-surface to randomly select an end point for the

dispersal event. This is essentially an equivalent process as that

used by the straight-line distance dispersal approach, but with the

benefit of recognising landscape structure.

It has also been suggested that a dispersing organism is

increasingly likely to settle as accumulated transfer costs increase

[1]. If the cost-surface is used as the basis for a random walk

dispersal model, then the accumulated-cost could grow with each

step in the random walk [47]. By using the cumulative distribution

function of a dispersal kernel to convert the accumulated-cost into

a cumulative distribution value, this approach could be used to

assess the likelihood of settlement at each step of the random walk.

There are a variety of least-cost modelling approaches that aim

to identify the area around a point that is likely to be reached [48–

50]. Given the cost-surface and a dispersal limit, such as the

maximum dispersal value or a cumulative distribution threshold,

the area that could be reached can be delineated. The likelihood of

reaching locations within this area could even be determined by

Figure 5. Dispersal events as straight-lines and least-cost
paths. Examples of nine of the 65 radio-collared brushtail possum
dispersal events used to calibrate the dispersal kernels. To allow for the
effect of incorporating landscape features to be shown, both the
straight-line distances associated with the uniform landscape repre-
sentation (D, in Table 2) and the least-cost paths associated with the
highest ranked cost-surface landscape representation (DTR, in Table 2)
are shown. While the straight-line distances do not consider the
landscape at all, the least-cost paths avoid both rivers and areas without
tree and scrub cover.
doi:10.1371/journal.pone.0088293.g005

Figure 6. Possum dispersal kernels based on straight-line
distance and accumulated-cost. Examples of the dispersal kernel
calibration from connectivity values of observed possum dispersal
events for (A) the highest-ranked cost-surface landscape representation
(DTR in Table 2), and (B) the uniform landscape representation (D in
Table 2). A stacked histogram of the possum dispersal events
categorised by sex is shown along with the fitted lognormal dispersal
kernel’s probability density function (PDF), and both the cumulative
distribution function (CDF) and the inverted cumulative distribution
function (1-CDF).
doi:10.1371/journal.pone.0088293.g006
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converting the accumulated-cost values into probabilities through

the use of an inverted cumulative distribution function.

With these different applications in mind, it is important to

highlight that the landscape genetics approach we used to calibrate

our cost-surface landscape representations is not the only or

necessarily the best approach. While gene flow and dispersal are

generally correlated they are not synonymous, as contemporary

genetic structure is affected by other processes such as historical

landscape change and population level survival and reproduction

rates [31]. Therefore, other approaches to calibrating cost-surfaces

that make use of detection, mark-recapture, or radio-telemetry

data may provide a better option for some studies [6]. It is also

worth noting that the LCPs between the start and end points of

dispersal that were used to calibrate the accumulated-cost dispersal

kernel are likely to underestimate the true transfer cost. The LCP

finds the optimum route, which an animal is unlikely to actually

take, and in some instances the start and end points are likely to

represent truncated dispersal events, as dispersal may have

continued beyond the period of observation. However, this use

of an unrealistic shortest path is equivalent to the straight-line

distance approach to estimating a distance dispersal kernel. This

problem could be resolved by using a different approach to

estimating the connectivity between the start and end points of a

dispersal event such as directed random walks [47] or, more

ideally, by using actual dispersal pathway data to produce an

actual measure of the direct transfer costs. Dispersal pathway data

Figure 7. Examples of least-cost modelling versus straight-line distance based dispersal models. For (A) an arbitrary section of landscape
and possum dispersal starting location, dispersal is modelled using (B) the highest-ranked cost-surface landscape representation (DTR in Table 2) for
which connectivity is measured by accumulated-cost, and (C) the uniform landscape representation (D in Table 2) for which connectivity is measured
by distance. The connectivity values converted to the associated probability density and cumulative distribution values given the associated dispersal
kernel (Figure 6).
doi:10.1371/journal.pone.0088293.g007
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would also improve the confidence in defining the start and end

points of a dispersal event by enabling changes in behaviour to be

identified [51].

It is also important to remember that we focussed on the direct

costs associated with the transfer stage of dispersal, which is only

one part of the broader whole dispersal process that also includes

departure and settlement costs [1]. While this obviously means

that models of dispersal must add departure and settlement costs to

the transfer costs [2], it also means that our transfer costs need to

be carefully interpreted as they may have been affected by costs

incurred at other stages, as organisms will attempt to minimise the

overall dispersal cost [1]. For example, lower departure costs

resulting from better resources at the departure location may

enable an organism to tolerate higher transfer costs, while higher

settlement costs resulting from competitors at the settlement

location may force an organism to minimise transfer costs. This

means that when transfer costs are established without reference to

the other departure and settlement costs, there is the potential for

the transfer costs to misleading. Therefore, ideally dispersal costs

should be calculated with reference to the whole dispersal process

– for which our least-cost modelling approach could still be used to

quantify the direct transfer costs. However, monitoring an

organism through its entire dispersal process is of course a difficult

task, so when this is not possible, we would suggest that direct

transfer costs are established using observations of dispersal that,

like our possum dispersal events, consisted of a large number of

individuals from different locations and times in the hope of

minimising any potential spatio-temporal biases.

To conclude, a new generation of dispersal models is required

that better exploits recent empirical advances in understanding the

dispersal process [2]. We believe that recent advances in the

application of least-cost modelling in ecology provide an excellent

basis for meeting this challenge. The novel combined cost-surface

and accumulated-cost dispersal kernel approach that we have

presented will hopefully enable more realistic modelling of the

direct transfer costs associated with the dispersal process.
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