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We investigate the performance of different classification models and their ability to recognize prostate cancer in an early stage. We
build ensembles of classification models in order to increase the classification performance. We measure the performance of our
models in an extensive cross-validation procedure and compare different classification models. The datasets come from clinical
examinations and some of the classification models are already in use to support the urologists in their clinical work.
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1. INTRODUCTION

Prostate cancer is one of the most common types of cancer
among male patients in the western world. The number
of expected new cases in the USA for the year 2006 was
235,000 with 27,000 expected deaths [1]. Early detection
of prostate cancer improves the chances of a curative
treatment and a lot of progress has been made in this field
during the last decade. The early detection is considerably
enhanced by the measurement of prostate-specific antigen
(PSA) in conjunction with other clinically available data
like age, digital rectal examination (DRE), and transrectal
ultrasonography (TRUS) variables like prostate volume. We
compared several classification models and analyzed their
performance on the clinical dataset with an extended cross-
validation procedure. The models were linear discriminant
analysis (LDA), penalized discriminant analysis (PDA) [2],
logistic regression [3], classification and regression trees
(CARTs) [4], multilayer perceptron (MLP) [5], support
vector machines (SVMs) [6, 7], and nearest neighbour
classifiers [8]. All these models are implemented in an open-
source Matlab-toolbox that is available on the internet [9].

This study will help to improve the software package
ProstataClass [10] which was developed at Charité and
currently uses an artificial neural network as classification
engine. This program is successfully used in clinical practice
for several years.

2. DATA

We had access to the clinically available data of 506 patients
with 313 cases of prostate cancer (PCa) and 193 non-
PCa. The data were selected from a group of 780 patients
randomly. The data entry for each patient included age,
PSA, the ratio of free to total prostate-specific antigen (PSA-
Ratio), TRUS, and the diagnostic finding from the DRE
which was a binary variable (suspicious or nonsuspicious).
Blood sampling and handling were performed as described
in Stephan et al. [11]. The samples were taken before any
diagnostic or therapeutic procedures, and sera were stored
at 80°C until analyzed. After thawing at room temperature,
samples were processed within 3 hours. Prostate volume
was determined by transrectal ultrasound using the prolate
ellipse formula. The scatter plot of the variables under
investigation is shown in Figure 1. PCa and non-PCa patients
were histologically confirmed by 6-8 core prostate biopsy.

3. ENSEMBLES

The average output of several different models f;(x) is called
an ensemble model:

K

fx) = wifix), (1)
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FIGURE 1: A scatterplot matrix of the data. Each box shows a pair of
variables and the cases are color-coded, a red cross marks PCa, and
a blue circle non-PCa. The DRE is a binary variable (suspicious or
nonsuspicious).

where we assume that the model weights w; sum to one
K @ = 1. There are several suggestions concerning the
choice of the model weights (see Perrone and Cooper [12])
but we decided to use uniform weights with w; = 1/K for the
sake of simplicity and not to run into overfitting problems as
reported by Krogh and Sollich [13].

The central feature of the ensemble approach is the
generalization ability of the resulting model. In the case of
regression models (with continuous output values), it was
shown that the generalization error of the ensemble is in
the average case lower than the mean of the generalization
error of the single-ensemble members (see Krogh and
Vedelsby 1995 [14]). This holds in general, independent
of the model class, as long as the models constituting the
ensemble are diverse with respect to the hypothesis of the
unknown function. In the case of (binary) classification
models, the situation was not so clear because the classical
bias-variance decomposition of the squared error loss in
regression problems (Geman et al. [15]) had to be extended
to the zero-one loss function. There are several approaches
dealing with this problem, see Kong and Dietterich [16],
Kohavi and Wolpert [17], or Domingos [18].

The zero-one loss function is not the only possible choice
for classification problems. If we are interested in a likelihood
whether a sample belongs to one class or not, we can
use the error loss from regression and consider the binary
classification problem as a regression problem that works
on two possible outcomes. In practice, many classifiers are
trained in that way.

Our ensemble approach is based on the observation that
the generalization error of an ensemble model could be
improved if the models on which averaging is done disagree
and if their residual errors are uncorrelated [13]. To see this,
we have to investigate the contribution of the single model in

the ensemble to the generalization error. We consider the case
where we have a given dataset D = {(x1, y1),..., (XN, ¥N)}
and we want to find a function f(x) that approximates y at
new observations of x. These observations are assumed to
come from the same source that generated the training set D,
that is, from the same (unknown) probability distribution P.
It should be noted that f depends also on D. The expected
generalization error Err(x,D) given a particular x and a
training set D is
2

Err(x, D) = E[ (y - ()" | x,D], )
where the expectation E[:] is taken with respect to the
probability distribution P. We are now interested in

Err(x) = Ep[Err(x,D)], (3)

where the expectation Ep[-] is taken with respect to all
possible realizations of training sets D with fixed sample
size N. According to Geman et al. [15], the bias/variance
decomposition of Err(x) is

Err(x) = o? + (Ep[ f(x)] — E[y | X])2
+Ep[(f(x) ~ En[f(0)])°] (4)
=0’ + Bias(f(x))2 + Var(f(x)),

where E[y | x] is the deterministic part of the data and ¢?
is the variance of y given x. Balancing between the bias and
the variance terms is a crucial problem in model building.
If we try to decrease the bias term on a specific training set,
we usually increase the variance term and vice versa. We now
consider the case of an ensemble average f(x), consisting of
K individual models as defined in (1). If we put this into (4),
we get

Err(x) = 0% + Bias(]?(x))2 + Var(fA(x)), (5)

and we can have a look at the effects concerning bias and
variance. The bias term in (5) is just the average of the
biases of the individual models in the ensemble. So we should
not expect a reduction in the bias term compared to single
models. According to Naftaly et al. [19], the variance term of
the ensemble could be decomposed in the following way:
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where the expectation is taken with respect to D. The
first sum in (6) marks the lower bound of the ensemble
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variance and is the weighted mean of the variances of the
ensemble members. The second sum contains the cross
terms of the ensemble members and disappears if the
models are completely uncorrelated [13]. So the reduction
in the variance of the ensemble is related to the degree of
independence of the single models [19].

4. CROSS-VALIDATION AND MODEL SELECTION

Our model selection scheme is a mixture of bagging [20]
and cross-validation. Bagging or Bootstrap aggregating was
proposed by Breiman [20] in order to improve the classifica-
tion by combining classifiers trained on randomly generated
subsets of the entire training sets. We extended this approach
by applying a cross-validation scheme for model selection on
each subset and after that we combine the selected models
to an ensemble. In contrast to classical cross-validation, we
use random subsets as cross-validation folds. In K-fold cross-
validation, the dataset is partitioned into K subsets. Of these
K subsets, a single subset is retained as the validation data
for testing the model, and the remaining K — 1 subsets are
used for model training. The cross-validation process is then
repeated K times with each of the K subsets used only once
as the validation data. The K results from the folds then can
be averaged to produce a single estimation.

If we lack relevant problem-specific knowledge, cross-
validation methods could be used to select a classification
method empirically [21]. This is a common approach
because it seems to be obvious that no classification method
is uniformly superior, see, for example, Quinlan [22] for
a detailed study. It is also a common approach to select
the model parameters with cross-validation [23]. The idea
to combine the models from the K cross-validation folds
(stacking) was described by Wolpert [24].

We suggest to train several models on each CV-fold, to
select the best performing model on the validation set, and
to combine the selected models from the K-folds. If we train
models of one type but with different initial conditions (e.g.,
neural networks with different numbers of hidden neurons),
then we find proper values for the free parameters of the
model. We could extend that by combining models from
different classes in order to increase the model diversity. We
call this a heterogeneous ensemble or mixed ensemble and
applied this method effectively to regression problems [25]
and classification tasks [26].

Our model selection scheme works as follows: for the K-
fold CV, the data is divided K-times into a training set and a
test set, both sets containing randomly drawn subsets of the
data without replications. The size of each test set was 25%
of the entire dataset.

In every CV-fold, we train several different models with a
variety of model parameters (see Section 5 for an overview
of the models and the related model parameters). In each
fold, we select only one model to become a member of the
final ensemble (namely, the best model with respect to the
test set). This means that all models have to compete with
each other in a fair tournament because they are trained and
validated on the same dataset. The models with the lowest
classification error in each CV-fold are taken out and added
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F1GURE 2: For every partition of the cross-validation, the data is
divided in a training and a test set. The performance of each
ensemble model was assessed on validation set which was initially
removed and never included in model training.

to the final ensemble, receiving the weight w; = 1/k (see (1)).
All other models in this CV-fold are deleted.

We can use this model selection scheme in two ways. If
we have no idea or prior knowledge, where classification or
regression method should be used to cope with a specific
problem, we could use this scheme in order to look for an
empirical answer and to compare the performance of the
different model classes. The other way is the estimation of
model parameters for the different model classes described
in Section 5.

5. CLASSIFICATION MODELS

In this section, we give a short overview of the model classes
that we used for ensemble building. All models belong to the
well-established collection of machine-learning algorithms
for classification and regression tasks, so details can be found
in the textbooks like, for instance, Hastie et al. [2]. The
implementation of these models in an open-source toolbox
together with a more detailed description can be found
in [9]. The toolbox is an open-source MATLAB Toolbox
which allows the integration of existing implementations of
classification algorithms and it contains more then the few
model classes described in the text.

5.1. Linear discriminant analysis

The LDA is a simple but useful classifier. If we assume that
the two classes k = {0, 1} have a Gaussian distribution with
mean yy and they share the same covariance matrix X, then
the linear discriminant function 8x(x), k = {0, 1} is given by

1
Sk(x) = xT= 1y — E‘u,fZ‘lluk +log (mx), ?7)

where 7, denotes the frequency of occurrence of the class
labels. The predicted class labels are given by

f(x) = argmaxy—(o,1) {0k (x)}. (8)
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We also implemented two modifications: the quadratic
discriminant analysis (QDA) and the PDA, as described
in detail in Hastie et al. [2]. Linear method are usually
conceptually simple, robust, fast, and, in particular in high-
dimensional problems, they could be very powerful.

5.2. Logistic regression model

Logistic regression (Log.Reg.) is a model for binomial
distributed dependent variables and is used extensively in
the medical and social sciences. Hastie et al. [2] pointed
out that the Logistic Regression model has the same form
as the LDA, the only difference lies in the way, the linear
coefficients are estimated. See Hosmer and Lemeshow for a
detailed introduction [27]. We used the binary Log.Reg. to
compute the probability of the dichotomic variable y (PCa
or non-PCa) from the m independent variables x:

1
r= 1+ exp(z) ©)
with
m
Z= a0+2aix,-, (10)

i=1

wherein the model coefficients are estimated with a second-
order gradient decent (quadratic approximation to like-
lihood function). This could be a critical issue in high-
dimensional problems because these calculations are time
and memory consuming.

5.3. Multilayer perceptron

We train a multilayer feed-forward neural network “MLP”
with a sigmoid activation function. The weights are initial-
ized with Gaussian-distributed random numbers having zero
mean and scaled variances. The weights are trained with a
gradient descend based on the Rprop algorithm [28] with the
improvements given in [29]. The MLP works with a common
weight decay with the penalty term

2

N

- w3

P(W)=1> - —, (11)
a 1+w}

where w denotes the N-dimensional weight vector of the
MLP and a small regularization parameter A. The number
of hidden layers, the number of neurons, and the number
of regularization parameter are adjusted during the CV-
training. We further applied the concept of an e-insensitive
error loss that we introduced in the context of cellular neural
networks (CNNs) [30].

5.4. Support vector machines

Over the last decade, SVMs have become very powerful tools
in machine learning. An SVM creates a hyperplane in a
feature space that separates the data into two classes with the
maximum margin. The feature space can be a mapping of
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FIGURE 3: A sketch of a classification tree, wherein the leaves
represent classes and the branches represent conjunctions of
features that lead to those classes.

the original features (x,x’) into a higher-dimensional space
using a positive semidefinite function:

(x,x") — k(x,x"). (12)

The function k(-, -) is called the kernel function and the so-
called kernel trick uses Mercer’s condition, which states that
any positive semidefinite kernel k(x,x") can be expressed as
a dot product in a highdimensional space (see [31] for a
detailed introduction). The theoretical foundations of this
approach were given by Vapnik’s statistical learning theory
[6, 32] and later extended to the nonlinear case [7]. We
use an implementation of SVMs that is based on the libsvm
provided by Chang and Lin [33] with the standard kernels:

k(x,x") = (x - x') linear
=(x-x'+ l)d polynomial (13)

[Ix - x']]
= exp ( - T) rbf
The parameters of the model are, with respect to the kernel-
type, the polynomial degree d, the width of the rbf 0% and
the value concerning the cost of constrain violation during
the SVM training.

5.5. Trees

Trees are conceptually simple but powerful tools for clas-
sification and regression. For our purpose, we use the
classification and regression trees (CARTs) as described in
Breiman et al. [4]. The main feature of the CART algorithm is
the binary decision role that is introduced at each tree node
with respect to the information content of the split. In this
way, the most discriminating binary splits are near the tree
root building an hierarchical decision scheme. A sketch of a
decision tree is shown in Figure 3. It is known that trees have
a high variance, so they benefit from the ensemble approach
[20]. These trees ensembles are also know as random forests.
The parameters of the tree models are related to splitting the
tree nodes (the impurity measure and the split criterion, see
[2] for a detailed description).
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5.6. Nearest-neighbor classifier

A K-nearest-neighbor classifier (KNN) takes a weighted
average over the labels z; of those observations z; in the
training set that are closest to the query point x. This denotes
as

1
flx) = S > )Wizi: (14)

! z; ENk(x

where Ni(x) denotes the k-element neighborhood of x,
defined in a given metric, and w; is the related distance.
Common choices are the L;, L,, and the L, metrics. The
parameters of the model are the number of neighbors and the
choice of the metric. KNNs offer a very intuitive approach to
classification problems because they are based on the concept
of similarity. This works fine in lower dimensions but leads
to problems in higher dimensions, known as the curse of
dimensionality [34].

6. APPLICATION TO THE CLINICAL DATA

We compared the model classes described above in a unified
framework under fair conditions. Thus, we trained an
ensemble of each model class consisting of 11 ensembles
members (11 CV-folds in the training scheme described in
Section 4). The performance of each ensemble model was
assessed on the 20% of data (validation set), which was
initially removed and never included in model training (see
Figure 2). This procedure was independently repeated 20
times. This means that all model-building processes, that is,
the random removal of 20% of the data, the construction of
a classification model ensemble on the remaining 80% of the
data as outlined in Section 4, and the final test on the unseen
validation data were performed each time. Finally, the mean
average prediction values with respect to the validation set
were calculated and are listed in Table 2. In some cases, it is
useful to apply a kind of data preprocessing like balancing. If
the distribution of the two classes differ in the sense, that one
class is only represented with a small number of examples, we
can balance the data in the training set. This can improve the
convergence of several training algorithms and has also an
impact to the classification error [35]. We apply balancing in
the way that we reduce the number of samples in the one class
until we have an balanced ratio of the class labels. The ratio
of the class labels in the validation set was never changed
because it reflects the real data distribution. Balancing was
only applied to the training data. We used three different
performance measures in order to compare the different
classification models. Therefore, we have to define the four
possible outcomes of a classification that can be formulated
in a 2 X 2 confusion matrix, as shown in Table 1. The
accuracy,

tp+tn

tp+tn+fp+fn’ (15)

Accuracy =

seems to be the canonical error measure for almost all
classification problems if the dataset is balanced. Other
important measures are the specificity that quantifies how

TasLE 1: The confusion matrix for a binary classification problem.

predicted class + 1 predicted class — 1

Real class + 1 True positive (tp) False negative (fn)

Real class — 1 False positive (fp) True negative (tn)

well a binary classification model correctly identifies the
negative cases (non-PCa patients),

Specificity = mtfnfp , (16)

and the sensitivity, which is the proportion of true positives
of all diseased cases (PCa patients) in the population,

tp
tp+fn’

Sensitivity = (17)

A high sensitivity is required when early diagnosis and
treatment are beneficial, which is the case in PCa.

The precision or positive predictive value (PPV) is given
by

tp
PPV = , 1
p+ip (18)

and is the proportion of patients with positive test results
who are correctly diagnosed. The F-Score is the harmonic
mean of precision and sensitivity,

Sensitivity - PPV

E-Score = 2 - —oo bV P2 Y
Score Sensitivity + PPV

(19)

and it is useful if the classes in the classification problem are
not equally distributed. Another measure is the area under
curve (AUC) wherein the curve is the receiver operating
characteristic (ROC-curve)curve. The ROC-curve is the
graphical plot of the sensitivity versus the (1-specificity) for
a binary classifier as its discrimination threshold is varied.

The ROC-curve offers the opportunity to calculate the
specificity at a fixed sensitivity level and vice versa. This is
important because, from the clinical point of view, a high
sensitivity 95% is wanted to detect all patients with PCa
first. To avoid a high false-positive rate, we computed the
specificity at the level of 95% sensitivity (SPS95) from the
ROC-curve as another important performance measure.

To have an impression about the correct classified non-
PCa patients in this case, we computed the specificity at
the level of 95% sensitivity (SPS95) from the ROC-curve.
If we compare the outcome of the statistical analysis of the
model performance as listed in Table 1 for the unbalanced
case and in Table 2 for the balanced case, we can state that
the differences between the different classifiers are marginal.
Even the more sophisticated classification models (SVMs or
Mixed Ensembles) could not outperform the robust linear
candidates (LDA/PDA).

Tables 2 and 3 present the main results with only small
differences between the classifiers. The standard deviations
of the performance measures are given except for the ROC-
curve-based measures (AUC and SPS95). Most papers in
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TaBLE 2: The average performance of several classifier ensembles with respect to the validation set which was initially removed and never
included in model training. We show the mean and the standard deviation values from 20 independent validation runs, no preprocessing

was used.

Accuracy F-score AUC SPS95
PDA 0.776 + 0.026 0.823 = 0.026 0.863 0.454
Log.Reg. 0.778 = 0.038 0.823 +0.036 0.868 0.484
MLP 0.791 + 0.045 0.823 = 0.04 0.863 0.453
SVM 0.795 + 0.023 0.833 = 0.02 0.825 0.142
CART 0.757 = 0.03 0.809 + 0.026 0.843 0.394
KNN 0.756 = 0.036 0.813 +0.032 0.809 0.309
Mixed 0.783 = 0.03 0.828 + 0.026 0.860 0.457

TaBLE 3: The average performance of several classifier ensembles with respect to the validation set which was initially removed and never
included in model training. We show the mean and the standard deviation values from 20 independent validation runs wherein the training

data was balanced.

Accuracy F-score AUC SPS95
PDA 0.772 = 0.034 0.809 + 0.035 0.861 0.414
Log.Reg. 0.792 = 0.03 0.834 + 0.027 0.868 0.458
MLP 0.766 = 0.027 0.787 = 0.029 0.858 0.451
SVM 0.786 = 0.038 0.816 + 0.042 0.821 0.051
CART 0.755 + 0.031 0.792 = 0.029 0.841 0.376
KNN 0.726 = 0.032 0.766 + 0.034 0.801 0.297
Mixed 0.789 + 0.033 0.830 + 0.026 0.867 0.445

this field do not discuss this really complex problem and it
cannot be solved in the scope of this paper, but it should
be mentioned. As an example of a special solution of this
problem, see the paper of Hilgers [36].

7. CONCLUSIONS

We compared several classification models with respect to
their ability to recognize prostate cancer in an early stage.
This was done in an ensemble framework in order to estimate
proper model parameters and to increase classification per-
formance. It turned out that all models under investigation
are performing very well with only marginal differences and
are compareable with similar studies, like, for example, Finne
et al. [37], Remzi et al. [38], or Zlotta et al. [39]. In future
research, it should be investigated whether these results are
valid for other populations of patients (e.g., screening data)
and other PSA test assays and whether the performance of
classification could be increased by including new variables
or by splitting the groups of patients into different PSA
ranges.
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