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Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most lethal malignan-
cies. We aimed to identify a robust lipid metabolism-related signature associated with 
the HCC microenvironment to improve the prognostic prediction of HCC patients.
Methods: We analyzed the gene expression profiles of lipid metabolism from 
Molecular Signatures Database and information of patients from The Cancer Genome 
Atlas. Gene set variation analysis (GSVA), gene set enrichment analysis (GSEA), 
and principal component analysis (PCA) were employed for functional annotation. 
Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to ver-
ify the expression of model genes in HCC and adjacent tissues.
Results: As a result, a lipid metabolism-related signature consisting of acyl-CoA 
synthetase long-chain family member 6 (ACSL6), lysophosphatidylcholine acyl-
transferase 1, phospholipase A2 group 1B, lecithin-cholesterol acyltransferase 
(LCAT), and sphingomyelin phosphodiesterase 4 (SMPD4) was identified among 
HCC patients. Lysophosphatidylcholine acyltransferase 1, PLA2G1B, and SMPD4 
were proved significantly high expression while ACSL6 and LCAT were remarkably 
low expression in our 15 pairs of matched HCC and normal tissues by qRT-PCR. 
Under different conditions, the overall survival (OS) of patients in low-risk group 
was prolonged than that in high-risk group. Moreover, the as-constructed signature 
was an independent factor, which was remarkably associated with gender, histologic 
grade, and platelet level of HCC patients. In addition, the receiver operating charac-
teristic (ROC) curve analysis confirmed the good potency of the model. Functional 
enrichment analysis further revealed that lower fatty acid (FA) oxidation and higher 
infiltration of immunocytes were detected in patients from the high-risk group com-
pared with those in the low-risk group.
Conclusions: Our findings indicate that the lipid metabolism-related signature shows 
prognostic significance for HCC.
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1 |  INTRODUCTION

Hepatocellular carcinoma (HCC) ranks the sixth place in 
terms of its morbidity, which also accounts for the main 
cause of cancer-related deaths in the world.1 Hepatocellular 
carcinoma can be managed by diverse treatments, including 
chemotherapy, radiofrequency ablation, liver transplantation, 
and surgical treatment; however, its mortality is still high.2 
Consequently, exploring the HCC features is urgently needed, 
so as to exploit novel therapies. Tumor microenvironment 
(TME) is acidic and hypoxic with nutrient deficiency, and it 
leads to aberrant metabolisms for tumor cells as well as those 
adjacent stromal cells, thus facilitating tumor metastasis, pro-
liferation, and survival.3,4 In HCC, its TME may show differ-
ent metabolic disturbances, with lipid metabolic abnormality 
being the novel field, which has been attracting extensive in-
terests in the last several years. Lipid metabolic disturbance, 
particularly for fatty acid (FA) metabolism with changed lip-
id-metabolizing enzyme expression and activity due to the 
aberrantly activated oncogenic signaling pathways, has been 
increasingly identified to be the vital phenomenon of meta-
bolic rewiring within immune cells and cancer cells, which 
might be involved in the development of HCC. Moreover, 
evidence obtained from some solid tumors suggests that, the 
tumor immunometabolic reprogramming is quite important, 
which is also identified as the new critical field for HCC re-
search in the future.5 Emerging researches have suggested 
that immune cells play critical roles in the TME of HCC, 
and the abnormal lipid metabolism may significantly affect 
their functions and recruitment.5,6 To date, few studies have 
combined lipid metabolism, immune status, and liver cancer 
progression, which is the core context of this study.

To this end, the present work aimed to shed more light on 
the possible significance of the lipid metabolism-associated 
model in stratifying patient prognosis and its feasibility to 
guide therapeutic selection. Additionally, we also analyzed 
diverse immune statuses from the prognostic signature-strat-
ified patients in high- or low-risk group. The prognostic 
model was constructed based on The Cancer Genome Atlas 
(TCGA) database, followed by further validation using the 
International Cancer Genome Consortium (ICGC) database.

2 |  MATERIALS AND METHODS

2.1 | Data collection and mining of 
messenger RNA profiles

The level 3 messenger RNA expression patterns, together 
with related clinical information, were obtained based on 
374 HCC as well as 50 healthy subjects derived from TCGA 
database (https://cance rgeno me.nih.gov). In this study, cases 
having ≤30 days of survival or those with no survival data 

were eliminated, since they might die of the fetal complica-
tions (including hemorrhage, intracranial infection, and heart 
failure HF) but not HCC. Afterward, we used the “caret” of 
R package to 7 randomly classify the 343 HCC samples into 
training set (n = 172) or test set (n = 171) for later analyses. 
Patients in training set were used to construct the prognostic 
immune gene signature, while those in test set were used to 
validate the prediction efficiency for the constructed signa-
ture. Ethical approval was exempted from this study, since all 
data used were available in public database.

In addition, we collected 183 lipid metabolism-asso-
ciated genes based on the Molecular Signatures Database 
v7.0.8,9 (c2: KEGG gene sets) (Fatty acid metabolism M699, 
Glycerophospholipid metabolism M9131, Glycerolipid 
metabolism M15902, Sphingolipid metabolism M15955, 
Ether lipid metabolism M2130, Glycosphingolipid biosyn-
thesis-ganglio series M8535, Biosynthesis of unsaturated 
FAs M11673, Glycosphingolipid biosynthesis-globo series 
M12899, Glycosphingolipid biosynthesis-lacto, and neolacto 
series M17377; http:// www.broad insti tute.org/gsea/msigd b/
index.jsp). Afterward, differentially expressed genes (DEGs) 
were identified using the edgeR algorithm for subsequent 
analyses (P < .05, log FC > 1; FC, fold change).

2.2 | Transcription factors extraction and 
regulatory network construction

Survival-associated metabolic genes were selected by uni-
variate Cox regression using survival package of R software, 
and a difference of P < .05 indicated statistical significance. 
For better investigating the interactions between these se-
lected genes in the context of HCC, we established a tran-
scription factor (TF)-mediated network. Transcription factors 
have been recognized as the vital molecules for the direct 
control of gene expression, and Cistrome Cancer represents 
the data source integrating the TCGA cancer genome data 
with more than 23  000 ChIP-seq as well as chromatin ac-
cessibility profiles, and it offers regulatory connections of 
TFs with transcriptomes by covering a total of 318 TFs.10 
Usually, for transcriptional data, differential genes are used 
to compare with TFs for identifying TFs with differential ex-
pression and for plotting volcano map and heatmap. In addi-
tion, differential TFs may be related to survival-associated 
metabolic genes together with a mapping regulatory network 
by the use of Cytoscape 3.7.2.11

2.3 | Prognostic lipid metabolism-related 
signature construction and validation

We conducted univariate and multivariate Cox regres-
sion analyses, together with Least Absolute Shrinkage and 
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Selection Operator (LASSO) analysis, for constructing the 
prognostic lipid metabolism-related model, aiming at pre-
dicting the OS of HCC patients. Least Absolute Shrinkage 
and Selection Operator has been developed as a penalized 
regression employing the L1 penalty for shrinking regression 
coefficient to zero, so as to eliminate multiple variables on 
the basis of the selection of fewer predictors with the greater 
penalty. Based on LASSO analysis, those key genes were 
extracted from the as-mentioned survival-related metabolic 
genes. Additionally, prognostic contributions by all genes 
were evaluated by multivariate Cox regression analysis.

For confirming the value of that constructed signature in 
predicting prognosis, we utilized the “survminer” and “sur-
vival” R packages for plotting Kaplan-Meier (K-M) survival 
curves. In addition, we used time-dependent receiver operating 
characteristic curve in assessing our model efficiency in pre-
dicting prognosis across three groups by determining area under 
the curve (AUC) values.12 We conducted univariate as well as 
multivariate Cox proportional hazard regression analysis for 
confirming the signature efficiency in independent prognosis 
prediction based on the conventional clinical parameters, such 
as gender, age, status of hepatitis virus infection, clinical stage, 
portal vein invasion, bile duct invasion, vein invasion, along 
with hepatic fibrosis of ICGC HCC cohort. Moreover, we also 
performed PCA for dimensionality reduction, thus identifying 
various synthetic parameters for exploring the grouping ability 
of our model. PCA can be used as the statistical approach for 
determining critical parameters within the multidimensional 
data set, and it can explain observational heterogeneities and is 
thereby adopted for simplifying analysis and visualizing mul-
tidimensional data sets.13 In this study, we used limma14 and 
scatterplot3d15 packages to implement PCA.

2.4 | Gene set variation analysis

To further detect the distinct lipid metabolism between low- 
and high-risk groups that was derived from our signature, 
we subsequently conducted the gene set variation analysis 
(GSVA), the approach for gene set enrichment to unsuper-
vised estimate pathway activity variations among certain 
population.16 After screening, 115 Gene Oncology (GO) 
items related to lipid metabolism were incorporated into 
the calculation via R package “GSVA”, while P <  .05 and 
logFC > 0.1/<−0.2 were considered statistically significant.

2.5 | Relationships of the prognostic lipid 
metabolism-related signature with immune cell 
infiltration

A body of previous literature has demonstrated that lipid 
metabolic reprogramming has a bearing on the immune cells 

and tumor progression,17,18 which allows us to further explore 
the relationship between the constructed prognostic model 
and immune cell infiltration in the context of HCC. The on-
line database Tumor IMmune Estimation Resource (TIMER) 
serves as an online resource for the systemic evaluation of 
clinical significance for different immunocytes to different 
types of cancers, and it can be used to analyze and visual-
ize the tumor-infiltrating immunocyte levels.19 In TIMER, a 
total of 10 009 TCGA samples from 23 types of cancers are 
enrolled for estimating the contents of six subtypes of tumor-
infiltrating immunocytes, such as CD4 T cells, CD8 T cells, 
B cells, macrophages, dendritic cells, and neutrophils. As a 
result, TIMER is adopted for determining the association of 
immunocyte infiltration with additional factors. In the present 
work, we downloaded the immune infiltrating degrees for pa-
tients with HCC, and then calculated associations between the 
immunocyte infiltrating levels and our prognostic signature.

Moreover, gene set enrichment analysis (GSEA) was also 
used to assess the different immune statuses in low- com-
pared with high-risk groups screened by our model. Gene set 
enrichment analysis, the calculation method for determining 
the statistical significance of the previously defined gene set, 
as well as the concordant heterogeneities of two biological 
statuses.8 Typically, the false discovery rate q  <  0.25 and 
P <  .05 were selected as the significance thresholds. After 
1000 permutations, we presented those six most significant 
gene sets with the highest normalized enrichment scores 
(NES). ESTIMATE20 was also adopted to measure the im-
mune cell infiltration level (immune score), tumor purity, and 
stromal content (stromal score) for respective HCC sample.

2.6 | Quantitative real-time polymerase 
chain reaction validation of the 
expression of the model genes

According to the results of bioinformatics analysis, the ex-
pression level of genes that were included in the lipid me-
tabolism-related signature was validated by quantitative 
real-time polymerase chain reaction (qRT-PCR) using 15 
pairs of matched HCC and para-carcinoma tissue obtained 
from our center. Total RNA was extracted from tissues using 
TRIzol reagent (Nanjing Biosky Inc) and reverse transcribed 
into cDNA using reverse transcriptase (Nanjing Biosky Inc) 
according to the manufacturer's instructions. The qRT-PCR 
reaction was performed using real-time PCR kit (Nanjing 
Biosky Inc) on a CFX384 Touch Real-Time PCR Detection 
System (Bio-Rad Inc). The qRT-PCR amplification program 
was set as follows: 95°C for 3 minutes, followed by 40 cycles 
of 95°C for 30 seconds and 55°C for 20 seconds, and finally 
72°C for 20 seconds. After completing the amplification re-
action, a melt curve of PCR product was plotted (95°C for 
15 seconds; 60°C for 15 seconds; and 95°C for 15 seconds). 
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The expression level of model genes was normalized to the 
internal control GAPDH and calculated according to the 2−

ΔΔCT method.

2.7 | Statistical methods

Statistical analysis was conducted by R (v.3.6.1) software. In 
addition, Fisher's exact test or Pearson χ2 test was utilized for 
exploring the qualitative variables. A difference of P < .05 
indicated statistical significance.

3 |  RESULTS

3.1 | Differentially expressed survival-
associated metabolic gene mining and TF 
regulatory network establishment

In the primary screening by edgeR algorithm, a total of 66 
metabolic genes were identified as DEGs for further analy-
ses, among which, 51 were upregulated, whereas 15 were 
downregulated (P  <  .05, logFC  >  1) (Figure  1A,B). We 
further examined the regulatory mechanisms for the above-
mentioned genes. To be specific, we determined expression 
profiles for altogether 318 TFs. As a result, 116 TFs showed 
differential expression between the TCGA-derived HCC 
cohort and the normal liver samples (Figure S1A,B). Then, 
we also investigated those possible relationship between 
such TFs with differential expression and those prognostic 
lipid metabolism-related genes. As a result, 116 TFs and 65 

metabolic genes were selected to construct the regulatory 
networks, according to the Pearson correlation coefficient of 
>0.4 and the P < .001 (Figure 2).

Moreover, we identified 36 genes with significant cor-
relation with the overall survival (OS) for TCGA-derived 
HCC cases (P < .05) (Table S1). The potential functions of 
these genes were ascertained by GO along with Kyoto en-
cyclopedia of genes and genomes (KEGG) pathway analy-
ses. Not surprisingly, several lipid metabolism-related GO 
terms were identified in the biological process, like “Lipid 
catabolic process,” “Lipid modification,” and “Phospholipid 
metabolic process” (Figure 3A). In addition, “Mitochondrial 
outer membrane,” “Organelle outer membrane,” and “Outer 
membrane” were the most significantly enriched GO items of 
cellular component (Figure S2A). Furthermore, the top 3 GO 
terms of molecular function (MF) were “O-acyltransferase 
activity,” “Transferase activity, transferring acyl groups other 
than amino-acyl groups,” and “Transferase activity, transfer-
ring acyl groups” (Figure S2B). As indicated from the KEGG 
pathway analysis, the lipid metabolism-related genes were 
mostly enriched via several pathways, including “Fatty acid 
metabolism,” “PPAR signaling pathway,” and “Choline me-
tabolism in cancer” (Figure 3B).

3.2 | Risk score signature establishment and 
predicting efficiency assessment

Five metabolic genes, acyl-CoA synthetase long-chain 
family member 6 (ACSL6), phospholipase A2 group 
1B (PLA2G1B), sphingomyelin phosphodiesterase 4 

F I G U R E  1  Differentially expressed lipid metabolism-related genes in The Cancer Genome Atlas hepatocellular carcinoma (HCC) patients. 
Heatmap (A) and volcano plot (B) demonstrate differentially expressed lipid metabolism-related genes between HCC and non-tumor tissues. In 
terms of the heatmap, the colors from green to red represent low to high gene expression levels. In the volcano plot, red dots represent differentially 
upregulated expressed genes, green dots represent differentially downregulated expressed genes, and black dots represent no differentially 
expressed genes. N, normal tissue. T, tumor
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(SMPD4), lysophosphatidylcholine acyltransferase 1 
(LPCAT1), and lecithin-cholesterol acyltransferase 
(LCAT), were subsequently selected from the 36 OS-
related genes via LASSO and multivariate Cox regres-
sion analyses to establish a prognostic model, aiming to 
categorize HCC patients into two groups with discrete 
OS, namely, the high- and low-risk groups (Table  1). 
Risk score was calculated by the following formula: Risk 
score  =  [ACSL6 expression*(−0.4665)]  +  [LPCAT1 

expression*(0.0321)]  +  [PLA2G1B ex-
pression*(0.0541)]  +  [LCAT expres-
sion*(−0.0219)] + [SMPD4 expression*(0.1444)]. Based 
on the median risk score, all cases were classified as 
high- or low-risk group. According to the K-M analysis 
(Figure 4A-D), high-risk patients showed remarkably re-
duced OS relative to low-risk patients among diverse sets. 
Additionally, with regard to 1-year OS, the AUC values 
for training set, test set, entire set, and the ICGC HCC 

F I G U R E  2  Transcription factor (TF)-mediated regulatory network. Regulatory network constructed based on differently expressed TFs and 
survival-relevant genes. The red circle represents high-risk genes, and the blue circle represents low-risk genes. The green triangle represents 
transcription factors, and the thickness and brightness of lines between nodes represent the level of relevance (low Cor values to small sizes and 
dark colors)
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cohort were 0.818, 0.739, 0.774, and 0.746, respectively, 
which suggested the good performance of the risk score 
signature (Figure  4E-H). Our established signature had 
the best AUC value relative to those clinicopathological 
characteristics of TCGA cases, which also reflected that 
it had remarkable predicting efficacy. Moreover, we also 
investigated those prognostic effects of high- or low-risk 
group using the same clinical parameters. For the entire 
TCGA set, low-risk patients had remarkably better prog-
nosis than high-risk patients in terms of subgroups strati-
fied by age (≤60/>60; Figure  5A,B), male (Figure  5C), 
stage (I  +  II/III  +  IV; Figure  5D,E), grade (G1  +  G2/
G3  +  G4; Figure  5F,G), as well as T stage (T1  +  T2/
T3  +  T4; Figure  5H,I) (P  <  .05). For better exploring 
whether the lipid metabolism-related model was able to 
predict prognosis independently, we conducted univari-
ate as well as multivariate analysis. As a result, the risk 
score might serve as the indicator to independently pre-
dict prognosis (Tables 2 and 3). In addition, we plotted the 
distribution of risk score, survival status as well as gene 
expression in lipid metabolism-related signature of train-
ing set (Figure  6A-C), test set (Figure  6D-F), entire set 
(Figure 6G-I), and the ICGC HCC cohort (Figure 6J-L), 
respectively.

3.3 | Principal component 
analysis validated the stratification 
capacity of signature

We further performed principal component analysis (PCA) 
for examining the heterogeneity in high-risk group compared 
with low-risk group according to lipid metabolism-associ-
ated signature (Figure  7A), differently expressed lipid me-
tabolism-related genes (Figure 7B), all genes related to lipid 
metabolism (Figure 7C), and the entire gene expression pro-
files (Figure 7D). As a result, the high- and low-risk groups 
showed diverse distribution directions based on our model. 
Nonetheless, as shown in Figure 7B-D, the scattered distribu-
tions of high- and low-risk groups were observed, confirming 
the potency of our prognostic signature in the discriminating 
low- and high-risk groups.

3.4 | Correlation of the prognostic model 
with clinicopathological characteristics

A total of 216 patients with complete information, includ-
ing gender, age, clinical stage, tumor grade, T stage, platelet 
content, albumin content, alpha-fetoprotein (AFP) content, 

F I G U R E  3  The Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analysis of the survival-related lipid 
metabolism-associated genes in hepatocellular carcinoma

ID Coef HR HR.95L HR.95H

ACSL6 −0.4664998 0.62719376 0.42768696 0.91976621

LPCAT1 0.03213162 1.03265341 1.00667644 1.05930071

PLA2G1B 0.05411254 1.0556034 1.02047958 1.09193614

LCAT −0.021873 0.97836445 0.95687081 1.00034089

SMPD4 0.14443333 1.15538467 1.05089409 1.27026475

Abbreviations: Coef, coefficient; H, high; HR, hazard ratio; L, low; TCGA, The Cancer Genome Atlas.

T A B L E  1  Five lipid metabolism-
related signature genes identified from Cox 
regression analysis from TCGA
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as well as vascular invasion, were enrolled into the TCGA 
HCC cohort. Across our investigated signature genes, 
SMPD4, LPCAT1, and LCAT were correlated with tumor 
grade (Figure  8A-C), and ACSL6, LPCAT1 and SMPD4 
were associated with platelet level (Figure 8D-F). In addi-
tion, ACSL6 level (Figure 8G) apparently elevated among 
male cases, while female cases were more likely to harbor 
high expression of SMPD4 (Figure 8H). Furthermore, the 
risk score showed significant correlation with the gender, 
platelet level, and histological grade of patients (Figure 8I-
K; P < .05).

3.5 | Gene set variation analysis validated 
different lipid metabolism status in low- or 
high-risk group

Afterward, we conducted GSVA for investigating differ-
ence in lipid metabolism between the low- and high-risk 
patients from the TCGA HCC cohort. As shown by our 
results, the expression of genes of GO terms involved in 
lipocatabolism—such as “Fatty acid beta oxidation,” “Lipid 
oxidation,” and “Regulation of lipid catabolic process”—
was decreased in high-risk group in comparison with that in 
low-risk group, while GO items “Fatty acid elongation” and 
“Cellular response to fatty acid” were enriched in high-risk 

group (Figure 9; Table S2). Furthermore, we also analyzed 
the enrichment of the as-mentioned GO terms between the 
HCC samples derived from TCGA and normal hepatic sam-
ples. Based on such findings, the FA elongation function of 
samples in the high-risk group was enhanced compared with 
normal samples, and the functions related to lipid catabolism 
and oxidation were reduced compared with normal samples 
(Table S3). On the other hand, there was no significant differ-
ence in FA elongation function between the low-risk group 
samples and normal samples, while the remaining functions 
were significantly lower than normal tissues (Table S4).

3.6 | The different immune infiltrating 
levels in low- compared with high-risk TCGA-
derived HCC cases

The relationship between the prognostic signature related 
to lipid metabolism and the infiltrating level of immuno-
cytes among TCGA HCC cases was estimated, for the sake 
of examining the potential of risk score to reflect TME 
status. As a result, neutrophil (Cor = 0.307; P = 6.715e-
09), macrophage (Cor = 0.330; P = 3.822e-10), as well as 
DC (Cor = 0.228; P = 1.968e-05) levels were significantly 
increased in TME among high-risk patients in the entire 
set (Figure 10A-C), indicating the different immune status 

F I G U R E  4  Prognostic analysis of the risk score signature. Kaplan-Meier survival curves of patients in high-risk group and low-risk group of 
training set (A), testing set (B), entire set (C), and the International Cancer Genome Consortium database hepatocellular carcinoma (ICGC HCC) 
cohort (D) are shown. Patients in high-risk group suffered shorter overall survival than those in low-risk group. (E)-(H) show survival-dependent 
receiver operating characteristic curves validation at 1 y of prognostic value of the prognostic index in the four sets (the training set, the testing set, 
the entire set, and the ICGC HCC cohort, respectively)
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between high- and low-risk groups. Additionally, CD8+ T 
cells (Cor = 0.172; P = .001) (Figure 10D), CD4+ T cells 
(Cor = 0.130; P =  .016) (Figure 10E) as well as B cells 
(Cor = 0.121; P = .025) (Figure 10F) showed correlation 
with high-risk patients.

Moreover, we conducted GSEA for investigating im-
mune status between high- and low-risk groups, showing 
that the DEGs were mainly enriched into several gene 
sets of the immunological signature (c7. All. V7.0. sym-
bol). Besides, the six immune-associated gene sets with 
the highest NES values were presented in Figure  11A-F 
and Table S5. Figure  11G exhibited the comprehensive 
diagrams showing the above items. Subsequently, the 

immune score and tumor purity of high-risk group were 
significantly higher than those of low-risk group, while the 
stromal score was lower than that of the low-risk group 
(Figure  12A-C). However, there was no significant dif-
ference in the ESTIMATE score between the two groups 
(Figure  12D). It is worth noting that several human leu-
kocyte antigen (HLA) genes achieved significantly higher 
expression levels in high-risk group than those in low-risk 
group (P < .05) (Figure 12E).

In consideration that immunotherapy has become an 
established pillar of anticancer treatment with improved 
prognosis among a large number of patients with various 
types of malignancies, we further explored the expression 

F I G U R E  5  The overall survival differences between the high-risk group and the low-risk group from The Cancer Genome Atlas are shown 
under the conditions of classifying patients by age (A, B), male (C), clinical stage (D, E), tumor grade (F, G), and T stage (H, I). Low-risk patients 
display longer overall survival than high-risk patients
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of common immune checkpoints and genes associated with 
T cell exhaustion in the high- and low-risk HCC patients. 
The result was indicative of a significantly higher levels for 
programmed death ligand 1 (PD-L1), program death 1 (PD-
1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-
4), T-cell immunoreceptor with Ig and ITIM domains 
(TIGIT), lymphocyte activation gene-3 (LAG3), and T-cell 
immunoglobulin and mucin-domain containing-3 (TIM-
3) of high-risk group relative to low-risk group (P <  .05) 
(Figure 13A-F). These above outcomes suggested that the 
aberrant lipid metabolism could shape the immunosuppres-
sive microenvironment and TME of high-risk group, which 
might account for the relatively dismal prognosis for these 
patients.

3.7 | The qRT-PCR results

Subsequently, the expression level of five signature genes 
(LPCAT1, ACSL6, PLA2G1B, LCAT, and SMPD4) was 
validated by qRT-PCR. As a result, LPCAT1, PLA2G1B, 
and SMPD4 were significantly overexpressed in the ex-
perimental group (HCC tissues) compared with the control 
group (para-carcinoma tissues) (P  <  .001) (Figure  14A-
C), while the expression of LCAT and ACSL6 were sig-
nificantly lower in the experimental group (HCC tissues) 
compared with the control group (para-carcinoma tissues) 
(P  <  .001) (Figure  14D-E), which is consistent with our 
bioinformatics analysis. The expression of five genes in 
each tissue is exhibited in Figure S3. The primer sequences 
are shown in Table S6.

4 |  DISCUSSION

Accumulative evidence has suggested that alterations in 
tumor lipid metabolism could lead to tumor progression 
and local immunosuppression in the TME.21 Due to the lim-
ited efficacy of diverse therapeutic methods of HCC, like 
chemotherapy, radiofrequency ablation, liver transplanta-
tion, and surgical resection exploring novel biomarkers is ur-
gently needed, which could not only predict the OS of HCC 
patients, but also be utilized to guide anticancer therapy. 
Consequently, recent studies have shed more light on the ab-
errant lipid metabolism and its effect on the immune micro-
environment in the context of HCC.

In the present work, we carried out complicated bioin-
formatic analyses to successfully identify five lipid metabo-
lism-related genes that were associated with HCC prognosis, 
including ACSL6, LPCAT1, PLA2G1B, LCAT, and SMPD4. 
To begin with, we first investigated those heterogeneities in 
lipid metabolism-related gene expression patterns in HCC 
tissue samples compared with noncarcinoma tissue sam-
ples, and subsequently identified prognosis-related genes. 
Afterward, a TF-mediated network was constructed, aiming 
to identify critical TFs and to reveal the precise molecular 
mechanisms. Typically, the chromobox protein homolog 3 
had most nodes associated with the survival-associated met-
abolic genes, and it is demonstrated to enhance cancer prolif-
eration and be capable of predicting poor survival in HCC.22 
Another impressive factor, euchromatin histone methyltrans-
ferase 2, has also been illustrated to be involved in the me-
tastasis and the invasion of HCC.23 In addition, heat shock 
factor 2, revealed by our network and essential for survival 

Variable

Univariate analysis Multivariate analysis

HR (95% CI) P-value HR (95% CI) P-value

Age (>60/≤60) 1.021 (0.985-1.057) .255 — —

Gender (male/
female)

1.186 (0.538-2.617) .673 — —

Hepatitis virus 
(none/infection)

0.929 (0.360-2.394) .878 — —

Stage (IV/III/II/I) 1.373 (0.927-2.035) .114 — —

Portal vein invasion 
(none/invasion)

1.076 (0.694-1.671) .741 — —

Vein invasion (none/
invasion)

2.243 (1.296-3.882) .004a 2.160 (0.991-4.708) .052

Bile duct invasion 
(none/invasion)

0.481 (0.066-3.516) .471 — —

Fibrosis (none/
fibrosis)

1.428 (0.195-10.439) .726 — —

Risk score 6.227 (3.601-10.770) <.001a 7.378 (3.850-14.145) <.001a 

Abbreviations: CI, confidence interval; HR, Hazard ratio.
aStatistically significant. 

T A B L E  3  Univariate and multivariate 
Cox regression analyses of clinicopathologic 
characteristics associated with overall 
survival in the International Cancer Genome 
Consortium
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among all organisms under acute stress, has been reported to 
indicate unfavorable prognosis of HCC patients and regulate 
aerobic glycolysis by suppressing fructose-bisphosphatase 1 
to support the uncontrolled proliferation of HCC cells.24 To 
sum up, this study has presented the integrative lipid meta-
bolic gene regulatory network related to HCC. Nevertheless, 
more researches should be conducted for examining the more 
connections of these genes with their influences on HCC.

Afterward, a lipid metabolism-related risk score model based 
on the as-mentioned five genes was constructed and shown. 
Notably, it can discriminate high-risk from low-risk population, 
and the prognostic estimation is highly accurate. HCC patients 

in low-risk group were proved to have longer OS than those in 
high-risk group in three TCGA HCC sets and ICGC HCC co-
hort. Additionally, our constructed prognostic signature in this 
study can potentially estimate the different prognosis for low- 
and high-risk groups based on stratification of clinical stage (I 
and II/III and IV), age (≤60/>60), T stage (T1 and T2/T3 and 
T4), and grade (G1 and G2/G3 and G4). In terms of the clinical 
utility, the prognostic model was significantly correlated with 
the gender, platelet level, and tumor grade of HCC patients from 
TCGA data set, indicating markedly increased risk score deter-
mined using our constructed model in female patients and pa-
tients with higher platelet level and advanced grade. Despite the 

F I G U R E  6  Distribution of risk score, overall survival, gene expression in the training set (A-C), the testing set (D-F), the entire set (G-I), 
and the International Cancer Genome Consortium database hepatocellular carcinoma (ICGC HCC) cohort (J-L). Distribution of risk score, overall 
survival, and heatmap of the expression of five signature genes in low-risk and high-risk groups is listed in the picture from top to bottom

F I G U R E  7  Principal components 
analysis between low- and high-risk groups 
based on (A) lipid metabolism-related 
signature, (B) differently expressed lipid 
metabolic genes, (C) all genes related to 
lipid metabolism, and (D) the entire gene 
expression profiles
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scarce investigations on the relationship between platelet levels 
and lipid metabolism reprogramming and the development of 
HCC, the role of platelet-derived growth factor-C in liver fibro-
sis occurrence, including collagen deposition in the perivenular 
and pericellular manner, cell steatosis, and HCC progression, 

has been elucidated.25 The ratio of mean platelet volume to 
platelet count is also examined within liver disorders such as 
HCC, cirrhosis, and steatosis.26,27 Further PCA confirmed that 
our model showed sound stratification ability, and the expression 
level of the five signature genes is also verified by qRT-PCR. 

F I G U R E  8  Correlation of the prognostic signature with clinicopathological characteristics based on The Cancer Genome Atlas. The 
expression of (A) SMPD4, (B) LPCAT1, and (C) LCAT is associated with tumor grade, and (D) ACSL6, (E) LPCAT1, and (F) SMPD4 are linked 
with platelet level. Besides, the expression level of ACSL6 is significantly enhanced in male patients (G), and the expression of SMPD4 is 
significantly increased in female cases (H). Furthermore, the risk score was significantly correlated with patient gender (I), tumor grade (J), and 
platelet level (K)

F I G U R E  9  Gene set variation analysis reveals the difference in lipid metabolism between high- and low-risk patients in terms of the The 
Cancer Genome Atlas hepatocellular carcinoma cohort. Multiple Gene Oncology terms are utilized for analysis
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Consequently, the lipid metabolism-related signature identified 
may be involved in the occurrence and development of HCC, 
rendering its potential as the valuable clinical biomarker.

Furthermore, we examined the difference in lipid metabo-
lism between low- and high-risk groups via GSVA. As a result, 
patients in high-risk group showed a lower FA oxidation (FAO) 
and a higher FA elongation than those in the low-risk group. 
Decreased FAO has been reported in various HCC cases,28,29 
providing robust support for our results. Recently, Gholamreza 
et al have discovered three subtypes of HCC, which were 
called iHCC1-3, of them, iHCC1 has the greatest FAO fluxes 
and survival rate, which may be associated with the higher in-
flammatory and immune responses.30 On the contrary, tumors 
of iHCC3 displayed downregulated FAO and lipid oxidation, 
with upregulation of multiple processes related to DNA rep-
lication, cell proliferation, mitosis as well as cell cycle pro-
gression. Therefore, we speculate that relatively lower FAO in 
HCC patients may predict worse prognosis, which is consistent 
with our analysis. On the other hand, elongation of FAs has 
also been elaborated to promote hepatic lipid accumulation 
and participate in the progression of nonalcoholic steatohep-
atitis (NASH)-related HCC.31 Another GO term enriched in 
high-risk group, “cellular response to fatty acid”, which can be 
interpreted into any process stimulated by FA and resulted in 

cellular change or activity, also reflected that patients in high-
risk group are more likely to be affected by lipid accumulation.

Subsequently, this study suggested that, our signature was 
positively related to infiltrating levels for six types of immu-
nocytes, in particular for neutrophils and macrophages, which 
indicated the presence of high infiltrating levels for such cells 
among high-risk cases. Notably, intracellular lipids are cumu-
lated in several tumor-associated macrophages (TAMs), which 
suggests that they are metabolically active and exert immuno-
modulatory effects. The macrophage lipid loading is reported 
to be related to the elevating inflammatory and antitumor ca-
pacities.32,33 Moreover, the increased infiltration of TAM, pos-
sibly as a result of the Hippo signaling deletion, is suggested to 
activate the Wnt/β-catenin signal transduction pathway, which 
in turn accelerates HCC progression.34,35 On the other side, 
the CXCL5 and CXCR2-CXCL1 axes have been elaborated to 
promote intramural neutrophil infiltration, which is related to 
the shorter OS and HCC recurrence.36,37 Meanwhile, accord-
ing to Lodhi et al, peroxisomal lipid synthesis drives inflam-
mation through promoting neutrophil membrane viability and 
phospholipid composition.38 Nonetheless, rare studies have 
examined the role of aberrant lipid metabolism in neutrophil 
proliferation and functions in HCC. Moreover, several HLA 
genes, such as HLA-DRA, HLA-DQB1, and HLA-DQB2, 
were shown to be overexpressed in high-risk group. Matoba 

F I G U R E  1 0  Relationships between the lipid metabolism-related prognostic model and infiltration abundances of six types of immune cells. 
The correlation was performed by using Pearson correlation analysis. A, macrophages; (B) neutrophils; (C) dendritic cells; (D) CD8 + T cells; (E) 
CD4 + T cells; and (F) B cells
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et al have reported that tumor HLA-DR protein expression was 
one of the independent risk factors for early intrahepatic recur-
rence in HCC patients.39 Besides, rs9275319 at HLA-DQ was 
deemed as an independent loci that were significantly asso-
ciated with HCC development.40 However, there are still few 
reports concerning on the effect and mechanism of abnormal 
lipid metabolism on HLA genes and the effect of the combi-
nation of both on HCC progression, and this is also one of our 
future research contents.

Furthermore, the expression levels of immune checkpoints in 
low- and high-risk HCC cases were also measured. As a result, 
PD-1, PD-L1, CTLA-4, TIM-3, and LAG3 expression signifi-
cantly increased among high-risk HCC patients relative to low-
risk counterparts (P < .05). Dorn et al have reported that, the 
PD-L1 level is upregulated within primary human hepatocytes 

using the hepatocellular lipid accumulation model in vitro, while 
it is confirmed through human liver specimen analysis that, 
PD-1 and PD-L1 levels are upregulated among NASH cases, 
which emphasizes the potential effect of aberrant lipid metab-
olism on immune checkpoint expression.41 More importantly, 
such findings indicate that, immune checkpoint antibody treat-
ments, such as nivolumab (anti-PD1 antibody) and ipilimumab 
(anti-CTLA-4 antibody),42 will bring more therapeutic benefit 
to the high-risk HCC cases than to low-risk counterparts, thus 
leading to superior outcomes. As for the treatments of high-risk 
patients from lipid metabolic reprogramming, fibronectin type 
III domain-containing 5 has been illustrated to increase FAO and 
autophagy of hepatocytes through AMPK/mTORC1 signaling 
pathway, to reduce de novo synthesis of lipid, thereby alleviat-
ing damage.43 Another agent, metformin, which suppresses the 

F I G U R E  1 1  Enrichment plots of immune-related gene sets from gene set enrichment analysis (GSEA). GSEA results showing gene sets 
in (A) GSE32986, (B) GSE40666, (C) GSE19941, (D) GSE7852, (E) GSE10239, and (F) GSE25085 are differentially enriched in high-risk 
phenotype. G, Summarizes the above six gene sets

http://GSE32986
http://GSE40666
http://GSE19941
http://GSE7852
http://GSE10239
http://GSE25085
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cholesterol and lipid, as well as hepatocellular glucose biosyn-
thesis pathways through the transcriptional suppression of the 
steroid receptor coactivator 2 and increase of FAO, may also 

benefit the high-risk patients.44 However, considering the tumor 
biological and genotypic diversities among HCC cases, together 
with the complicated lipid metabolism, more efforts should be 

F I G U R E  1 2  Analysis of different immune status in high- and low-risk groups of The Cancer Genome Atlas hepatocellular carcinoma cohort. 
A, Comparison of (A) immune score, (B) tumor purity, (C) stromal score, and (D) ESTIMATE score between high- and low-risk groups is shown. 
E, Comparison of the expression levels of human leukocyte antigen (HLA) genes between high- and low-risk groups

F I G U R E  1 3  Scatter plots visualizing significantly different immune checkpoints between high-risk and low-risk cases. CTLA-4, cytotoxic 
T-lymphocyte associated protein 4; LAG3, lymphocyte activation gene-3; PD-1, programmed cell death 1; TIGIT, T-cell immunoreceptor with Ig 
and ITIM domains



   | 7661HU et al.

made to investigate the treatment strategies that target the FA-
related pathways for the treatment of HCC.

However, some limitations should be noted in this study. 
The present study mainly focused on bioinformatics analy-
sis. Although the expression level of the five model genes 
in HCC and para-carcinoma tissues was identified by qRT-
PCR, this study still lacks mechanism verification. Our 
consequent work will continue to focus on the specific mech-
anisms of these genes in HCC.

5 |  CONCLUSION

To sum up, this work established and validated the prognos-
tic signature on the basis of five lipid metabolism-associated 
genes, for the sake of predicting HCC OS. This prognostic sig-
nature can help to select the individualized therapeutic strat-
egy in clinical practice. In addition, our risk score model could 
connect with lipid metabolism and immune status, which pro-
vides a comprehensive perspective for clarifying the underly-
ing mechanisms that determine the prognosis for HCC.
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