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Quantum computation based on 
photonic systems with two degrees 
of freedom assisted by the weak 
cross-Kerr nonlinearity
Ming-Xing Luo1,2, Hui-Ran Li1 & Hong Lai3

Most of previous quantum computations only take use of one degree of freedom (DoF) of photons. An 
experimental system may possess various DoFs simultaneously. In this paper, with the weak cross-Kerr 
nonlinearity, we investigate the parallel quantum computation dependent on photonic systems with 
two DoFs. We construct nearly deterministic controlled-not (CNOT) gates operating on the polarization 
spatial DoFs of the two-photon or one-photon system. These CNOT gates show that two photonic 
DoFs can be encoded as independent qubits without auxiliary DoF in theory. Only the coherent states 
are required. Thus one half of quantum simulation resources may be saved in quantum applications if 
more complicated circuits are involved. Hence, one may trade off the implementation complexity and 
simulation resources by using different photonic systems. These CNOT gates are also used to complete 
various applications including the quantum teleportation and quantum superdense coding.

From the quantum circuit model1, quantum controlled gates2,3 play key roles for various quantum applications4–7. 
It has shown that two-qubit gates, especially the CNOT gate and single-qubit gates are universal for synthesizing 
quantum tasks based on multiple qubits2,3,8. The pioneer model9 takes use of single photon sources, linear optical 
elements including feed forward, and single photon detectors to realize the CNOT gate with the maximum prob-
ability of 3/410. With this standard model, various schemes are proposed to implement the CNOT gate11–15 and 
controlled-phase gate16,17. Although their upper bounds of the success probability are not thought to be tight18, 
however, it has shown that near deterministic gates are impossible using only linear optical elements. Moreover, 
the multiple-qubit based quantum tasks may be inefficient when lots of probabilistic gates are involved. For an 
example, the qubit flip coding with three qubits may be constructed using ten CNOT gates (four CNOT gates 
and one Toffoli gate19) and some single-qubit gates20, its success probability is only (3/4)10 = 5.6 × 10−2 with the 
maximum probability of a CNOT10. Hence, more efficient or deterministic gates should be proposed by relaxing 
constraints in the standard model9. Fortunately, with the weak cross-Kerr nonlinearity, a nearly deterministic 
CNOT gate21,22 and multiple-qubit logic gates such as Fredkin gate, Toffoli gate, arbitrary controlled-U gate23 
have been proposed on the polarization DoF. These controlled gates are also implemented using different physical 
systems such as the ion trap24,25, atom26,27, and nuclear magnetic resonance28,29.

Previous implementations of controlled gates have focused on the systems with only one DoF9,11–15,22,23. 
Controlled logic gates are always realized on the polarization DoF using auxiliary spatial DoFs12–14,22,23 or aux-
iliary polarized photons11,15. If two DoFs are independently used for encoding different information, their con-
versions may cause confusions in large-scale quantum applications such as the Shor’s algorithm. Moreover, an 
experimental system may possess various independent DoFs simultaneously. Different DoFs of physical system 
may be useful in various quantum applications30. Recent experiment shows that quantum information may be 
transferred from the polarization DoF of one photon to the orbital angular momentum of the other photon31. 
By using a hyper-entangled photon pair (the simultaneous entanglement in more than one DoF), Wang et al.32 
have experimentally teleported a photon with the spin angular momentum and orbital angular momentum 
DoFs while Graham et al.33 teleported a specific photon of two DoFs with only phase information. Here, the 
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hyperentanglement34–36 such as polarization momentum, polarization-time-bin, and polarization- and spatial 
modes-energy-time can be used to assist the Bell-state discrimination37–47.

Motivated by the recent experiments30–33 and usefulness of different photonic DoFs34–46, in this paper, we consider 
the controlled gates on photonic system with two DoFs assisted by the weak cross-Kerr nonlinearity22,23,46–53. Different 
from previous schemes on photonic systems with the polarization DoF11–15,22,23, where another DoF is used to assist 
quantum logic gates, we investigate the photonic quantum computation using two DoFs as simultaneous encoding 
qubits. To show the independence of two photonic DoFs in each quantum task, from the quantum circuit model 
the CNOT gate will be implemented on all the combinations of the polarization and spatial DoFs of the two-photon 
or one-photon system. This is beyond previous CNOT gates on the two-photon system with one DoF11–15,22,23.  
By exploiting the weak cross-Kerr nonlinearity49–53, all of controlled gates are nearly deterministic without auxiliary 
DoFs11,15. In contrast to the hybrid CNOT gates on the photon and stationary electron spins in quantum dots54,55, 
our CNOT gates are realized on photonic systems. Our results are also different from previous controlled gates54–59,  
where a CNOT gate is only considered in the same DoF of two photons assisted by a double-sided quantum 
dot-cavity system54,55 or one-sided quantum dot-cavity system56–59. Our theoretical results show that two DoFs of a 
photon system can be independently and simultaneously encoded in each quantum task. With these constructions, 
one half of quantum resources may be saved for quantum simulations, which are very important in large-scale quan-
tum applications such as the quantum Shor algorithm and network-based quantum communications. To show its 
applications, we also present faithful teleportation of arbitrary n-photon and quantum superdense coding.

Results
To show the encoding independence of the polarization and spatial DoFs of a photon for any quantum tasks, it is 
necessary to show that all n-qubit quantum operations may be realized on these DoFs. From the universality of 
the CNOT gate and single-qubit operations in the quantum logic2,3,8, it only needs to consider the CNOT gate on 
all the combinations of two DoFs of photonic systems. From different roles of two DoFs, six CNOT gates should 
be implemented, i.e., four CNOT gates on the two-photon system (each DoF of one photon is used) and two 
CNOT gates on the one-photon system. None of these gates require switching these DoFs during the simulations.

Before expounding our schemes of the CNOT gate, we first introduce the weak cross-Kerr nonlinear-
ity21–23,49–52. Given a signal field |na〉 and a probe beam |α〉, after photons passing through the cross-Kerr medium, 
the joint state of the combined system will be

Figure 1. Schematic CNOT gate on the polarization DoFs of two photons. PS denotes a beam splitter to 
transmit |H〉 and reflect |V〉 of an input photon. BS denotes a 50:50 polarizing beam splitter to realize 
→ +a a b( )/ 2  and → −b a b( )/ 2  on two spatial modes a and b of an input photon. An auxiliary 

probe beam is in the coherent state α2 49,51. Another BS denotes a 50:50 polarizing beam splitter to implement 
the transformation η η η η η η→ − +( )/ 2 ( )/ 21 2 1 2 1 2  for the auxiliary coherent photons. H-plate 
denotes a half-wave plate to perform the Hadamard operation → +H H V( )/ 2  and 
→ −V H V( )/ 2 . QND denotes quantum nondemolition module53 of the coherent photons. PNND 

denotes the photon number non-resolving detector. PA denotes a quantum parity gate for one photon with four 
spatial modes.
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α αΨ = =χ χ θ† †
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where θ = χt and t is the interaction time. Previous works indicated that a cross-Kerr medium and a coherent state can 
be used to implement the CNOT gate22,23 and single-photon logic gates with minimal sources51 and Toffoli gate52, and 
complete entanglement purification and concentration45–48; generating high-quality entanglement49,50 and qubits60–62.

CNOT gate on the polarization DoFs of two photons. Suppose that two photons are initially prepared 
in the state

ψ α β γ δ| 〉 = | 〉 + | 〉 ⊗ | 〉 + | 〉H V a b( ) ( ) (2)A j j j j j jj

for the simplicity of schematic representation, where {aj, bj} is the basis of the spatial DoF (the paraxial spatial 
modes (Laguerre-Gauss) carrying −ħ and ħ orbital angular momentum) of photon Aj. The same results can be 
followed for general forms of a two-photon system. Our consideration in this subsection is to realize the CNOT 
gate on the polarization DoFs of two photons.

Schematic circuit is shown in Fig. 1 using the double cross-phase modulation technique49,51–53 to avoid an 
impractical interacted-phase shift −θ21,22. The controlling photon A1 from each mode passes through a PS, inter-
acts with the coherent photons with a phase θ, and another PS. And then, the photon A2 passes through a H and 
a BS, and interacts with the second coherent pulse with a phase θ. Now, two coherent pulses pass through a phase 
shifter −θ, BS and QND (a quantum nondemolition module)53. In detail, the joint system of two input photons 
(A1 and A2) and the auxiliary coherent pulse evolves from the initial state ψ ψ αΨ = 2A A0

1 2
 as follows:
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where α α β β α β′ = + ′ = −( ), ( )2
2
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2 2 2 , η α θ= i 2 sin  and ζ α θ= 2 cos .
Due to the quantum noise effect, the Homodyne detection cannot work well as its expected63. Afterwards, the 

quantum nondemolition module is used to discriminate two coherent states. In detail, the projection |n〉 〈n| is 
performed on the first qubus beam to get the proper output53. If the measurement outcome is n = 0, the photonic 
state in the Eq. (3) collapses into
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Now, by using a parity analyzer (PA) for the photon A2, if n = 0 for the new Homodyne detection (the photon 
A2 passes through the modes a2 and b2, see the Method), the state in the Eq. (4) will be
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Otherwise, n ≠ 0 for the new Homodyne detection (the photon A2 passes through the modes ′a2 and ′b2, see 
Method), the state in the Eq. (4) will be |Ψf〉 in the Eq. (5) after a Pauli flip Z = |H〉 〈H| − |V〉 〈V| on the photon A1. 
Here, the unmeasured beams in the state α2  may be reused.

If the measurement outcome satisfies n ≠ 0, the photonic state in the Eq. (3) collapses into
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In the follow, using a PA for the photon A2 (similar projection has been performed for two modes53), if the 
photon A2 passes through the modes a2 and b2 (n ≠ 0 for the new Homodyne detection), the state in the Eq. (6) 
will be |Ψf〉 in the Eq. (5). If the photon A2 passes through the modes ′a2 and ′b2 (n ≠ 0 for the new Homodyne 
detection), the state in the Eq. (6) will be |Ψf〉 in the Eq. (5) after a Pauli flip σz on the photon A1. The projection 
|n〉 〈n| may be approximated by a transition edge sensor-a superconducting microbolometer49,51. Thus a CNOT 
gate has been nearly deterministically implemented on the polarization DoFs of two photons. Here, the unmeas-
ured beams in the state α θ2 cos  may be reused.

CNOT gate on the spatial DoFs of two photons. Our consideration in this subsection is to realize a 
CNOT gate on the spatial DoFs of two photons. The schematic circuit is shown in Fig. 2. The joint system of two 
photons A1 and A2 and the coherent photon evolve from the initial state |Ψ0〉 as follows:
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Afterwards, the projection |n〉 〈n| is performed on the first qubus beam to get the proper output49,51. If the 

measurement outcome is n = 0, the photonic state in the Eq. (7) collapses into
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after the photon A2 passing through a BS. Now, using a PA for the photon A2, the state in the Eq. (8) will be
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if n = 0 for the new Homodyne detection (the photon A2 passes through the modes a2 and b2). When n ≠ 0 for the 
new Homodyne detection (the photon A2 passes through the modes a′2 and b′2), the state in the Eq. (8) may be 
changed into |Ψf〉 in the Eq. (9) using a phase gate −I on the photon A1 from the spatial mode b1.

If the measurement outcome satisfies n ≠ 0, the photonic state in the Eq. (7) collapses into
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Figure 2. Schematic CNOT gate on the spatial DoFs of two photons. PS, BS, QND and PA are defined in the 
Fig. 1. −I denotes a wave plate to perform the phase operation −|H〉 〈H| − |V〉 〈V|. S denotes the switching 
operation (NOT gate) of two spatial modes, which may be realized with two BSs and a waveplate −I on the 
second mode. An auxiliary probe beam is in the coherent state α2 .
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here, each switch operation S is a NOT = H · Z · H gate of two spatial modes, which may be realized with two BSs 
and a waveplate −I on the second mode. Now, by using PA for the photon A2, if n = 0 for the new Homodyne 
detection (the photon A2 passes through the modes a2 and b2), the state in the Eq. (10) will be |Ψf〉 in the Eq. (9). 
If n ≠ 0 for the new Homodyne detection (the photon A2 passes through the modes ′a2 and ′b2), the state in the 
Eq. (10) will be |Ψf〉 in the Eq. (9) using a phase gate −I on the photon A1 from the spatial mode a1. Thus a CNOT 
gate has been nearly deterministically implemented on the spatial DoFs of two photons.

CNOT gate on the polarization-spatial DoFs of a two-photon system. Our consideration in this 
subsection is to realize a CNOT gate on the polarization DoF of one photon and the spatial DoF of the other. 
Schematic circuit is shown in Fig. 3. From the Figs 1 and 2, the photons A1 and A2 and the coherent photon will 
evolve as follows:
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Figure 3. Schematic CNOT gate on a hybrid system consisting of the polarization DoF of one photon and 
the spatial DoF of the other photon. PS, BS, QND and PA are defined in the Fig. 1. −I and S are defined in the 
Fig. 2. An auxiliary probe beam is in the coherent state α2 .
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where γ γ δ′ = +( )2
2

2 2 2 , δ γ δ′ = −( )2
2

2 2 2 , |η〉 and |ζ〉 are defined in the Eq. (3).
Afterwards, the projection |n〉 〈n| is performed on the first qubus beam to get the proper output49,51. If the 

measurement outcome is n = 0, the photonic state in the Eq. (11) collapses into

α β β γ γ δ

δ γ δ

α γ γ δ δ γ δ

α β γ δ β γ δ

β γ δ α γ δ

α γ δ

|Ψ′〉 = | 〉 + | 〉 | 〉 | 〉 | 〉 + | 〉

+ | 〉 | 〉 + | 〉

+ | 〉 | 〉 | ′〉 + | ′〉 + | 〉 | ′〉 + ′| ′〉

→ | 〉 + | 〉 | 〉 + | 〉 | 〉 | 〉 + | 〉

+ | 〉 | ′〉 + | ′〉 + | 〉 | 〉 + | 〉

− | 〉 | ′〉 + | ′〉

H V V a a b

b a b
H a b a b b a

H V a b V a b

V a b H b a

H b a

( ) { [ ( )

( )]
[ ( ) ( )]}

1
2

( ) ( )[ ( )

( ) ( )

( )] (12)

A A

A

A

BS
A A

A A

A

2 2 1 1 1 2 2 2 2

1 1 2 2 2 2

1 1 1 2 2 2 2 1 1 2 2 2 2

2 2 1 1 1 1 1 2 2 2 2

1 2 2 2 2 1 2 2 2 2

1 2 2 2 2

2 1

1

2 2 1

1 1

1

Now, from a PA for the photon A2, if n = 0 for the new Homodyne detection (the photon A2 passes through the 
modes a2 and b2), the state in the Eq. (12) will be

α β β γ δ α γ δ
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by switching the modes a2 and b2. Otherwise, n ≠ 0 for the new Homodyne detection (the photon A2 passes 
through the modes ′a2 and ′b2), and the state in the Eq. (12) will be |Ψf〉 in the Eq. (13) after performing a Pauli 
phase flip Z on the photon A1 and switching the modes ′a2 and ′b2.

If the measurement outcome satisfies n ≠ 0, the photonic state in the Eq. (11) collapses into
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Now, from a PA for the photon A2, if n = 0 for the new Homodyne detection (the photon A2 passes through the 
modes a2 and b2), the state in the Eq. (14) will be |Ψf〉 in the Eq. (13). If n ≠ 0 for the new Homodyne detection 
(the photon A2 passes through the modes ′a2 and ′b2), the state in the Eq. (14) will be |Ψf〉 in the Eq. (13) after per-
forming a Pauli phase flip Z on the photon A1. Thus a CNOT gate is nearly deterministically implemented on the 
polarization DoF of one photon and the spatial DoF of the other photon.

CNOT gate on the hybrid spatial-polarization DoF of a two-photon system. Our consideration 
in this subsection is to realize a CNOT gate on the spatial DoF of one photon and the polarization DoF of the 
other. Schematic circuit is shown in Fig. 4. From the Figs 1 and 2, two photons A1 and A2 and the coherent pulse 
will evolve as follows:
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where α α β β α β′ = + ′ = −( ), ( )2
2
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2

2 2 2 , |η〉 and |ζ〉 are defined in the Eq. (3).
Afterwards, the projection |n〉 〈n| is performed on the first qubus beam to get the proper output53. If the meas-

urement outcome is n = 0, the photonic state in the Eq. (15) collapses into
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Now, from a PA for the photon A2, if n = 0 for the new Homodyne detection (the photon A2 passes through the 
modes a2 and b2), the state in the Eq. (16) will be
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Figure 4. Schematic CNOT gate on the hybrid system consisting of the spatial DoF of one photon and the 
polarization DoF of the other photon. PS, BS, H, QND and PA are defined in the Fig. 1. An auxiliary probe 
beam is in the coherent state α2 .
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Otherwise, n ≠ 0 for the new Homodyne detection (the photon A2 passes through the modes a′2 and ′b2), and 
the state in the Eq. (16) will be |Ψf〉 in the Eq. (17) after −I being performed on the photon A1 from the mode b1.

If the measurement outcome satisfies n ≠ 0, the photonic state in the Eq. (15) collapses into
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Now, from a PA for the photon A2, if n = 0 for the new Homodyne detection (the photon A2 passes through the 
modes a2 and b2), the state in the Eq. (18) will be |Ψf〉 in the Eq. (17). Otherwise, n ≠ 0 for the new Homodyne 
detection (the photon A2 passes through the modes ′a2 and ′b2), and the state in the Eq. (18) will be |Ψf〉 in the 
Eq. (17) after −I being performed on the photon A1 from the mode a1. Thus a CNOT gate is nearly deterministi-
cally implemented on the hybrid system consisted of the spatial DoF of one photon and the polarization DoF of 
the other photon.

CNOT gate on one photon with two DoFs. Our considerations in this subsection is to realize a CNOT 
gate on one photon A1 with two DoFs. It is trivial to realize a CNOT gate when the spatial DoF of one photon is 
the controlling qubit. For the polarization DoF as the controlling qubit, its schematic circuit is shown in Fig. 5. In 
detail, the photon A1 and the coherent photon will evolve as follows:
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where γ γ δ δ γ δ′ = + ′ = −( ), ( )1
2

2 1 1 1
2

2 1 1 , |ζ〉 are defined in the Eq. (3), and αBS 2  denotes the BS for coher-
ent photons defined in the Fig. 1.

Afterwards, the projection |n〉 〈n| is performed on the first qubus beam to get the proper output53. If the meas-
urement outcome is n = 0, the photonic state in the Eq. (19) collapses into

Figure 5. Schematic CNOT gate on one photon with two DoFs. PS, BS, QND and PA are defined in the Fig. 1. 
−I and S are defined in the Fig. 2. An auxiliary probe beam is in the coherent state α2 .
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After a PA for the photon A1, if n = 0 for the new Homodyne detection (the photon A1 passes through the 
modes a1 and b1), the state in the Eq. (20) will be

α γ α δ β γ β δ|Ψ 〉 = + + +H a H b V b V a (21)f 1 1 1 1 1 1 1 1 1 1 1 1

Otherwise, n ≠ 0 for the new Homodyne detection (the photon A1 passes through the modes ′a1 and ′b1), and 
the state A1 in the Eq. (20) will be |Ψf〉 in the Eq. (21) after Z being performed on the photon A1.

If the measurement outcome satisfies n ≠ 0, the photonic state in the Eq. (19) collapses into
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After a PA for the photon A1, the state in the Eq. (22) will be |Ψf〉 in the Eq. (21) if n = 0 for the new Homodyne 
detection (the photon A1 passes through the modes a1 and b1). If n ≠ 0 for the new Homodyne detection (the 
photon A1 passes through the modes ′a1 and ′b1), the state in the Eq. (22) will be |Ψf〉 in the Eq. (21) after Z being 
performed on the photon A1.

Quantum teleportation assisted by the weak cross-Kerr nonlinearity. Suppose that Alice wants to 
teleport an arbitrary n-photon system in the state
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to Bob, where = =H V0 : , 1 : , ak,0 and ak,1 denote the spatial modes of the input photon k. The quantum 
channel is constructed by hyperentanglements32

Figure 6. Schematic teleportation of arbitrary n-photon system with two DoFs. The quantum channel is 
constructed by hyperentanglements EPRh A B,j j

, j = 1, ..., n. Xp = |0〉 〈1| + |1〉 〈0| and Xs = |r1〉 〈r2| + |r2〉 〈r1| 
denote Pauli flips on the polarization DoF and spatial DoF {r1, r2} of one photon, respectively. CNOT1 = |0〉 
〈0| ⊗ I2 + |1〉 〈1| ⊗ Xp and CNOT2 = |d0〉 〈d0| ⊗ I2 + |d1〉 〈d1| ⊗ Xs are preformed on the photon Aj and the input 
photon j. PS, BS and H-plate are defined in the Fig. 1. DH and DV are single photon detectors. The feed-forward 
operations of Bob are only single photon operations.
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where the photons A1, ..., An belong to Alice while the photons B1, ..., Bn own to Bob. For special case of n = 1, 
Wang et al.32 have experimentally teleported a photon with the spin angular momentum and orbital angular 
momentum DoFs while Graham et al.33 teleported a specific photon of two DoFs with only phase information. 
Sheng et al.44 have proposed a theoretical teleportation using the Bell analysis assisted by the cross-Ker nonline-
arity. Luo et al.64 have proposed a general teleportation of hybrid two-qubit systems assisted by the QED-cavity 

Type ni np nQND |φa〉 L Ps

CNOTp,p in ref. 22 4 2 2 α2 XPM ≈1

CNOTp,p in ref. 23 2 0 1 |α〉 XPM 1/2

CNOTp,s in ref. 51 4 0 1 α2 DXPM ≈1

CNOTp,p in ref. 52 12 1 9 α2 DXPM ≈1

CNOTp,p in ref. 53 5 0 2 α2 DXPM ≈1

CNOTp,p in Fig. 1 8 0 2 α2 DXPM ≈1

CNOTs,s in Fig. 2 8 0 2 α2 DXPM ≈1

CNOTs,p in Fig. 3 10 0 2 α2 DXPM ≈1

CNOTp,s in Fig. 4 8 0 2
α2

DXPM ≈1

CNOTp,s,1 in Fig. 5 10 0 2 α2 DXPM ≈1

Table 1.  The comparisons of our CNOT gates with previous photonic implementations. Ps denotes the 
success probability. CNOTp,p denotes the CNOT gate on the polarization DoF of two photons. CNOTp,s,1 denotes 
the polarization DoF and spatial mode of one photon. CNOTp,s denotes the polarization DoF of one photon and 
the spatial mode of the other photon. CNOTs,p denotes the spatial DoF of one photon and the polarization DoF 
of the other photon. CNOTs,s denotes the spatial DoFs of two photons. ni denotes the number of the interaction 
between the input photon and a coherent state with the cross-Kerr nonlinearities. np denotes the number of 
ancillary photons. nQND denotes the number of the QND. |φa〉 denotes the auxiliary coherent state. L ∈ {DXPM, 
XPM} denotes the double cross-phase modulation technique or cross-phase modulation technique. CNOTp,p is 
easily followed by combining with the C-path gate and Merging gate53.

Figure 7. Schematic quantum superdense coding using the hyperentanglement in the Eq. (24). PS, BS and 
H are defined in the Fig. 1. Xp, Xs, CNOT1 and CNOT2 are defined in the Fig. 6. Zp = |H〉 〈H| − |V〉 〈V| and 
Zs = |r1〉 〈r1| − |r2〉 〈r2| denote the Pauli flip and Pauli phase flip on the spatial DoF {r1, r2} of one photon. 
=Z Z Zs s s

1,2 1 2, =Z Z Zp p p
1,2 1 2 , =X X Xs s s

1,2 1 2, and =X Z Zp p p
1,2 1 2 . D A B

0(1)
( ) are single photon detectors. The feed-

forward operations of Bob are only single photon operations.
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nonlinearity. In this subsection, by using present CNOT gates, we can complete the teleportation task with arbi-
trary n ≥ 1. Schematic circuit is shown in Fig. 6. These photons evolve as follows

∑ ∑

∑ ∑
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where CNOT1 = |0〉 〈0| ⊗ I2 + |1〉 〈1| ⊗ Xp denotes a CNOT gate on the polarization DoFs of two photons and 
CNOT2 = |d0〉 〈d0| ⊗ I2 + |d1〉 〈d1| ⊗ Xs denotes a CNOT gate on the spatial DoFs of two photons. Now, by measur-
ing each photon j = 1, ..., n under the basis {|Haj,0〉, |Haj,1〉, |Vaj,0〉, |Vaj,1〉} (using two PSs and four single photon 
detectors), and measuring each photon Aj,j = 1, ..., n under the basis ± ±{ }H V d d( )( )1

2 0 1  (using two Hs, 
a BS, two PSs and four single photon detectors), each collapsed state of the photons B1, ..., Bn may be faithfully 
transferred into Φ

B Bn1
 in the Eq. (23) by using local quantum single operations of Bob. Taking n = 2 as an 

example, all the collapsed states are shown in Table 1 of the Supplementary information with corresponding 
recovery operations.

Quantum superdense coding assisted by the weak cross-Kerr nonlinearity. Similarly, with the 
hyperentanglement, Alice and Bob may complete a general quantum superdense coding65,66, as shown in Fig. 7. 
Here, two photons A and B are prepared in = Φ ⊗ Φ+ +EPR :h A B p s,

 in the Eq. (24) by Alice. One photon B will 
be sent to Bob along Alice’s quantum channel. Now, Bob will perform a single photon operation on the received 
photon B according his coding of four bits i1i2i3i4 in the Fig. 7 and send back to Alice. The corresponding quantum 
measurements of Alice are shown in the Fig. 7. In detail, Alice performs two CNOT gates CNOT1 and CNOT2 on 
the photons A and B, let the output pulse of the photon B pass a H and a BS, and the photons A and B from each 
mode pass through a PS and be finally detected by single photon detectors. The resulting quantum hyperentan-
glements of Alice are shown in Table 2 of the Supplementary information. Different from previous quantum 
superdense coding which has realized two bits per photon transmission60,61, four bits can be communicated by 
sending a single photon.

Quantum computation assisted by the weak cross-Kerr nonlinearity. Previous schemes have 
shown that the controlled logic gates may be performed on the polarization state using the spatial DoF as auxil-
iary quantum resources12–14,22,23. Although it is easy to switch different DoFs of one photon if only one DoF is used 
to encode information in quantum application, their conversions may cause confusions when two DoFs or more 
DoFs are independently used for encoding different information in one quantum task. With the present CNOT 
gates assisted by the weak cross-Kerr nonlinearity, the polarization and spatial DoFs of photonic states can be 
used as independent qubits without auxiliary DoFs. It means that two DoFs of each photon may be used as encod-
ing qubits or register qubits simultaneously. In this case, the simulation resources may be saved one half. This may 
be very important for large-scale simulations such as the Shor algorithm. To show the implementation complexity 
of our CNOT gates, the comparisons of these CNOT gates with previous photonic implementations are shown 
in Table 1. All the linear optical elements of wave plates [H, Z, -I] and beam splitters [BS and PS] may be ignored 
because of their simplicities. It means that the complexity mainly depends of the cross-phase modulation, the 
interferences, and ancillary photons. From this table, the most of photonic CNOT gates with two DoFs [except 
CNOTs,p,1 using one wave plate] should involve more interactions with the weak-Ker nonlinearity than other 
schemes with single DoF22,23,51–53. The main difference is derived from an additional DoF in comparison with 
previous single DoF. In experiment, the added complexity may be reasonable because the perfect single photon 
is difficult and expensive with the modern physic technique. Using the photon number non-resolving detector 
for PND, ancillary single photons are avoided for the QND53. If this efficient way53 is used for our QNDs ancillary 
photons are not required in our CNOT gates, which are different from the qubus mediated CNOT gate in ref. 22. 
Moreover, the DXPM method50–53 are explored in our schemes to avoid the impractical XPM with a shift −θ21–23. 
Compared with the scheme in ref. 21, our schemes donot require displacement operations on the qubus beams, 
which may be hard to implement for large displacement amplitudes. Besides, coherent resources are necessary 
in all schemes and may be recycled. The complexity of the circuit in ref. 52 is same as these for general two-qubit 
gates. Generally, one may trade off the implementation complexity and simulation resources by choosing proper 
photon systems with one DoF and two DoFs.

Discussions and Conclusions
The present CNOT gates on photons with two DoFs may be nearly deterministically performed. These CNOT 
gates are different from CNOT gates on photonic systems with only one DoF11–15,22–29, where the latter is always 
applied in quantum applications using the polarization DoF while other DoFs such as the momentum and 
time-bin are not considered or only considered as auxiliary systems11,15,22,23. Our CNOT gates show that quan-
tum tasks may be simulated using photonic systems with two DoFs assisted by the weak cross-Kerr nonlinearity. 
During simulations, each DoF of one photon can be encoded as an independent qubit for storing or transferring 
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quantum information. The key elements are the present CNOT gates which provide us useful primitives to 
manipulate photons with two DoFs.

Up to now, a well cross-Kerr nonlinearity in the optical single-photon regime is still difficult with current 
technology even lots of related results have been obtained67. In fact, Kok et al.68 showed that the Kerr phase shift 
is only τ ≈ 10−18 to operate in the optical single-photon regime. It may be improved to τ ≈ 10−5 using electromag-
netically induced transparent materials. Recently, Gea-Banacloche69 shows that it is impossible to obtain large 
phase shifts via the giant Kerr effect with single-photon wave packets, as pointed out in refs 70,71. Note that −θ 
is indeed a large phase shift π/2 − θ. The weak cross-Kerr nonlinearity will make the phase shift ±θ of the coher-
ent state become extremely small72. To address this problem, we take use of the double cross-phase modulation 
method49,51–53 to avoid the impractical −θ. Combining with a photon-number-resolving (PNR) detector, a homo-
dyne detector may be used to discriminate two coherent states53,73. The post-selection strategy is useful in order 
to lower the error probability. PNR has been realized at infrared wavelengths, operating at room temperature 
and with a large dynamic range74, or at an operating wavelength of about 850 nm75. New measurement scheme 
has been realized based on a displacement operation followed by a PNR76. PNR has also been discussed with 
integrated optical circuit in the telecom band at 1550 nm based on UV-written silica-on-silicon waveguides and 
modified transition-edge sensors77. Of course, the PNR capability may be also shown from InGaAs single photon 
avalanche detectors, arrays of silicon photomultipliers, transition edge sensors and InGaAs with self-differencing 
circuits. Recently, superconducting nanowire as another candidate may provide free-running single-photon sen-
sitivity from visible to mid-infrared frequencies, low dark counts, excellent timing resolution and short dead 
time, at an easily accessible temperature. Myoren et al. demonstrate the superconducting nanowire single-photon 
detectors with series-parallel meander-type configurations to have photon-number-resolving capabilities78. 
Some methods and device configurations are also proposed to obtain PNR capability using superconducting 
nanowire detectors79. By exploiting a superconducting qubit Lecocq et al. measure the photon/phonon-number 
distributions during these optomechanical interactions which may provide an essential non-linear resource80. 
Moreover, Weng et al. take use of quantum dot coupled resonant tunneling diodes to demonstrate a PNR81. 
Proposed electron-injecting operation may turn photon-switches to OFF state and make the detector ready for 
multiple-photons detection. Their results showed that the new PNR is better than a homodyne receiver. Hence, 
the present CNOT gates may be feasible if we choose a suitable Kerr nonlinear media and some good quantum 
measurement strategies on coherent beams.

In conclusion, we have proposed the parallel quantum computation based on two DoFs of photon systems, 
without auxiliary spatial or polarization DoFs. We have constructed five nearly deterministic CNOT gates (except 
one trivial CNOT gate) operating on the spatial and polarization DoFs of the two-photon system or one-photon 
system. With these CNOT gates, two DoFs of each photon may be independently encoded as different qubits in 
each task. We also discussed their applications of the quantum teleportation, quantum supertense coding and 
quantum computation. We concluded that one can teleport arbitrary n-photon in two DoFs when the hyperen-
tanglement channels are set up and present CNOT gates are permitted perfectly. Moreover, we have obtained new 
quantum supertense coding in which a hyperentanglement is used to transfer four bits per photon transmission. 
For different quantum computation tasks, one may perform their simulations using photonic systems with two 
DoFs. In this case, quantum simulation resources are reduced to one half. All these results may be useful in vari-
ous quantum applications.

Methods
The weak cross-Kerr nonlinearity. The cross-Kerr nonlinearity21–23 has a Hamiltonian in the form 

χ= † †H a a a as s p p . Here, † †a a( )s p  and as(ap) represent the creation and annihilation operations, respectively, and the 
subscript s(p) denotes the signal (probe) mode. χ is the coupling strength of the nonlinearity decided by the 
cross-Kerr medium. Given a signal field |na〉 and a probe beam |α〉, after photons passing through the cross-Kerr 
medium, the joint state of the combined system will be

α αΨ = =χ χ θ† †
e n n ei t a a a a

a a
ins s p p a

where θ = χt and t is the interaction time. Thus, by measuring the phase of the probe beam, the photon numbers 
may be distinguished in the signal mode, that is, the state |Ψ〉 will project into a number state.

The parity gate. To distinguish different outputs of one photon with four modes, a parity gate (PA) is used 
using an ancillary coherent state α2 , see the Fig. 1. The detailed evolution is defined as follows for the any 
initial system

φ φ φ φ φ φ φ φΞ = + + +′ ′ (26)a b a b1 2 3 4
2 2 2 2

where φ φ φ φ| 〉 | 〉 | 〉 | 〉′ ′{ , , , }a b a b2 2 2 2
 are different states of the photon A2 with four spatial modes a2, b2, ′a2 and ′b2, 

while {|φ1〉, |φ2〉, |φ3〉, |φ4〉} are corresponding states of the other system except the photon A2. In detail, the pho-
ton A2 from the modes ′a2 and ′b2 is firstly interacted with the coherent system in order. One can get a joint 
system

φ φ φ φ α α φ φ φ φ α α

φ φ φ φ α φ φ φ φ η ζ

+ + +

→ + + + ′ ′

θ
′ ′

′ ′

e( ) ( )

( ) 0 2 ( ) (27)
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where η α| 〉 = | 〉−θe 1
2

i2
 and α| 〉+θe 1

2

i2
. Afterwards, the projection |n〉 〈n| is performed on the first qubus beam to 

get the proper output49,51. If the measurement outcome is n = 0, the photonic state in the Eq. (27) collapses into

φ φ φ φ+ (28)a b1 2
2 2

If the measurement outcome satisfies n ≠ 0, the photonic state in the Eq. (27) collapses into

φ φ φ φ+′ ′ (29)a b3 4
2 2
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