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ABSTRACT We report here the metagenomes of soil samples from a perennial
cropping system of asparagus that was treated with two biostimulants. Two treat-
ments were compared to an untreated control. Control soil samples were taken at
the beginning and at end of the experiment.

Metagenomic studies of soils usually attempt to correlate the composition of the
soil microbiota with their functions or their functional potential (1–5). These

studies have even revealed different microbiota compositions in various agricultural
systems, such as those using conventional tillage and no tillage (2, 3), cultivated and
noncultivated soils (2, 4), rotated and nonrotated crops (3), organic and conventional
agriculture (5), and treatment with fertilization (6).

In the present study, a perennial cropping system of asparagus (Darlise variety)
located at Aimargues, France, was established in sandy and silty soil, and the crops
were treated with two biostimulants, ExuRoot (Innovak Global, Mexico) and Cérès
(Biovitis, France), which were applied four times between mid-July and mid-September
2016. Sampling was carried out in June 2016, prior to the application of the biostimu-
lants, and again in September, after they were applied. For each of the three modalities
(i.e., no treatment, ExuRoot, and ExuRoot � Cérès) and their repetitions, 50 g of
rhizosphere soil were obtained with a sterile shovel from 10 sampling points at depths
between 20 and 40 cm. Following the same methodology, the control modality was
sampled twice: at the beginning of the experiment and at the end. The pooled samples
were kept in plastic containers at �80°C until DNA extraction. After thawing and
homogenization, subsamples (10 g) were disrupted with TissueLyser II (Qiagen, Ger-
many). Metagenomic DNA samples were extracted using the PowerSoil DNA isolation
kit (Mo Bio, Inc./Qiagen, USA). Quality and quantity controls were performed by gel
electrophoresis, spectrophotometry (Nanodrop ND-1000), and fluorometry (Qubit ver-
sion 3.0). One microgram of metagenomic DNA was sheared to an average fragment
size of 350 bp in an AFA microtube (Covaris, USA) using an S2 ultrasonicator (Covaris).
Libraries were produced with the TruSeq DNA PCR-free library kit (Illumina). Whole-
metagenome shotgun sequencing was carried out within two high-output (300 cycles)
Illumina MiniSeq runs using 2 � 150-bp paired-end reads. BaseSpace (Illumina) was
used to extract the reads and to trim adaptors and Ns, and FastQC (http://www
.bioinformatics.babraham.ac.uk/projects/fastqc) was used to perform the quality con-
trol. Sequencing yielded between 3,360,000 reads (0.5 Gb) and 12,350,000 reads
(1.85 Gb) per sample. One Codex (7), Kaiju (8), and the MG-RAST (MetaGenomics Rapid
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Annotations using Subsystems Technology) pipeline (9) were used for the analysis of
the bioinformatics and the identification of operational taxonomic units (OTUs).

A wide diversity of OTUs was retrieved from these soil samples, in which the classes
Alphaproteobacteria and Actinobacteria were dominant. The 10 most abundant genera,
representing between 29.43% and 42.8% of all species in all samples, were Bradyrhi-
zobium, Nocardioides, Mycobacterium, Rhizobium, Streptomyces, Mesorhizobium, Micro-
bacterium, Pseudomonas, and Sphingomonas. Three of them (Bradyrhizobium, Mesorhi-
zobium, and Streptomyces) had already been observed as prominent genera in
metagenomic studies of soils of sugar beet cultures (10, 11). Most of the genera found
here are known to host plant growth–promoting rhizobacteria species, such as those
belonging to the genera Bradyrhizobium, Rhizobium, and Mesorhizobium, and showed
important diversity, with dozens of different OTUs in each sample.

Accession number(s). The raw sequencing data of the metagenomes have been
made publicly available through the NCBI’s Sequence Read Archive (SRA) (https://doi
.org/10.1093/nar/gkq1019) under the SRA accession numbers given in Table 1. They
have also been deposited in the MG-RAST database (http://metagenomics.anl.gov).
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TABLE 1 Sequence Read Archive (SRA) accession numbers

Sample name SRA accession no.

Soil metagenome of an asparagus culture, initial control R1 SRR5381855
Soil metagenome of an asparagus field culture, initial control R2 SRR5381878
Soil metagenome of an asparagus field culture, initial control R3 SRR5381880
Soil metagenome of an asparagus field culture final control R1 SRR5381886
Soil metagenome of an asparagus field culture final control R2 SRR5381887
Soil metagenome of an asparagus field culture, final control R3 SRR5381892
Soil metagenome of an asparagus field culture, treated with ExuRoot R1 SRR5381894
Soil metagenome of an asparagus field culture, treated with ExuRoot R2 SRR5381897
Soil metagenome of an asparagus field culture, treated with ExuRoot R3 SRR5381899
Soil metagenome of an asparagus field culture, treated with ExuRoot and Cérès R1 SRR5381902
Soil metagenome of an asparagus field culture, treated with ExuRoot and Cérès R2 SRR5381903
Soil metagenome of an asparagus field culture, treated with ExuRoot and Cérès R3 SRR5381907
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