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The observation, by Ray Owen and colleagues in 1954, that D-neg-
ative women were less likely to form anti-D antibodies against
their D-positive fetus if their mother possessed the D-antigen, was

not found in all later studies. We hypothesized that breastfeeding,
received by the mother, may affect her immunity against non-inherited
maternal red blood cell antigens. We studied a cohort of 125 grandmoth-
er-mother-child combinations, from a follow-up study of mothers after
intrauterine transfusion of the fetus for alloimmune hemolytic disease.
For mismatched red blood cell antigens the mother was exposed to,
whether or not antibodies were formed, we determined whether her
mother, the grandmother, carried these antigens. The duration for which
the mothers were breastfed was estimated by way of a questionnaire.
Using multivariate logistic regression analyses, the interaction term (non-
inherited maternal antigen exposure by categorized breastfeeding peri-
od) showed that a longer breastfeeding period was associated with
decreased alloimmunization against non-inherited maternal antigens
(adjusted odds ratio 0.66; 95% confidence interval 0.48-0.93). Sensitivity
analysis with dichotomized (shorter versus longer) breastfeeding periods
showed that this lower risk was reached after two months (aOR 0.22;
95% CI 0.07-0.71) and longer duration of breastfeeding did not seem to
provide additional protection. These data suggest that oral neonatal
exposure to non-inherited maternal red blood cell antigens through
breastfeeding for at least two months diminishes the risk of alloimmu-
nization against these antigens when encountered later in life. 
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ABSTRACT

Introduction

In utero, all humans are exposed to non-inherited maternal antigens (NIMAs),
however only pregnant women encounter inherited paternal antigens (IPAs).
NIMAs and IPAs can involve the same antigens (Figure 1). Maternal antibodies
against IPAs expressed on red blood cells (RBC) such as Rh and K antigens, can
cause severe hemolytic disease of the fetus and newborn (HDFN). 
In 1954, Owen and colleagues found that D-negative mothers were less likely to

form anti-D against a D-positive fetus if they had previously been exposed to the
D blood group as a NIMA, a phenomenon referred to as the “grandmother effect”.1

These findings seemed in accordance with the concept of neonatal tolerance in
mice, published a year earlier by Billingham and collegues.2 However, subsequent
investigations did not confirm the grandmother theory.3-5 Some studies even report-
ed that a D-negative child may develop anti-D against the D NIMA.6,7 As a result,
the grandmother concept was almost forgotten.
Decades later, in 1988, Claas and colleagues observed that hyper-immunized dial-

ysis patients awaiting  renal allograft, formed antibodies against non-inherited



paternal HLA antigens (NIPAs) significantly more often
than against NIMAs.8 However, a protective effect of HLA
NIMAs exposure on later renal and stem cell transplant
outcome was not confirmed in all further studies.9-11
Studies in mice models showed that a maximum

immune tolerance to NIMA is obtained when in utero expo-
sure to NIMA is followed by breastfeeding (BF).12,13 One
study in humans showed a superior graft survival of mater-
nal and sibling renal transplants when the recipient was
breastfed.14 Other studies in humans also showed that the
duration of BF was associated with autoimmune diseases
later in life.15,16
Therefore, the controversial results on the role of expo-

sure to NIMAs on later immunity when challenged by
pregnancy, transfusion or transplantation, may - among
other factors - be due to different BF habits. Breast milk con-
tains soluble molecules such as HLA, immunoglobulins and
extracellular vesicles, as well as viable cells, the latter
already observed by Antoni van Leeuwenhoek in the 17th
century.17–19 
Despite ante- and postnatal anti-D immunoprophylaxis

since 1998, Rhesus D antibodies are still the most frequent
cause of severe HDFN. We previously showed that, yearly,
about 15 pregnancies complicated by anti-D, four by anti-K
and one by anti-c required intra-uterine transfusions (IUT).20
RhD immunoprophylaxis however hampers investigation
of the effect of D NIMA exposure in utero and by BF on the
anti-D response towards a D-positive child. 
Severe HDFN is nowadays successfully treated with IUT.

Unfortunately, such IUTs expose the mother to RBC anti-
gens of the fetus and IUT donors, often leading to the
induction of additional RBC antibodies.21 
In the present study we investigated the hypothesis, that

BF may affect immunity against non-inherited maternal red
blood cell antigens, when encountered later in life through
pregnancy or by transfusion, in a cohort of mothers whose
fetuses were treated with IUT because of HDFN.

Methods

Study design
A cohort study of 125 grandmother-mother-child combinations,

participating in the LOTUS (LOng Term follow Up after intrauter-
ine transfusionS) study. In short, all women with children who
were treated with IUT for HDFN from 1987-2008 were eligible.
Details of the population and the methods adopted have been
published previously22 (see Online Supplementary Appendix for
details). All participating women were asked to invite their moth-
ers to participate. Grandmothers were asked to complete a ques-
tionnaire on duration of breastfeeding (regardless of exclusivity).
The study was approved by the ethics committee of the Leiden
University Medical Center (P08.080).

Data collection and intra-uterine transfusion policy
All participants and IUT donors were typed for relevant RBC

antigens (see Online Supplementary Appendix for details). The
mothers were screened for RBC antibodies as previously
described.23 Maternal transfusion history including date, number
and donor of each IUT and number of pregnancies were collected.
Over the years the transfusion policy changed with increasing
degree of extended RBC antigen matching between mother and
IUT donor and also procedural technique (see Online
Supplementary Appendix for details).20,24 

The following was determined:

1. Identification of non-D RBC antigens (C, c, E, e, K, Fya, Fyb,
Jka, Jkb, M, S and s) expressed by the child or IUT donor(s) but not
by the mother i.e., mismatched antigens.
2. The presence or absence of maternal antibodies against each

of these mismatched antigens.
3. For each mismatched antigen, whether the grandmother car-

ried the antigen as a NIMA. 

Statistical analyses 
Univariate logistic regression was used to calculate odds ratio

(OR) and 95% confidence intervals (CIs). The presence of antibod-
ies was used as the dependent variable. BF duration was analysed
categorized as 0, 1, 2, 3, 4-6 and >6 months and in a sensitivity
analysis dichotomized (≤ or > 0, 1, 2, 3, 4 and 6 months). Adjusted
odds ratio (aOR) was calculated in the final multivariate logistic
regression model. The following variables were considered poten-
tial confounders for RBC antibodies: ABO compatibility between
mother and child, maternal HLA-DRB1*15 genotype,25 number of
IUTs (categorized as 1, 2, 3, 4 and >4), number of pregnancies (cat-
egorized as ≤2, 3 and >3), year of IUT (categorized in 5-year-
blocks; 1988-93, 1994-98, 1999-03 and 2004-08) and RBC antigen
immunogenicity (high: C, c, E, e and K and low: Fya, Fyb, Jka, Jkb,
M, S and s antigens). 
The associations between the duration of BF and the induction

of antibodies were adjusted for potential confounders (i.e., P-val-
ues <0.2 in univariate analyses). To test for effect modification,
two interaction terms (NIMA by months of BF and NIMA by anti-
gen immunogenicity) were added to the model. The variables
NIMA, months of BF, and the interaction term (NIMA by months
of BF) were forced into the model. 
All statistical analyses were performed using the Statistical

Package for the Social Sciences (SPSS Inc, Chicago, IL, USA). A
95% CI not overlapping the null value 1.00 for OR was regarded
statistically significant.

Results

Study population
A total of 125 grandmother-mother-child pairs partici-

pated in the study. The mothers (median age at follow
up, 40 years; range 24-52) gave birth to 399 children of
which 143 were treated for HDFN with a total of 405
IUTs. The median birth order of the first IUT-treated
child was three; there were three cases with an affected
first child. The antibodies primarily responsible for
HDFN were anti-D (n=93), anti-K (n=19), anti-c (n=11)
and anti-Cw and -Kpa, one each (see Table 1 for additional
characteristics).
A total of 549 RBC antigens - other than D - were not

expressed by the mothers. For 171 of these antigens,
there was no exposure by child or donor, and due to
incomplete child and/or donor RBC typing, exposure
was not known for 48 antigens. Consequently, analyses
were restricted to the remaining 330 antigen exposures
(median 3; range 1-5 per mother), of which 123 were
NIMA re-exposures and 207 not previously exposed to
as NIMA. These resulted in 158 antibodies, 54 (44%)
against NIMA of which six antibodies caused the HDFN,
and 104 (50%) against antigens not exposed to as NIMA,
of which 26 caused the HDFN (Figure 2). 

Breastfeeding duration and antibody responses 
The median period that the 125 mothers were breastfed

for was two months (range 0-12); 45 mothers were not
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breastfed, 80 mothers for a median period of three months
(Table 1).
Univariate analyses revealed that antigen immunogenic-

ity (OR 17.3; 95% CI 10.0-29.9), number of IUTs (OR
1.22; 95 % CI 1.04-1.43) and IUT-year (OR 0.85; 95% CI
0.68-1.06) were associated (all P<0.2) with antibody for-
mation. ABO compatibility, maternal HLA-DRB1*15
genotype and number of pregnancies were regarded not
associated (all P>0.5) (Table 2).
Multivariate analysis showed that, high compared to

low antigen immunogenicity, increasing number of IUTs
and antigen exposure as NIMA compared to exposure not
as NIMA were associated with an increased risk of having
antibodies (aOR for the latter 3.28; 95% CI 1.38-7.80). A
longer BF period showed a trend towards a higher risk for
antibodies (OR 1.17; 95% CI 0.97-1.43). The interaction
term (NIMA by categorized months BF) revealed that a
longer BF period was associated with a decreased risk of
antibody formation against NIMA (aOR 0.66; 95% CI
0.48-0.93) compared to antigens not exposed to as NIMA
(Table 3). 
Sensitivity analyses with dichotomized periods of BF

showed that BF for at least two months compared to a
shorter period, and NIMA exposure were associated with
an increased risk for antibodies (aOR 2.39; 95% CI 1.12-
5.13 and aOR 3.34; 95% CI 1.55-7.24, respectively).
Again, the interaction term showed a decreased risk for
antibodies against NIMA after at least two months BF
(aOR 0.12; 95% CI 0.03-0.42). These associations
remained when comparing at least three months BF to a
shorter period. Continuation of BF beyond three months
did not seem to provide additional protection against the
formation of NIMA antibodies (Table 3). 
For all analyses, antigen immunogenicity and number of

IUTs were associated with an increased risk for antibod-
ies, while IUT-year and the interaction term NIMA by
antigen immunogenicity were not associated with anti-
body risk.

Discussion 

The role of exposure to RBC-NIMAs during fetal or
neonatal life on later development of (non-D) RBC anti-
bodies after re-exposure to the antigens during pregnancy

as IPAs or by transfusions was investigated in 125 three-
generation families with a (grand)child with HDFN treat-
ed with IUT. In contrast to women who were breastfed
for less than two months, BF for at least two months was
associated with a significantly lower incidence of alloanti-
bodies to NIMAs compared to the same antigens not pre-
viously encountered as NIMA.
The relevance of BF in the induction of tolerance against

NIMA has mainly been studied in the context of the major
histocompatibility complex (MHC) antigens in mice mod-
els.12,26,27 These studies clearly showed that a maximal
immunoregulatory effect to NIMA is obtained after expo-
sure both in utero and by BF.12,13 However, the underlying
mechanism(s) remain elusive, and several immunological
consequences of fetal/maternal interactions have been
proposed both in mice and humans. BF in mice induced
Foxp3+CD25+ T regulator cells potentially capable of regu-
lating anti-maternal MHC immune responses.13,28 BF
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Table 1. Characteristics of the 125 mothers. 
Characteristics N (%)*

Age at follow up, median (range), years 40 (24–52)
BF duration in months, median (range) 2 (0-12)
No breastfeeding 45 (36) 
One month 17 (14) 
Two months 15 (12) 
Three months 17 (14) 
Four to six months 18 (14) 
More than six months 13 (10) 
Birth order of first IUT treated child, median (range) 3 (1–7)
Number of IUTs, median (range) 3 (1–10)
Maternal-fetal major ABO compatibility – N/N tested (%)101/112 (90)
HLA-DRB1*15 positive 38 (30)
Antibody causing HDFN:               
Anti-D 93 (74)
Anti-K 19 (15)
Anti-c 11 (9)
Anti-Kpa and -Cw 2 (2)

BF: breastfeeding; IUT: intra-uterine transfusion; HDFN: hemolytic disease of the fetus
and newborn. *: Data presented as number (%) of women unless stated otherwise.

Table 2. Variables associated with RBC antibody formation after mismatched antigen exposures, univariate analysis.
Variables OR 95% CI P

RBC antigen immunogenicity (low** [non Rh, K] vs. high [Rh, K]) 17.3 10.0-29.9 <0.001
Number of IUTs (1, 2, 3, 4 and >4) 1.22 1.04-1.43 0.014
IUT year (5-year blocks) 0.85 0.68-1.06 0.148
ABO compatibility** versus incompatibility 1.26 0.62-2.57 0.531
HLA-DRB1*15 genotype absent** versus present 1.10 0.69-1.75 0.689
Number of pregnancies (≤2, 3 and >3) 0.98 0.75-1.27 0.877
Exposure not as a NIMA** vs. NIMA re-exposure 0.78 0.50-1.21 0.265
Breastfeeding months (0, 1, 2, 3, 4-6 and >6) 0.98 0.87-1.10 0.721
Antibodies after NIMA-mismatched exposures 1.08 0.93-1.25 0.320
Antibodies after NIMA-matched exposures 0.82 0.67-1.01 0.062

RBC: red blood cell; OR: odds ratio; CI: confidence interval; IUT: intra-uterine transfusion; NIMA: non-inherited maternal antigen; [non Rh, K]: Fya, Fyb, Jka, Jkb, M, S and s antigens;
[Rh, K]: C, c, E, e and K antigens; **: reference.



implies extended exposure to soluble and cellular maternal
antigens and, in addition, extracellular vescicles (EVs)
which can exert several immune effects. EVs are derived
from a variety of cells including RBC, and several clinically
relevant Rhesus, Kell, Duffy and Kidd blood group anti-
gens are expressed.29,30 Erythrocyte derived EVs have
immunomodulating properties.31 Up to 6 months after
delivery, human colostrum and breast milk contains exo-
somes capable of increasing Foxp3+CD4+CD25+ allospecif-
ic T regulator cells in vitro.19 In the postnatal period, when
the newborn is developing immunity against environmen-
tal threats, prolonged exposure to the maternal antigens
may be perceived as auto-antigens requiring regulation.
Moreover, oral exposure to antigens and antigen-antibody
complexes was reported to induce regulation in neonates
as well as in adults.32,33 In D-sensitized women pregnant of
a subsequent D-positive child, oral administration of D-
antigen inhibited an expected boost in anti-D titer.34
Finally, breast milk provides an additional source of viable
maternal cells that may increase maternal

microchimerism, which is considered a driving force of
regulation leading to maintenance of tolerance for
NIMAs.18,35,36  
A different history of maternal BF may explain the dis-

crepancy of finding a grandmother effect in various stud-
ies. Until manufactured baby milk became available, BF
was part of our immunological education. Several, also
cultural aspects, such as wealth and women’s emancipa-
tion, often replaced BF by cow milk. This may however
have consequences that are still unknown. Another aspect
of BF is the transmission of maternal cells which seem to
play a role in immunity against malignant diseases in the
child as shown by Amatay and colleagues, based on a
meta-analysis suggesting that BF may strengthen anti-
leukemic immunity in progeny.37  
Our observations on the effect of oral exposure to

NIMAs by BF may not just explain the historical contro-
versies regarding the grandmother theory. Why only a
minority of individuals form RBC alloantibodies after
pregnancy and/or blood transfusions (responders), while
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Figure 1. Non-inherited maternal antigens
(NIMA) and anti-IPA (inherited paternal antigens)
immunity. A. The X-/- child (= “mother” in cohort)
encounters X as NIMA during pregnancy and
nursing from her heterozygous X-/+ mother
(=”grandmother”), resulting in immunity or regu-
lation against the X-antigen. B. During her
(=”mother”) pregnancy of a X-/+ child this can
determine whether she will form antibodies
against the fetal X-IPA. C. During her (=”mother”)
pregnancy of a X-/+ child she re-encounters X as
a fetal (f) -IPA. 

A B

C



others do not, despite multiple exposures to mismatched
RBC antigens (nonresponders), has yet to be unravelled
and considered to be multifactorial. Factors such as anti-
gen immunogenicity and dose, route of exposure, race,
age, co-existence of inflammation during RBC antigen
exposure, genetic factors (such as HLA and immunoregu-
latory gene polymorphisms), and medical (immunosup-
pressive) conditions have all been reported to enhance or
ameliorate  RBC alloantibody formation.38-42 The duration
of exposure to NIMA by BF adds a new aspect to this
already complex question.

Limitations
Firstly, our study cohort - similar to the HLA immunized

cohort on the renal transplant waiting list, mentioned
before8 - consisted of highly immunized individuals,
already possessing at inclusion at least one strong RBC
antibody causing HDFN. We previously showed that once
individuals produced an RBC antibody, there is over a
20% risk of forming additional antibodies upon subse-
quent exposures.21,43 The results in these extensively allo-

exposed young women, of which 80% formed antibodies
against multiple RBC antigens after delivery, may not be
generalizable for first RBC antigen encounter and for
immune-compromised patients. Secondly, unidentified or
unknown antigen exposures that had not resulted in RBC
antibodies may have been missed; however, it is likely
that these were equally distributed in the distinct BF peri-
ods. Thirdly, Owen and colleagues evaluated anti-D for-
mation in relation to the D-NIMA. As a result of RhD
immunoprophylaxis, we could not repeat Owen’s design,
however we did find support for a grandmother effect to
non-D NIMAs after oral exposure by more than two
months BF. Fourthly, the duration of BF was assessed
through a questionnaire. BF was given decades before this
study, and memory may not be exactly accurate. Lastly, in
agreement with Owen, our study is hypothesis-generat-
ing and needs corroboration before drawing any definitive
conclusion.
In conclusion, in women with HDFN-affected children,

prolonged oral exposure to non-D NIMA by BF was asso-
ciated with a significantly lower incidence of antibody
production when later challenged to these NIMAs com-
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Table 3. Variables associated with red blood cell antibody formation after mismatched antigen exposures, by categorized and dichotomized breast-
feeding periods, multivariate analysis.*
BF duration Breastfeeding NIMA exposure** NIMA by months BF

aOR 95% CI aOR 95% CI aOR 95% CI

Categorized
0, 1, 2, 3, 4-6, >6 1.17 0.97-1.43 3.28 1.38-7.80 0.66 0.48-0.93
Dichotomized
0 vs.>0 1.11 0.54-2.26 1.81 0.68-4.79 0.77 0.23-2.53
≤1 vs.>1 1.15 0.56-2.33 1.78 0.71-4.41 0.78 0.24-2.48
≤2 vs.>2 2.39 1.12-5.13 3.34 1.55-7.24 0.12 0.03-0.42
≤3 vs >3 1.95 0.83-4.59 2.49 1.23-5.06 0.41 0.03-0.59
≤4 vs. >4 1.34 0.53-3.43 1.77 0.92-3.39 0.37 0.07-1.98
≤6 vs. >6 1.08 0.35-3.32 1.55 0.83-2.92 0.86 0.13-5.61
<2 vs. >3 2.37 0.93-6.05 3.57 1.47-8.70 0.11 0.02-0.51
2 and 3 vs. >3 1.11 0.41-2.96 1.15 0.36-3.69 0.35 0.07-1.80
*The complete table 3, including results from the variables, Immunogenicity, Number of IUTs, Year of IUT and the interaction term NIMA by Immunogenicity are in the Online
Supplementary Appendix.  BF: breastfeeding; NIMA: non-inherited maternal antigen; aOR: adjusted odds ratio; CI: confidence interval; **The reference is incidence of antibodies
after exposure not as a NIMA.  

Figure 2. Study flowchart of 125
mothers exposed to 330 non-D
RBC antigens and antibody
response. RBC: red blood cell;
NIMA: non-inherited maternal anti-
gen; HDFN: hemolytic disease of
the fetus and newborn.



pared to exposure to the same antigens not previously
exposed to as NIMAs.  
Ray Owen and colleagues concluded their 1954 publica-

tion on the grandmother theory with these words:
“Presentation of this hypothesis here, on the basis of
admittedly limited data, is justified by the hope that oth-
ers in a position to test it will be encouraged to do so.”1
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