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Abstract
Plants and pathogenic microbes are engaged in constant attacks and
counterattacks at the interface of the interacting organisms. Much of the
molecular warfare involves cross-kingdom trafficking of proteins, nucleic acids,
lipids, and metabolites that act as toxins, inhibitors, lytic enzymes, and
signaling molecules. How various molecules are transported across the
boundaries of plants and pathogens has remained largely unknown until now.
Extracellular vesicles have emerged as likely carriers of molecular ammunition
for both plants and pathogens. Recent advances are beginning to show how
extracellular vesicles serve as powerful vehicles that transfer small RNAs from
plants to fungal cells to diminish pathogen virulence and from fungi to plant
cells to dampen host immunity.
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Introduction
The site of plant–pathogen contact is the frontline where the  
two battling organisms exchange numerous molecules as  
ammunition. Plant cells can secrete lytic enzymes, antimicro-
bial proteins, peptides, and metabolites to fend off pathogens.  
Likewise, pathogens can secrete a repertoire of effector proteins 
and metabolites that suppress plant immunity or manipulate plant 
physiology to promote pathogenesis1,2.

Work in the last decade has uncovered active exchanges of 
small RNAs (sRNA) between host plants and pathogenic  
microbes3–7. sRNAs are known to play major roles in plant  
resistance and microbial pathogenesis8. Both pathogens and host 
plants encode sRNAs that are targeted to genes of their counter-
parts for silencing, a phenomenon referred to as cross-kingdom  
RNA interference (RNAi)9,10.

Cross-kingdom trafficking is a vibrant research area in  
plant–microbe interactions. Bacteria possess multiple classes 
of secretion systems. For example, through the type I secretion  
system, bacteria secrete molecules of a diverse nature, from 
ions and metabolites to proteins of various sizes. Gram-negative  
bacterial pathogens use the type III secretion system to deliver 
specific effector proteins directly into host cells. The type IV  
system can deliver proteins and nucleic acids into host cells. 
As a major route of secretion in eukaryotes, the conventional  
secretory pathway secretes proteins containing signal peptides 
and other contents via fusion of secretory vesicles with the 
plasma membrane (PM). The conventional secretory pathway 
is also used by filamentous pathogens, including fungi and 
oomycetes to secrete effector proteins, a large proportion of  
which are translocated into plant cells, although the underlying 
mechanisms remain poorly understood. Whether plant proteins 
secreted through the conventional secretory pathway make 
their way into microbial cells is not known. Not all secreted 
proteins contain signal peptides; however, these proteins are 
secreted through unconventional secretion pathways, including as  
contents of extracellular vesicles (EVs).

EVs have emerged as a new route of cross-kingdom trafficking 
that is profoundly important in plant–pathogen interactions11.  
A recent report convincingly demonstrated a major role for EVs 
in carrying sRNA cargoes for plant disease resistance12. In this  
review, we discuss how studies on RNAi during plant–pathogen 
interactions have advanced our understanding of EV-mediated  
trafficking between plants and pathogenic microbes.

Cross-kingdom RNA interference in plant–pathogen 
interactions
sRNAs, which include microRNAs (miRNAs) and small inter-
fering RNAs (siRNAs), target complementary mRNAs or DNA  
(or both) to mediate post-transcriptional silencing or transcrip-
tional silencing of target genes13. RNAi was first discovered 
as a powerful plant defense mechanism against viruses14–16.  
Numerous studies in the past two decades have since shown  
sRNAs to be major players in plant interactions with pathogenic 
bacteria, fungi, and oomycetes. Plant sRNAs, Argonaute (AGO) 
proteins, Dicer, and Dicer-like (DCL) proteins are required for 

plant disease resistance to various pathogens, whereas pathogenic 
bacteria and oomycetes have been shown to deploy multiple 
effector proteins to suppress sRNA biogenesis or action in host  
plants17. Whereas earlier studies focused on the intracellular  
regulatory process mediated by plant sRNAs, more recent 
work showed that fungal pathogen-encoded sRNAs function in 
silencing plant immune-related genes and enhance virulence,  
suggesting transportation of sRNAs from the pathogen to host 
cells6. Conversely, plant-encoded sRNAs have also been shown 
to silence fungal genes to reduce pathogen virulence7, supporting  
the notion that sRNA trafficking may be bidirectional9,10.

The gray mold fungal pathogen Botrytis cinerea—which 
infects more than 200 plant species, including Arabidopsis and  
Solanum lycopersicum—encodes sRNAs that are comple-
mentary to immune-related genes in the host plant6. Trans-
genic expression of one of these sRNAs, Bc-siR37, silences  
Arabidopsis genes encoding a pectin lyase, a WRKY transcrip-
tion factor, and a receptor-like kinase18. The B. cinerea dcl1 
dcl2 double mutant strain fails to produce sRNAs and shows 
reduced virulence, indicating that biogenesis of sRNAs is 
required for pathogenesis6. The B. cinerea sRNAs can bind to the  
Arabidopsis AGO1 protein to form an RNA-induced silencing 
complex (RISC), indicating that the fungus exploits host 
RNAi machinery to silence host genes6,18. Similarly, Puccinia  
striiformis f. sp. tritici, a causal agent of wheat strip rust  
disease, encodes an miRNA-like sRNA, termed Pst-milR1, that  
can silence a wheat gene encoding pathogenesis-related 219.

Early studies showed that transgenic expression of artificial 
sRNAs complementary to root-knot nematode and insect genes 
in host plants can silence pest genes and enhance resistance in 
the plant, a phenomenon called host-induced gene silencing  
(HIGS)3,20,21. Subsequent studies indicate that HIGS also provides 
protection against pathogenic fungi. Transgenic barley and wheat 
plants expressing artificial sRNAs targeted to development- and 
virulence-related genes of Blumeria graminis, a biotrophic fun-
gal pathogen causing powdery mildew diseases in barley and 
wheat, show enhanced resistance to B. graminis5. A similar  
approach has shown promise in controlling diseases caused by 
necrotrophic fungal pathogens. Thus, transgenic expression 
of sRNAs targeted to CYP51 family genes of Fusarium  
graminearum, a necrotrophic pathogen causing deadly Fusar-
ium head blight diseases on barley and wheat, greatly enhances  
disease resistance in Arabidopsis and barley plants4. Likewise, 
transgenic expression of artificial sRNAs in Arabidopsis 
and tomato plants targeted to DCL genes of B. cinerea and  
Verticillium dahliae, a causal agent for wilting diseases on  
numerous plant species, enhances resistance to these patho-
gens22. Furthermore, transgenic cotton plants expressing an 
RNAi construct targeted to V. dahliae hygrophobins 1 (VDH1), 
a gene required for virulence, show enhanced resistance against  
V. dahliae infection23. These studies not only provide compelling 
evidence for cross-kingdom trafficking of sRNAs but also pro-
vide attractive means to control diseases of great agronomic 
importance, as there is a paucity of Fusarium head blight  
resistance genes in wheat and Verticillium wilt resistance genes in  
cotton.
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Although HIGS suggests transport of artificial sRNAs from 
plant cells to microbial cells, it was only recently found that  
endogenous sRNAs encoded by plants silence microbial genes 
and suppress pathogenicity. MicroRNAs miR166 and miR159 
from cotton plants are induced upon infection by V. dahliae and 
their sequences are complementary to V. dahliae genes encoding 
a Ca2+-dependent cysteine protease (Clp-1) and an isotrichode-
rmin C-15 hydroxylase (Hic-15), respectively7. Knockout of  
Clp-1 and Hic-15 results in reduced virulence in V. dahliae,  
indicating that Clp-1 and Hic-15 are virulence factors. Con-
sistent with a role of the cotton miRNAs in the silencing of  
Clp-1 and Hic-15 genes in V. dahliae, fungal hyphae recovered 
from plants are significantly reduced in Clp-1 and Hic-15  
transcripts. Importantly, miR166 is present in fungal hyphae  
isolated from the infected plants, providing experimental  
evidence that miR166 is indeed transported from plant cells 
to fungal cells. A more recent study showed that a number of  
Arabidopsis-derived sRNAs are delivered to B. cinerea cells 
and target to fungal genes during infection to dampen fungal  
virulence (see the ‘Extracellular vesicles as cargoes for cross- 
kingdom small RNA trafficking’ section below;12). Together, these 
studies demonstrated that transfer of host sRNAs to fungi is an 
important defense mechanism for plants.

Extracellular vesicles in host defenses and 
pathogenesis
EVs are broadly defined as membrane-bound vesicles released 
from cells. They are produced by all domains of life and gener-
ally can be classified into exosomes, shedding microvesicles, and  
apoptotic bodies on the basis of their size and origins24. Among 
them, exosomes are generated by fusion of internal multi-
vesicular bodies (MVBs) with the PM25. Microvesicles are  
produced by directly budding from the PM26,27. Apoptotic bodies 
are formed only during programmed cell death28. EVs function 
in cell–cell communication and the intercellular transport of  
cargoes. In animals, EVs are known to carry proteins, nucleic  
acids, lipids, and other compounds24.

EVs are intensively studied in mammalian cells in part due to  
their role in modulating immune responses. Though reported 
in the early 1960s, plant EV studies made little progress until  
recent recognition of the role of EVs in plant immunity11,29. The  
first attempt to isolate exosome-like vesicles in plants was  
reported in 2009 from sunflower seeds30. A subsequent study 
reported that EVs from sunflower seedlings are taken up by  
Sclerotinia sclerotiorum spores and cause severe growth 
defects in the fungus, suggesting that EVs are involved in plant  
immunity31. More than 200 proteins were identified from 
these EVs, 47% of which are predicted to be cell wall–related  
proteins, suggesting that EVs play a role in cell wall remod-
eling32. It is noteworthy that cell wall–related proteins were also  
detected in Arabidopsis EVs purified by the density gradient 
method33. These results are consistent with an early electron 
microscopy study showing that MVBs are associated with 
papillae formation during powdery mildew fungal infection in  
barley34,35 and lend further support for a role of EVs in cell wall  
re-enforcement during defenses.

It has been reported that more than 50% of proteins identified 
in the plant secretome are leaderless and are likely secreted  
through unconventional secretion pathways36. Unconventional  
protein secretion in plants is thought to be mediated by MVBs  
and exocyst-positive organelles37, both of which are proposed 
to be origins of plant EVs38. Rutter and Innes33 also found that  
84% of the proteins in the EV proteome are devoid of predicted 
signal peptides and this is consistent with the notion that EVs  
function in the unconventional protein secretion pathway.

A recent study showed that the onset of immunity is associated 
with increased EV production in plants33. Proteins involved in  
biotic and abiotic stress responses are highly enriched in EVs 
purified from the apoplastic fluids of Arabidopsis plants33.  
Among them, membrane trafficking-related protein PEN1, 
defense regulator RIN4, and several RIN4-interacting proteins 
are included33. However, the proteome of EVs appeared to show 
little change in response to Pseudomonas syringae infection.  
It should be cautioned that some immune-related proteins may 
fall below the detection limit because of low abundance. In  
addition, it remains to be determined whether immune induction 
affects EV contents other than proteins.

The aforementioned studies have brought plant EVs back to 
researchers’ attention and plant EVs have been reviewed in  
detail11,38,39. Yet another question remains to be answered.  
During plant–pathogen interactions, while plants secrete EVs 
to pathogen as a defense measure, it is also likely that pathogens  
pay back in kind—that pathogens also secrete EVs to plant cells 
to deliver their virulence factors. Indeed, Gram-negative bacteria 
are known to produce EVs of outer membrane origin, hence  
referred to as outer membrane vesicles (OMVs)40. Emerging 
evidence shows that Gram-positive bacteria and fungi can also  
secrete EVs of comparable sizes with similar function as  
OMVs41. Cargoes of pathogen EVs include virulence proteins, 
nucleic acids, toxins, and lipopolysaccharides40,41.

Most studies on pathogen EVs have been carried out in animal– 
bacterial systems. Plant pathogen EVs are assumed to function 
similarly to their counterparts in animal pathogens and mediate  
cell-to-cell communication, virulence, and modulation of 
plant immunity. Only a handful of studies pertaining to plant  
pathogen EVs have been reported. Proteomic analyses on OMVs 
of plant pathogenic bacteria, including Xanthomonas campestris, 
P. syringae, and Xylella fastidiosa, identified virulence-associated 
proteins42–45. In addition to delivering virulence-associated pro-
teins, OMVs have been found to carry immunogenic bacte-
rial patterns, including EF-TU and flagellin46. Consistent with 
this, treatment with OMVs can activate defense responses in  
Arabidopsis plants47. How these bacterial patterns encased 
inside the vesicles get detected by plant cell surface receptors  
remains unknown. The OMV production rate and protein  
composition are regulated under different growth conditions44.  
Given that biogenesis of plant EVs also increases in response 
to biotic stresses, it is possible that, once confronted with each  
other, both plants and pathogenic bacteria concentrate their 
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firepower by rapidly transporting cargoes to the battlefield via  
EVs.

The isolation and characterization of EVs from plant patho-
genic fungi have not been documented to date. However, EVs 
are known to mediate export of fungal pathogen RNAs to human 
cells48. It is highly likely that plant pathogenic fungi also transfer 
sRNAs via EVs to host cells (see the next section). Cryo-fixation  
transmission electron microscopy has revealed membrane-bound 
vesicles in the extra-haustorial matrix of Golovinomyces orontii in  
infected Arabidopsis leaves. It will be interesting to determine 
whether these vesicles are derived from fungal cells49.

Extracellular vesicles as cargoes for cross-kingdom 
small RNA trafficking
The phenomenon of cross-kingdom RNAi raises a question as 
to how sRNAs travel across the boundaries between different 
organisms. A recent study by Jin and colleagues convincingly  
showed that Arabidopsis cells can secrete EVs to transfer  
sRNAs12. These secreted vesicles are taken up by B. cinerea  
cells and result in silencing of fungal genes critical for  
pathogenicity12.

By taking advantage of different cell wall compositions,  
sequential protoplast purification was deployed to isolate pure 
fungal cells from infected tissues. sRNA profiling of purified  
B. cinerea 

protoplasts identified 42 Arabidopsis sRNAs, 21 of which 
have predicted target genes in B. cinerea. Thirty-one of the 42  
Arabidopsis sRNA species carried by B. cinerea were also found 
in vesicles from apoplastic fluids of infected leaves, suggesting  
that plant-encoded sRNAs are transferred into fungal cells via  
EVs. It is important to note that Arabidopsis sRNAs targeted to 
EVs are devoid of some of the most abundant sRNAs, indicating  
that the process is selective.

Intercellular transfer of miRNAs in animals occurs through  
exosomes derived from MVBs. Jin and colleagues also showed 
that Arabidopsis MVBs fuse with the PM and release EVs at 
the site of infection12, a result confirming previous findings 
made in barley34,35. Isolated Arabidopsis EVs can be taken up by  
B. cinerea cells in vitro and this enables incorporation of  
Arabidopsis sRNAs into the fungal cell. In support of a role for 
EVs in Arabidopsis disease resistance to B. cinerea, the authors  
showed that loss-of-function mutations in the Arabidopsis 
TET8 and TET9 genes, which encode tetraspanin-like proteins  
associated with exosomes, lead to enhanced susceptibility to  
B. cinerea. These results elegantly demonstrated for the first 
time that, as previously speculated, EVs function as the transport  
vehicle for plant sRNAs and are crucial for plant immunity33,39. 
This study, together with a previous study made in animals50,  
indicates that EV-mediated cross-kingdom trafficking of sRNAs  
is a universal defense mechanism.

Although it remains to be shown whether B. cinerea sRNAs are 
similarly transferred via EVs to plant cells, Jin and colleagues  

found that 7 out of 32 B. cinerea genes targeted by the 21 trans-
ferred Arabidopsis sRNAs are related to vesicle trafficking 
pathways. Transgenic Arabidopsis plants overexpressing two 
of these sRNAs displayed enhanced resistance, whereas knock-
down of these two sRNAs led to increased susceptibility to  
B. cinerea12. These exciting findings highlight the importance 
of vesicle trafficking in fungal virulence and open the door to  
future studies of sRNA trafficking from the pathogen to plant 
cells.

Conclusion and perspective
Plant–pathogen interactions involve extensive exchange of  
molecular ammunition. Of note, cross-kingdom RNAi is an  
efficient strategy of attack/counterattack, as it can accurately  
target the enemy at a vital point. EVs serve as the armored  
vehicle to escort weapons to the frontline and protect cargoes  
from degradation by RNases and proteases in extracellular  
spaces.

The new advances in cross-kingdom RNAi and EVs shed 
light on new avenues in disease control in crop plants. A new  
technique, termed spray-induced gene silencing, which 
involves double-stranded RNAs (dsRNAs) and sRNAs that 
target essential pathogen genes, has shown promise in crop  
protection51–53. This new generation of “RNA fungicides” can 
remain effective for only 8 to 10 days when applied naked 
to plants22. A recent study showed that dsRNA loaded on the  
layered double hydroxide (LDH) clay nanosheets (termed 
BioClay) extended the effectiveness to at least 20 days54.  
Nanovesicles (NVs) mimicking EVs may be developed into 
an ideal vector to deliver these sRNAs55. Although NVs have 
yet to be applied to plants, it can be envisioned that NVs loaded 
with specific sRNAs, defense-related proteins, or compounds 
targeting specific pathogens or pests may become powerful  
biocides.

At present, our understanding of the EV-mediated cross- 
kingdom traffic is just the tip of the iceberg. A number of  
pressing questions remain. What are the sorting mechanisms 
of cargo selected for export from the donor? How are the sort-
ing mechanisms regulated in response to environmental inputs?  
Are defense proteins and sRNAs loaded into the same vesicles 
or are there EVs specific for each? How do vesicles traverse the 
PMs and cell walls of the plant and pathogen? The aforemen-
tioned sRNA trafficking via EVs provides an excellent model 
system to unlock the secret of cross-kingdom trafficking during  
plant–pathogen interactions.
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