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and Věra Hamplová 1

1 Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czech Republic;
rychet@fzu.cz (I.R.); fekete@fzu.cz (L.F.); hamplova@fzu.cz (V.H.)

2 Faculty of Chemistry, Moscow State University, Leninskie gory, 119992 Moscow, Russia; bbrvsky@yahoo.com
* Correspondence: bubnov@fzu.cz

Received: 29 June 2020; Accepted: 27 July 2020; Published: 30 July 2020
����������
�������

Abstract: The control and prediction of soft systems exhibiting self-organization behavior can be
realized by different means but still remains a highlighted task. Novel advanced nanocomposite
system has been designed by filling of a stretched porous polyethylene (PE) film with pore dimensions
of hundreds of nanometers by chiral ferroelectric liquid crystalline (LC) compound possessing polar
self-assembling behavior. Lactic acid derivative exhibiting the paraelectric orthogonal smectic A* and
the ferroelectric tilted smectic C* phases over a broad temperature range is used as a self-assembling
compound. The morphology of nanocomposite film has been checked by Atomic Force Microscopy
(AFM). The designed nanocomposite has been studied by polarizing optical microscopy (POM),
differential scanning calorimetry (DSC), small and wide-angle X-ray scattering and broadband
dielectric spectroscopy. The effect of a porous PE confinement on self-assembling, structural, and
dielectric behavior of the chiral LC compound has been established and discussed. While the
mesomorphic and structural properties of the nanocomposite are found not to be much influenced in
comparison to that of a pure LC compound, the polar properties have been toughly suppressed by the
specific confinement. Nevertheless, the electro-optic switching was clearly observed under applied
electric field of low frequency (210 V, 19 Hz). The dielectric spectroscopy and X-ray results reveal that
the helical structure of the ferroelectric liquid crystal inside the PE matrix is completely unwound,
and the molecules are aligned along stretching direction. Obtained results demonstrate possibilities
of using stretched porous polyolefins as promising matrices for the design of new nanocomposites.

Keywords: nanocomposite; self-assembling behavior; nanomaterials; ferroelectric liquid crystal;
smectic phase; polar order; porous polyethylene film

1. Introduction

Functional composite nanomaterials are widely spread in our everyday life. During the last few
years, various composite materials attract substantial attention due to their advanced properties [1–9]
that are usually inaccessible for the single component substances. According to definition, the composite
materials are those made of at least two constituent compounds with significantly different physical
and/or chemical properties that, when combined, might produce a smart resulting material with
advanced characteristics different from the individual components under condition that individual
components remain chemically separate and distinctive within the final composite structure.

For the last few decades, self-assembling materials represent a fascinating area of dynamic
research, which provides a highlighted approach for design of new structures with predefined
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functionality [7,10–13]. Chiral smectic liquid crystalline (LC) materials belong to one of the most
exciting classes of such organic materials that are able to self-assemble in a polar layered structure
of nanometer scale [11,13–18]. The self-organization structure of such compounds, and hence their
favorable electro-optic, structural, and dielectric properties, can be adjusted by a proper design of
molecular architecture build up from various units [15,19–24]. Chiral liquid crystals derived from the
lactic acid are intensively investigated due to definite advantages [19,25,26] with respect to other types
of chiral molecular structures: chemical stability - no aging, reasonably low price, and a comprehensive
variety of conventional and frustrated nematic and smectic phases stable in a broad temperature
range. LC compounds with chiral part based on lactate group are actively used as: (i) chiral dopants
while designing binary [27–29] and multicomponent functional mixtures [30,31]; (ii) reactive mesogens
for macromolecular compounds used as side-chains for polymers [32–34] and elastomers [35,36];
(iii) functional dopants for organic photovoltaic cells [37–39] and matrices [40–42] for design of
nanocomposite systems; and (iv) source of chirality for photosensitive low molar mass [21,43–45] and
macromolecular [20,34,46–48] materials.

One of the main problems related to applicability of chiral LC compounds exhibiting the synclinic
and anticlinic phases, which is not fully solved until now, is the mechanical control and stability;
the stability to mechanical shock can be taken as a specific example. This stability requirement affects
a lot the feasibility of practical commercial applications based on polar LC compounds [11,15]. It is
unfavorable and one of the main reasons why, about two decades ago, the commercial utilization of
the ferroelectric LC displays was failed and the nematic/cholesteric materials almost fully gain the
market. Mechanical stabilization of the self-organizing systems and structures by various polymeric
treatment is under continuous and intense investigations [49–51]. Polymer dispersed liquid crystals
are composite compounds formed by micron-sized droplets of liquid crystal embedded in a solid
polymer matrix [52–56] attracted great attention of researchers due to their applicability as light
shutters, switchable windows, displays, and other electro-optical devices.

In general, while designing new self-assembling structures, porous materials can be used as a
smart media which allows to stabilize mechanically the desired properties [57–62]. Specifically, porous
macromolecular materials have attracted durable attention of the scientific community [58,63–66] due
to their functionality and possibility of mechanical control. Nevertheless, this is quite challenging, for a
general task to predict and keep under control [67–69] the desired properties of the self-assembling
materials. Several attempts for investigation of stretched porous polyethylene (PE) filled with
LC compounds have been already done [56,70–73]. It has been shown that porous stretched
PE-based nanocomposites filled with photosensitive LC compounds can be used as light-sensitive
actuators [74,75], advanced optical and opto-fluidic devices [70,76], nanofiltration membranes [65],
and technologically attractive material for random lasing [77]. One of the most important features
of the porous stretched PE is the capability to align embedded LC molecules along the stretching
direction [55,73]. This makes porous polyolefin matrices very promising for the design of novel
functional nanocomposite materials.

However, still a lot of open questions remains regarding the basic interaction of porous media (used
as a polymeric flexible matrix) and LC molecules, specifically while dealing with those organized in a
polar smectic structure. Electro-optical behavior of nanocomposite system made of porous stretched
PE film filled by multicomponent ferroelectric LC mixture has been studied [73] and ferroelectric
switching of such composites was demonstrated for the first time. In order to effectively tune such a
system and to reach the desired properties, it is necessary to gain deeper knowledge on interactions
between the porous media and self-organized polar matter [73].

The main objective of the work is to establish the mesomorphic, dielectric, and structural behavior
of a novel PE-ferroelectric liquid crystalline (FLC) nanocomposite system build-up of the porous
stretched PE matrix filled by the ferroelectric liquid crystalline (FLC) compound and to contribute to
better understanding of interactions between the stretched porous PE and FLC compound taking place
in such a system.
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2. Materials and Methods

The nanocomposite samples of stretched porous PE film filled by the lactic acid derivative forming
the ferroelectric smectic phase over a reasonably broad temperature region was investigated. The details
on used methods, original compounds, resulted nanocomposite material, and their basic characteristics
are presented in this section.

2.1. Microporous Stretched Polyethylene Film

The microporous stretched polyethylene (PE) film was obtained from commercially available
low-density PE (Mw = 1.7 × 105, Mw/Mn = 5–6, Tm = 132 ◦C) according to specific procedure as
described [56,57]. Porous PE films preparation consists of several steps: extrusion of the PE melt
through a flat-slit die followed by annealing at isometric conditions, uniaxial stretching at room
temperature (stage of pores formation), and thermal fixation. The main controllable parameters
predetermining the PE porosity and sizes of the pores are the spinneret drawing ratio during extrusion
(60 in our case), annealing temperature (130 ◦C), and degree of the uniaxial stretching (250%).
Further details of PE films processing during pores formation is described in detail in Ref. [56,57].
During extrusion and stretching, the porous structure (with the pore width of 50–600 nm and pore
length of 1000–2000 nm) was formed. The thickness of the PE film was 17.0 ± 0.3 µm, and pores occupy
approximately 40–50% of volume. Microphotographs of porous PE film obtained by the Scanning
Electron Microscopy (SEM) and by Polarizing Optical Microscopy (POM) under cross polarizers are
presented on Figure 1a,b, respectively, and the topographical Atomic Force Microscopy (AFM) images
at two different places of the used sample, with resolution as indicated, are presented on Figure 1c,d.
The porous structure of the stretched PE film is clearly confirmed by both the SEM and AFM techniques.

Nanomaterials 2020, 10, x 3 of 16 

 

2. Materials and Methods 

The nanocomposite samples of stretched porous PE film filled by the lactic acid derivative 
forming the ferroelectric smectic phase over a reasonably broad temperature region was investigated. 
The details on used methods, original compounds, resulted nanocomposite material, and their basic 
characteristics are presented in this section. 

2.1. Microporous Stretched Polyethylene Film 

The microporous stretched polyethylene (PE) film was obtained from commercially available 
low-density PE (Mw = 1.7 × 105, Mw/Mn = 5–6, Tm = 132 °C) according to specific procedure as described 
[56,57]. Porous PE films preparation consists of several steps: extrusion of the PE melt through a flat-
slit die followed by annealing at isometric conditions, uniaxial stretching at room temperature (stage 
of pores formation), and thermal fixation. The main controllable parameters predetermining the PE 
porosity and sizes of the pores are the spinneret drawing ratio during extrusion (60 in our case), 
annealing temperature (130 °C), and degree of the uniaxial stretching (250%). Further details of PE 
films processing during pores formation is described in detail in Ref. [56,57]. During extrusion and 
stretching, the porous structure (with the pore width of 50–600 nm and pore length of 1000–2000 nm) 
was formed. The thickness of the PE film was 17.0 ± 0.3 µm, and pores occupy approximately 40–50% 
of volume. Microphotographs of porous PE film obtained by the Scanning Electron Microscopy 
(SEM) and by Polarizing Optical Microscopy (POM) under cross polarizers are presented on Figure 
1a,b, respectively, and the topographical Atomic Force Microscopy (AFM) images at two different 
places of the used sample, with resolution as indicated, are presented on Figure 1c,d. The porous 
structure of the stretched PE film is clearly confirmed by both the SEM and AFM techniques. 

  
(a) 

(b) 
 

  
(c) (d) 

Figure 1. Topographical images of porous polyethylene (PE) film obtained at room temperature: (a) 
by the Scanning Electron Microscopy (SEM) (width of the photo is ~10 µm); (b) by the polarizing 
optical microscopy (POM) under crossed polarizers (width of the photo is ~250 µm) and by Atomic 
Force Microscopy (AFM) (c),(d) at difference places of the sample under resolution, as indicated. The 
stretching direction for: (a) is horizontal; (c,d) vertical. 

Figure 1. Topographical images of porous polyethylene (PE) film obtained at room temperature:
(a) by the Scanning Electron Microscopy (SEM) (width of the photo is ~10 µm); (b) by the polarizing
optical microscopy (POM) under crossed polarizers (width of the photo is ~250 µm) and by Atomic
Force Microscopy (AFM) (c),(d) at difference places of the sample under resolution, as indicated.
The stretching direction for: (a) is horizontal; (c,d) vertical.
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Ferroelectric Liquid Crystal

Lactic acid derivative, namely 4-(((1-((1-(hexyloxy)-1-oxopropan-2-yl)oxy)-1-oxopropan-2
-yl)oxy)carbonyl)phenyl 4′-(nonyloxy)-[1,1′-biphenyl]-4-carboxylate, possessing specific mesomorphic
properties, was been selected for this study. The synthetic route and mesomorphic properties of
the FLC compound (denoted as ZLL 9/6 [78]) used for design of PE-FLC nanocomposite film were
described recently [78,79]. The general chemical formula of the FLC compound is presented on
Figure 2. Sequence of mesophases was determined by the POM observations and was checked by
DSC. On cooling from the isotropic phase (Iso), this compound possesses (at 113 ◦C) the paraelectric
orthogonal smectic A* (SmA*) phase (down to 94 ◦C), followed by a broad ferroelectric tilted smectic C*
(SmC*) phase (down to 42 ◦C), which was found partially monotropic as the melting point is detected
at 79 ◦C. A narrow (several degrees broad) and fully monotropic (i.e., the mesophase was detected on
cooling run only) tilted hexatic (Hex*) phase was detected before the crystallization (Cr) onset.
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Figure 2. Chemical structure of ferroelectric smectic compound, namely (4-(((1-((1-(hexyloxy)
-1-oxopropan-2-yl)oxy)-1-oxopropan-2-yl)oxy)carbonyl)phenyl 4′-(nonyloxy)-[1,1′-biphenyl]-4-carboxylate),
used for the resulting polyethylene (PE)-ferroelectric liquid crystalline (FLC) nanocomposite.

2.2. Experimental Methods

The nanocomposite based on porous PE film filled with FLC compound was prepared according
to procedure described below. Porous stretched PE film (supplied by professor G.K. Elyashevitch) was
heated up and filled by the FLC compound in the isotropic phase (at 115 ◦C) by means of capillary
action; liquid crystal was sucked by the porous film by means of capillary action, and the pores were
filled completely; afterwards, the filled nanocomposite film was cooled down to room temperature.
The excess of the FLC compound was cleaned up by a solvent (acetone) from the surfaces, and the
glasses with transparent Indium Tin Oxide (ITO) conductive layers were attached to the film; then, they
were stacked together by a special glue based on phenol formaldehyde resin. In order to perform the
morphology study, Atomic Force Microscopy (AFM) measurements have been executed using a Bruker
Dimension Icon microscope (Bruker, Santa Barbara, CA, USA), working for material-air surface in the
PeakForce mode at the room temperature. Cantilevers with a low spring constant, k = 0.4 N m−1 were
used, with the resonant frequency in a range of 70–80 kHz. AFM images of resolution 512 × 512 points
were obtained; the images were taken in several different spots of the sample and areas with several
different size and resolution; the AFM measurements were done at room temperature.

The measurement cells for mesomorphic, electro-optic, and dielectric studies of pure FLC
compound were prepared by a commonly used method. The FLC compound was filled by capillary
action into a homemade glass cell possessing on the inner side the ITO transparent electrodes and
polyimide layers unidirectionally rubbed, which ensured planar (bookshelf) geometry. The sample
thickness was defined by 17 µm thick mylar sheets.

The mesomorphic properties of pure FLC compound and resulting nanocomposite films, namely
the sequence of phases and phase transition temperatures, were determined on cooling in polarizing
optical microscope by observation of the characteristic textures and their changes. A LINKAM LTS
E350 heating/cooling stage with TMS 93 temperature programmer was used for temperature control,
which enabled temperature stabilization within ± 0.1 K. Phase transition temperatures and melting
points (m.p.) were determined by the differential scanning calorimetry (DSC-Perkin-Elmer DSC8000)
on samples of 8–10 mg, hermetically sealed in aluminium pans, on cooling/heating runs (5 K min−1 rate)
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in a nitrogen atmosphere. The temperature was calibrated on extrapolated onsets of melting points of
water, indium, and zinc.

Values of spontaneous polarization, Ps, were determined from the switching current profile
detected by oscilloscope Tektronix DPO 4034 (Tektronix, Beaverton, OR, USA). Electric field of
triangular modulation at frequency of 19 Hz was used.

The frequency dispersion of complex permittivity (ε* = ε′ − iε”) was measured on cooling
using a Schlumberger 1260 impedance analyzer in the frequency range of 1 Hz–1 MHz, keeping the
temperature stable (within ± 0.1 K) during the frequency sweep. Dielectric measurements at fixed
frequency have been done under d.c. bias voltage of 0–20 V. Cells of 17 µm thick were used for the
broad-band dielectric spectroscopy.

The small angle X-ray scattering (SAXS) was performed with Ni-filtered CuKα radiation
(wavelength λ = 1.5418 Å) on non-aligned samples (filled into Mark capillary tubes of 0.7 mm diameter)
using a Kratky compact camera (A. Paar) equipped with a temperature controller and a one-dimensional
electronic detector (M. Braun); temperature was controlled within 0.1 K. The smectic layer spacing,
d, was determined using Bragg’s law nλ = 2dsinθ, where n is a positive integer and d is calculated
from the position of the small angle (θ = 0.2o–4.5o) diffraction peaks. The wide-angle X-ray scattering
(WAXS) was performed with a Bruker AXS NanoSTAR device (wavelength λ = 1.5418 Å) equipped
with a temperature control unit, magnetic field for sample alignment, and two-dimensional detector.

3. Results

This section contains the experimental results obtained on PE-FLC nanocomposite obtained by
POM, DSC, electro-optics, SAXS, WAXS, and broadband dielectric spectroscopy. The discussion on
significant permittivity decrease obtained for PE-FLC nanocomposite and partial suppression of the
polar smectic order are presented.

3.1. Mesomorphic Properties and Switching Behavior

The mesomorphic behavior of pure FLC compounds and resulting PE-FLC nanocomposite was
studied by the texture observations in POM; the phase transition temperatures were precisely verified
by the DSC. Table 1 summarizes the obtained data on the mesomorphic behavior. The sequence of
mesophases for both the pure FLC and PE-FLC nanocomposite remains unchanged; on cooling from
the isotropic (Iso) phase, the paraelectric orthogonal SmA* and the ferroelectric tilted SmC* phases
were clearly detected; the Iso-SmA* phase transition is of the first order and the SmA*-SmC* phase
transition is of the second order. In addition, there is a very narrow hexagonal phase before the onset
of the crystallization, i.e., the crystal phase (Cr). However, there is a considerable difference in the
Iso-SmA* and SmA*-SmC* phase transition temperatures. In case of the PE-FLC nanocomposite, the
above-mentioned phase transition temperatures were found to be shifted down on both the cooling
and heating runs; this is quite common mesomorphic behavior when studying pure LC compounds,
as well as LC nanocomposites [42,73]. The difference in the phase transition temperatures observed
for pure FLC compound and PE-FLC composite was also confirmed by dielectric spectroscopy and
SAXS measurements.

Table 1. Sequence of phases determined by POM and phase transition temperatures (◦C) measured
by differential scanning calorimetry (DSC) on cooling (5 K min−1) for the pure FLC compound and
resulting PE-FLC nanocomposite. Symbol <•> stands for the presence of the mesophase.

Material Cr ◦C Hex* ◦C SmC* ◦C SmA* ◦C Iso

Pure FLC • 39 • 42 • 94 • 113 •

PE-FLC composite • 39 • 42 • 88 • 105 •
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Microphotographs of PE-FLC nanocomposite film obtained by POM (17 µm thick film) on cooling
from the isotropic down to low temperatures are presented in Figure 3a–g. Strong change of the
birefringence with temperature was clearly observed.

For the pure FLC compound, values of spontaneous polarization (Ps) reach ~100 nC cm−2 at
saturation, which is quite typical values for the chiral LC homologues belonging to the ZLL-series [19,78].
The electro-optic response of PE-FLC nanocomposite has been detected at very high voltages of
Vpp = 210 V (19 Hz). The electro-optic switching was clearly observed under applied electric field of
low frequency. The “bright” and “dark” states are shown on Figure 4. However, while trying to estimate
the spontaneous polarization values, no current bumps that could be associated with spontaneous
polarization were detected under this field. This effect can be explained by the suppressing of the polar
order of the ferroelectric SmC* phase confined by the inner boundaries of the stretched porous PE film.
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nanocomposite film (17 µm thick) after alignment by the a.c. electric field of low frequency (10–20 Hz,
40 kV cm−1 applied for 5–30 min.): (a) the angle between the polarizer plane and main direction of
porous long axes is 45◦ (dark state) and (b) the angle between the polarizer plane and main direction of
porous long axes is 0◦ (bright state). Width of each sub-microphotograph is ~250 µm.

3.2. Structural Properties

Figure 5 shows the WAXS results, specifically the 2D-X-ray patterns obtained for stretched porous
PE film (Figure 5a), for PE-FLC nanocomposite in the ferroelectric SmC* (Figure 5b) and in the
paraelectric SmA* phases (Figure 5c) at indicated temperatures. The corresponding WAXS intensity
profiles are shown on Figure 5d for pure stretched PE film (at 30 ◦C and 90 ◦C) and on Figure 5e for
stretched PE-FLC nanocomposite (at 70 ◦C). WAXS results clearly indicate the alignment of the long
molecular axis of the FLC material along the stretching direction of the studied porous PE film.
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 Figure 5. Two-dimensional-X-ray patterns for: (a) pure stretched PE film (30 ◦C); (b) stretched PE-FLC
nanocomposite in the SmC* phase (~70 ◦C); (c) stretched PE-FLC nanocomposite in the SmA* phase
(~106 ◦C). For (a–c), stretching direction is horizontal. The wide-angle X-ray scattering (WAXS) intensity
profile measured for (d) the pure stretched PE film (at 30 ◦C and 90 ◦C, black and green curves,
respectively) and (e) for the PE-FLC nanocomposite (at 70 ◦C).

Temperature dependence of the smectic layer spacing, d, for pure FLC compound and for PE-FLC
nanocomposite measured on cooling in the temperature range of the SmA* and the SmC* phases is
shown on Figure 6a. The cartoon showing that the long molecular axis is oriented along the stretching
direction of the porous PE film is presented in Figure 6b. The hexatic Hex* phase (might be either
SmI* or SmF*) was not characterized due to a very narrow temperature range and its fully monotropic
character (i.e., this is a fully overcooled phase). While approaching the SmA*-SmC* phase transition on
cooling, pure FLC material exhibited a slight increase of the smectic layer spacing values (see Figure 6a),
which is obviously due to stretching of aliphatic molecular chains with decrease of temperature.
The same explanation is valid also for a slight increase of d values at lower temperatures in the SmC*
phase. Nevertheless, a strong decrease of the smectic layer spacing values close below the SmA*-SmC*
phase transition clearly related to the increase of the tilt angle of molecules with respect to the smectic
layer normal. Overall, qualitatively similar behavior of the smectic layer spacing was observed for the
PE-FLC nanocomposite; a slight shift-up of the respective curve can be explained by a difference in the
SAXS setup calibration. The value of the tilt angle determined from the SAXS data [79] for the pure FLC
compound is 22.2 degrees at 20 ◦C below the SmA*-SmC* phase transition temperature. Nevertheless,
the results of X-ray studies show that the layered structure of the smectic phases for the PE-FLC
nanocomposite is fully preserved as it was determined for the pure FLC compound. However, there is
a slight decrease in the SmA*-SmC* phase transition temperature for the PE-FLC nanocomposite with
respect to that of the pure FLC compound.
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Figure 6. Temperature dependence (a) of the smectic layer spacing, d, for pure FLC compound (grey
circles) and for the PE-FLC nanocomposite (black circles) measured on cooling. Vertical arrows indicate
the SmA*-SmC* phase transition. The measurement error approximately corresponds to the size of
symbols. (b) Schematic cartoon of the molecular orientation in SmA* phase inside the pores of the
stretched PE film; stretching direction is horizontal; rods stacked in layers represent the FLC molecules
oriented along the stretching direction of the PE film.

The MOPAC/AM1 model was used to calculate the length of FLC molecules in the energy
optimized conformation. The molecular structure with the principal axis of minimum moment of
inertia (“long molecular axis”) is presented in Figure 7. Taking into account the most extended
conformer, the length of molecule, L, is 38.5 Å. This value appropriately correlates with the layer
spacing values obtained within the orthogonal SmA* phase (see Figure 6a); the difference can be related
to the non-perfect orientational order [79].
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minimization using MOPAC/AM1 method. The length of the most extended conformer is 38.5 Å.

Temperature dependence of the average distance, D, between the long axis of FLC molecules
(i.e., intermolecular distance) measured by WAXS on cooling for the PE-FLC nanocomposite is presented
on Figure 8. There is a continuous decrease of the intermolecular distance of the long molecular axis
on cooling, indicating the increase of the positional order; no anomalies in intermolecular distance
values are observed at the SmA*-SmC* phase transition (see Figure 8).
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3.3. Dielectric Properties

Broadband dielectric spectroscopy was done on empty stretched porous PE film (Figure 9a),
pure FLC compound (Figure 9b), and on the resulting PE-FLC nanocomposite (Figure 9c). The imaginary
parts, ε”, of complex permittivity for all three above-mentioned systems versus temperature and versus
frequency are presented in Figure 9a–c as an illustrative result to compare the dielectric response and to
check the ferroelectric character of the polar smectic phase. For the pure PE film, no response resulting
from the collective behavior was detected (see Figure 9a). For pure FLC compound (see Figure 9b),
the dielectric spectra obtained within the whole temperature range of the paraelectric SmA* and the
ferroelectric SmC* phases at zero bias electric field reveal a strong contribution of the Goldstone mode
(the relaxation mode related to azimuthal fluctuations of the molecules in the smectic layer), especially
in the SmC* phase. In the vicinity of the SmA*-SmC* phase transition, a collective mode related to
molecular fluctuations in the tilt magnitude, so-called soft mode, was observed. This behavior fully
confirms the paraelectric character of the orthogonal SmA* phase and the ferroelectric character of
the tilted SmC* phase detected for pure FLC compound. This is quite typical dielectric behavior of
the soft and Goldstone modes as it was shown by various authors before [19,30,31,45]. The dielectric
behavior of the PE-FLC nanocomposite is presented on Figure 9c. The detected collective relaxation
processes look completely different if compared to that of pure FLC compound (see Figure 9c). In the
ferroelectric phase, the value of dielectric constant for the PE-FLC nanocomposite is approximately
102 times lower than that for pure FLC compound. This indicates that the structure of the FLC
confined inside the PE matrix differs from the bulk FLC. Recently, it has been shown [80,81] that, in the
confined FLC, there are two important but conflicting influences. The boundary conditions due to the
anchoring of polar molecules at the surfaces that prefer the twisted structure, while the interactions
between molecules favor the helical structure [80,81]. Both effects can also coexist, but only with the
help of the dechiralization defects. When the size of the confinement is comparable with the helix
periodicity, the helical structure starts to be completely unwound and the pure twisted structure occurs.
The boundary conditions also bring about the internal depolarizing fields, which can be responsible
for drop down of the dielectric constant [80,81].

Temperature dependence of real part of complex permittivity measured at 2 kHz on cooling for
PE-FLC nanocomposite under d.c. bias field is presented in Figure 10. The applied d.c. bias electric
field (as indicated) does not influence much the value of dielectric constant in the ferroelectric SmC*
phase, which also confirms the absence of the helical structure for the PE-FLC nanocomposite.
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3.4. Discussion on Significant Permittivity Reduction of PE-FLC Nanocomposite

As it has been shown in the previous subsection, the dielectric properties of the ferroelectric LC
compound confined in the stretched porous PE film are strongly affected by the boundaries [80,81],
i.e., by the inner surface of PE film pores. The decrease of permittivity values, while comparing the
bulk FLC sample and stretched porous PE film filled with FLC, is quite huge and can be expressed as
their ratio:

ε
εFLC

=
1 + χ

1 + χFLC
≈ 10−2. (1)

Assuming that the typical size of PE matrix pores, dp, is of order micrometers dp ≈ 1µm and the
FLC compound is confined inside pores, the helical structure of the chiral tilted SmC* phase is expected
to be almost completely unwound. However, due to the strong anchoring of the FLC molecules at
pore boundaries, the FLC compound is expected to exhibit a twisted structure while placed inside the
pores [80,81]. In such case, in contrast with the ideal helical FLC structure [15], the bound electrical
charges are induced, resulting in quite strong internal (depolarising) fields. These depolarizing fields
are not fully compensated since oscillating external electric field is applied.
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For qualitative estimation let us consider a twisted structure in the layer of the thickness, dp.
Then, the susceptibility of the system can be expressed (in SI units) as in Reference [81]:

χ =
χFLC(

p
2dp

)2
+ πLχFLC

, (2)

where χFLC is the susceptibility of an ideal helical ferroelectric liquid crystal structure, p is its helical
pitch length, and 0 ≤ L ≤ 1 is a depolarizing factor. A zero value of the depolarizing factor, L = 0,
corresponds to the full charge compensation.

When the ratio p/dp ~ 1, which is exactly our case, and using the susceptibility decrease described
by relation (1) with the relation (2), the depolarizing factor, L, can be estimated as: L ≈ 0.1–0.2
(it has been assumed that ε ≈ 3 and εFLC ≈ 250). According to the explanation shown above, it
can be summarized that the dielectric response of the PE-FLC nanocomposite is highly sensitive to
uncompensated electrical charges and even their small amount might explain a significant reduction of
permittivity values while comparing the pure FLC sample and the stretched porous PE film filled with
the FLC material.

4. Conclusions

Properties of the nanocomposite thin film composed of porous stretched PE film filled with
the lactic acid derivative possessing the ferroelectric SmC* phase (PE-FLC) were studied by several
experimental techniques. For the PE-FLC nanocomposite, there was a slight decrease of the Iso-SmA*
and SmA*-SmC* phase transition temperatures with respect to those of pure FLC compound; this effect
wasclearly observed on both the cooling and heating runs and was not related to the temperature
hysteresis peculiar to LCs, i.e., the difference of the phase transition temperatures obtained on heating
and cooling runs due to non-zero heating cooling rates. In the ferroelectric phase, the electro-optical
response on applied electric field was clearly observed. However, ferroelectric switching was not
detected up to 10 kV/cm electric field. According to SAXS results, the layered structure of the
paraelectric and ferroelectric smectic phases of the PE-FLC nanocomposite fully corresponds to that of
the pure FLC compound. The capability of the porous stretched PE to align embedded FLC molecules
along stretching direction was confirmed. This makes porous polyolefin matrices very promising for
design of novel functional nanocomposite materials. Quite high permittivity values obtained in the
ferroelectric phase of pure FLC, which is related to the contribution of the Goldstone mode, was strongly
suppressed in the case of PE-FLC nanocomposite film. This clearly indicates the suppressing of the
molecular reorientation for this specific self-organized nanocomposite system. This effect can be
attributed to the size-effect observed in the dielectric response of FLC compound confined inside
micrometric regions and to the internal electric fields always existing at the micro-region boundaries.

The PE-FLC composite materials can be potentially used for various advanced applications,
taking into account definite advantages of porous stretched PE films, namely a simple manufacturing,
high chemical and mechanical stability, low production costs, availability of raw material, and unique
properties of low molar mass chiral liquid crystals with polar self-assembling behavior. For example,
addition of photosensitive dyes to FLC substance enables us to achieve dual electro- and photoinduced
control of the optical properties of the composites that can be promising for application in photonics
and optoelectronics. Further studies of such PE-FLC nanocomposite systems are in progress now and
will be presented elsewhere.
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18. Czerwiński, M.; Tykarska, M.; Dąbrowski, R.; Żurowska, M.; Kowerdziej, R.; Jaroszewicz, L.R. The influence
of structure and concentration of cyanoterminated and terphenyl dopants on helical pitch and helical twist
sense in orthoconic antiferroelectric mixtures. Liq. Cryst. 2012, 39, 1498–1502. [CrossRef]

19. Bubnov, A.; Novotná, V.; Hamplová, V.; Kašpar, M.; Glogarová, M. Effect of multilactate chiral part of liquid
crystalline molecule on mesomorphic behaviour. J. Mol. Struct. 2008, 892, 151–157. [CrossRef]

20. Bobrovsky, A.; Shibaev, V.; Cigl, M.; Hamplová, V.; Dorovatovskii, P.; Ostrovskii, B.; Bubnov, A.
The effect of spacer and alkyl tail lengths on the photoorientation processes in amorphousized films
of azobenzene-containing liquid crystalline polymethacrylates. Liq. Cryst. 2020, 47, 377–383. [CrossRef]

21. Cigl, M.; Bubnov, A.; Kašpar, M.; Hampl, F.; Hamplová, V.; Pacherová, O.; Svoboda, J. Photosensitive chiral
self-assembling materials: Significant effects of small lateral substituents. J. Mater. Chem. C 2016, 4, 5326–5333.
[CrossRef]
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23. Milewska, K.; Drzewiński, W.; Czerwiński, M.; Dąbrowski, R. Design, synthesis and mesomorphic properties
of chiral benzoates and fluorobenzoates with direct SmCA*-Iso phase transition. Liq. Cryst. 2015, 42,
1601–1611. [CrossRef]
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