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Abstract: Anthrax is a disease caused by Bacillus anthracis that affects mammals, including humans.
Recombinant B. anthracis protective antigen (rPA) is the most common basis for modern anthrax
vaccine candidates. However, this protein is characterised by low stability due to proteolysis and
deamidation. Here, for the first time, two modification variants leading to full-size rPA stabilisation
have been implemented simultaneously, through deamidation-prone asparagine residues substitution
and by inactivation of proteolysis sites. Obtained modified rPA (rPA83m) has been demonstrated to
be stable in various temperature conditions. Additionally, rPA1+2 containing PA domains I and II
and rPA3+4 containing domains III and IV, including the same modifications, have been shown to be
stable as well. These antigens can serve as the basis for a vaccine, since the protective properties of PA
can be attributed to individual PA domains. The stability of each of three modified anthrax antigens
has been considerably improved in compositions with tobacco mosaic virus-based spherical particles
(SPs). rPA1+2/rPA3+4/rPA83m in compositions with SPs have maintained their antigenic specificity
even after 40 days of incubation at +37 ◦C. Considering previously proven adjuvant properties
and safety of SPs, their compositions with rPA83m/rPA1+2/rPA3+4 in any combinations might be
suitable as a basis for new-generation anthrax vaccines.

Keywords: Bacillus anthracis; recombinant protective antigen; vaccines; stabilisation; structurally
modified plant viruses; tobacco mosaic virus

1. Introduction

Anthrax is a dangerous disease that affects mammals, including humans. It is caused
by a gram-positive spore-forming bacterium, Bacillus anthracis. Modern anthrax history
documents several accidents, including cases of bioterrorism-related inhalational anthrax
infection in the USA in 2001 [1] and a 2016 outbreak of anthrax in Siberia [2]. Given
the danger of bioterror attacks using B. anthracis spores and local anthrax outbreaks, the
existence of an effective anthrax vaccine is required. At the same time, licensed anthrax
vaccine formulations based on non-encapsulated B. anthracis strains cell filtrates—Anthrax
Vaccine Adsorbed (AVA, BiothraxTM, Lansing, MI, USA) and Anthrax Vaccine Precipi-
tated (AVP, UK), as well as live attenuated anthrax vaccines licensed in Russia and China,
have some significant disadvantages. The use of these vaccines has been commonly as-
sociated with adverse reactions [3]. In cell filtrate-based vaccines, such reactions might
have been due to the indeterminate quantity of anthrax toxin edema factor and lethal
factor or of other bacterial proteins, while their contribution to protective immune re-
sponse is under-researched [4]. Thus, the development of an effective new-generation
recombinant vaccine is desirable.

Most modern anthrax vaccines and vaccine candidates target anthrax toxin. It consists
of three proteins encoded by the large virulence plasmid pXO1: a protective antigen, a lethal
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factor and an edema factor. Protective antigen (PA, 83 kDa) is totally harmless to humans
in the absence of other toxin components, because the PA’s only function is to transport the
edema factor and lethal factor through the host cell’s barriers. What is crucial about this
protein is that PA-induced antibodies are sufficient for the induction of a protective anti-
anthrax immune response [5]. Therefore, the most convenient way to design a new vaccine
formulation is to use recombinant PA (rPA). However, the stability of rPA is very low and
decreases when rPA is adsorbed to aluminium hydroxide, the adjuvant used in AVA and in
almost all candidate anthrax vaccines being in clinical trials [6–8]. The instability of rPA
is due to spontaneous deamidation of asparagine residues and proteolysis at furin and
chymotrypsin cleavage sites [9–11]. The effective stabilisation of anthrax protective antigen
and the development of a proper adjuvant for it are problems that remain to be solved.

Since deamidation and proteolysis are the main reasons for rPA instability, the most
obvious solution is a site-specific mutagenesis of deamidation-prone asparagine residues
and inactivation of proteolysis sites. Among the 68 PA asparagine residues that are vulner-
able to deamidation, there are several that are mostly relevant because of their half-lives
and their impact on rPA properties [9,10]. It has been shown that the replacement of Asn713

and Asn719 by Gln leads to an increase in rPA stability. Modified protein has induced toxin-
neutralising antibodies at a similar level to that elicited by fresh, non-modified protein.
However, in contradistinction to non-modified rPA, modified protein kept the ability to
elicit the same level of antibodies after storage [12]. Two major proteolysis-sensitive sites in
the structure of PA are a furin-sensitive site in domain I and a chymotrypsin-sensitive site
in domain II. Their inactivation has also been shown to lead to rPA stabilisation [11].

Individual isolated PA domains may have protective properties [13,14]. Therefore,
the development of an anthrax vaccine might include the use of recombinant proteins
containing different combinations of PA domains, rather than the full-size protein. This
approach should ease the task of obtaining anthrax antigens. Previously, we have created a
protein containing III and IV PA domains with Asn713 and Asn719 replaced by Gln (rPA3+4).
This protein demonstrated a relatively high level of stability [15]. At the same time, there
are data to suggest that the highest quantity of protective epitopes is located in the IV
domain of the protein [13].

Specific rPA stabilisation provided by modifications of rPA structure can be improved
by the addition of non-specific stabilisation through the formation of compositions with
carrying platforms. Previously, we have shown that recombinant full-size PA (rPA83)
in composition with spherical particles (SPs) obtained from the tobacco mosaic virus,
through its thermally induced structural rearrangement, is more stable than when it is
in the form of an individual protein [15]. The use of plant viruses or their virus-like
particles as carrying platforms for different antigens is a fairly common concept in vaccine
development [16,17]. SPs have been proven to have immunostimulating properties [17],
while being biodegradable and safe for mammals [18–20]. Considering the foregoing
discussion, SPs could be a promising carrying platform and stabiliser for rPA83.

Even though we consider rPA3+4 as a prospective vaccine basis due to the presence of
a neutralising epitope-rich domain IV, the development of a stable vaccine containing all
PA domains is still an objective to be achieved. In the current study, a recombinant protein
that contained I and II PA domains with furin-sensitive and chymotrypsin-sensitive sites
mutations, which led to their deactivation, (rPA1+2) was designed and obtained. The study
also featured the construction and production of a full-size modified PA containing each
structural modification implemented in rPA3+4 and rPA1+2 (rPA83m). The stability of
rPA3+4, rPA1+2 and rPA83m was evaluated and was found to be relatively high. Composi-
tions of any one of obtained proteins with SPs and compositions of rPA1+2 and rPA3+4
simultaneously adsorbed to SPs were obtained and the influence of SPs on the antigens’
stability was evaluated. Current data show that all three designed modified recombinant
proteins are hypothetically able to serve as a basis for anthrax vaccine development and
that SPs are a promising carrying platform for these antigens.
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2. Materials and Methods
2.1. Obtaining Genetic Constructs

B. anthracis PA amino acid sequence [21] str.A2012 was taken as the basis for designing
recombinant proteins. rPA1+2 consists of 485 amino acids corresponding to residues 1–487
of full-length PA Uniprot sequence Q08G54 with the substitution of 162NSRKKR167 with
162QSSNKE167 and the deletion of two phenylalanines (F) in 313 and 314 positions. The
modified amino acid sequence was subjected to reverse translation in silico and optimised
for expression in an E. coli bacterial system as described previously [15]. An optimised
variant of synthetic rPA1+2 gene was assembled from overlapping oligonucleotides by the
Evrogen company (Moscow, Russia) and cloned into a pQE-30 expression vector (Qiagen,
Hilden, Germany) between the BamHI and HindIII cleavage sites. The resulting construct
was named pQE-30-rPA1+2. In pQE-30 vector BamHI follows the hexahistidine-tag coding
sequence, which is in the same coding frame. Thus, pQE-30 provides the expression of
cloned proteins with N-ter3m his-tag for further metal affinity purification.

The genetic construct for rPA83m was generated using pQE-30-rPA1+2 and a previ-
ously obtained rPA3+4 expression vector (pQE-30-rPA3+4) [15] as templates. During the
first stage, two DNA fragments corresponding to 3′-fragment of rPA1+2 gene (PCR1) and
to 5′-fragment of rPA3+4 gene (PCR2) were obtained using primers presented in Table 1.
PCR2 also contained 20 nucleotides, which were specific to the 3′-end of the rPA1+2-coding
sequence. At the second stage, overlap PCR with PCR1 and PCR2 was conducted, and
SphIFwd and PstIRev flanking primers were used for amplifying the fusion product (PCR3).
PCR3 was digested with SphI and PstI. The 3′-fragment of the rPA3+4 gene was obtained
by restricting the pQE-30-rPA3+4 vector with PstI and HindIII. The pQE-30-rPA1+2 vector
digested with SphI and HindIII was employed for the one-step cloning of PCR3 and the
3′-fragment of rPA3+4. The resulting construct was named pQE-30-rPA83m. A graphical
overview of the generation of the rPA83m expression vector is presented in Figure 1.

Table 1. Oligonucleotides used for construction of rPA83m synthetic gene.

Template Primer Name Primer Sequence

pQE-30-rPA1+2 SphIFwd 5′-acgcggaagtgcatgcgtct-3′

pQE-30-rPA1+2 rPA1+2Rev 5′-ggtttcctgaatctgcggca-3′

pQE-30-rPA3+4 rPA3+4Fwd 5′-tgccgcagattcaggaaaccaccgctcgtatcatcttcaac-3′

pQE-30-rPA3+4 PstIRev 5′-ctggtactgcaggttaccgt-3′

Underlined sequences represent the SphI and PstI restriction sites employed for cloning. The 20 nucleotide
sequence corresponding to the 3′-end of the rPA1+2 gene is included in both rPA1+2Rev and rPA3+4Fwd primers
and indicated in italics.
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Figure 1. Graphical overview of the generation of the rPA83m expression vector. pQE-30-rPA1+2 
and pQE-30-rPA3+4 are expression vectors containing nucleotide sequences of rPA1+2 and rPA3+4, 
respectively, that were cloned between the BamHI and HindIII cleavage sites. The rPA1+2-coding 
sequence is represented by blue rounds and the rPA3+4-coding sequence is represented by green 
rounds. The rPA1+2 3′-end sequence included in the rPA3+4Fwd primer is represented by the oval. 
Primers are indicated with the colour of the matrix to which they are specific. SphI and PstI re-
striction sites are located within the rPA1+2 and rPA3+4 nucleotide sequences, respectively. Re-
striction sites used for one-step cloning are marked in red. PCR1 is a product corresponding to the 
3′-fragment of rPA1+2. PCR2 is a product corresponding to the 5′-fragment of rPA3+4 and also 
contains a 20-nucleotide length sequence that is specific to the 3′-end of rPA1+2. PCR3 is a fusion 
product generated by overlap PCR using PCR1 and PCR2 as primary fragments and SphIFwd and 
PstRev as flanking primers. 1% agarose gel electrophoresis (ethidium bromide staining) of purified 
PCR1 and PCR2, as well as a PCR mix containing amplified PCR3, is presented; the lengths of DNA 
ladder (GeneRuler DNA Ladder Mix, Thermo Scientific, Waltham, MA, USA) are indicated on the 
right. 

2.2. Protein Expression and Purification 
E. coli strain SG13009 was used for the expression of recombinant proteins. The 

over-night cultures were grown in 3 mL 2YT medium (1.6% (w/v) tryptone, 1% (w/v) 
yeast extract, 0.5% (w/v) NaCl) with 50 µg/mL of kanamycin and 100 µg/mL of ampicillin 
at 37 °C, with shaking at 180 rpm. These cultures were transferred into 200 mL 2YT with 
the same content of antibiotics and were cultivated at +37 °C, with shaking at 180 rpm for 
3 h; they were then induced with 2 mM IPTG. For expression of rPA3+4 protein cultures 
were grown for 4 h at +37 °C and 180 rpm. For expression of rPA1+2 and rPA83m pro-
teins, cultures were grown for 4–6 h at +20 °C and 180 rpm. Following induction, cell 
pellets were harvested by centrifugation for 10 min at 5000× g and stored at −20 °C until 
use. Cell pellets were lysed in 6М GuHCl. 0.2% (w/v) natrium deoxycholate was added to 
GuHCl lysis buffer in order to eliminate endotoxins. Since proteins’ genetic constructs 
were pQE-30 based, all accumulated recombinant proteins contained hexahistidine-tag at 
the N-term and were purified by metal affinity chromatography with Ni2+-NTA resin 

Figure 1. Graphical overview of the generation of the rPA83m expression vector. pQE-30-rPA1+2
and pQE-30-rPA3+4 are expression vectors containing nucleotide sequences of rPA1+2 and rPA3+4,
respectively, that were cloned between the BamHI and HindIII cleavage sites. The rPA1+2-coding
sequence is represented by blue rounds and the rPA3+4-coding sequence is represented by green
rounds. The rPA1+2 3′-end sequence included in the rPA3+4Fwd primer is represented by the oval.
Primers are indicated with the colour of the matrix to which they are specific. SphI and PstI restriction
sites are located within the rPA1+2 and rPA3+4 nucleotide sequences, respectively. Restriction sites
used for one-step cloning are marked in red. PCR1 is a product corresponding to the 3′-fragment
of rPA1+2. PCR2 is a product corresponding to the 5′-fragment of rPA3+4 and also contains a
20-nucleotide length sequence that is specific to the 3′-end of rPA1+2. PCR3 is a fusion product
generated by overlap PCR using PCR1 and PCR2 as primary fragments and SphIFwd and PstRev
as flanking primers. 1% agarose gel electrophoresis (ethidium bromide staining) of purified PCR1
and PCR2, as well as a PCR mix containing amplified PCR3, is presented; the lengths of DNA ladder
(GeneRuler DNA Ladder Mix, Thermo Scientific, Waltham, MA, USA) are indicated on the right.

2.2. Protein Expression and Purification

E. coli strain SG13009 was used for the expression of recombinant proteins. The over-
night cultures were grown in 3 mL 2YT medium (1.6% (w/v) tryptone, 1% (w/v) yeast
extract, 0.5% (w/v) NaCl) with 50 µg/mL of kanamycin and 100 µg/mL of ampicillin at
37 ◦C, with shaking at 180 rpm. These cultures were transferred into 200 mL 2YT with
the same content of antibiotics and were cultivated at +37 ◦C, with shaking at 180 rpm for
3 h; they were then induced with 2 mM IPTG. For expression of rPA3+4 protein cultures
were grown for 4 h at +37 ◦C and 180 rpm. For expression of rPA1+2 and rPA83m proteins,
cultures were grown for 4–6 h at +20 ◦C and 180 rpm. Following induction, cell pellets
were harvested by centrifugation for 10 min at 5000× g and stored at −20 ◦C until use. Cell
pellets were lysed in 6 M GuHCl. 0.2% (w/v) natrium deoxycholate was added to GuHCl
lysis buffer in order to eliminate endotoxins. Since proteins’ genetic constructs were pQE-30
based, all accumulated recombinant proteins contained hexahistidine-tag at the N-term
and were purified by metal affinity chromatography with Ni2+-NTA resin (Qiagen, Hilden,
Germany) under denaturing conditions with 6 M GuHCl and 8 M urea, according to the
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manufacturer’s protocol. Proteins eluted from the column were dialysed against deionised
water using 12–14 kDa MWCO dialysis tubes (Servapor, Heidelberg, Germany), in the ratio
1/250, for 4 h, replacing water hourly and stored as water solution at −20 ◦C.

2.3. Western Blot

Proteins were separated by electrophoresis in an 8–20% SDS-PAGE and transferred
to PVDF membrane (Invitrogen, TM, ThermoFisher Scientific, Waltham, MA, USA) using
a Pierce™ Power Blotter transfer system (Thermo Fisher Scientific, Waltham, MA, USA).
The membrane was blocked with 5% (w/v) non-fat dry milk in TTBS (0.01 M Tris-HCl
(pH 7.4), 0.15 M NaCl, 0.05% (v/v) Tween-20) and treated with polyclonal mouse antiserum to
non-modified rPA83 or chimeric recombinant antibodies to PA in 1:5000 dilution. Polyclonal
mouse antiserum to non-modified rPA83 had been obtained previously in our laboratory [15]
and chimeric recombinant antibodies to PA had been previously obtained [22] and generously
provided by our colleagues Dr. Teimur K. Aliev and Dr. Anna A. Panina from Shemyakin-
Ovchinnikov Institute of bioorganic chemistry. Secondary HRP-conjugated antibodies to
mouse IgG (115-035-003, Jackson ImmunoResearch Laboratories, Inc., West Grove, PA, USA)
or to human IgG (1G1cc, HyTest, Moscow, Russia) were used in 1:10,000 dilutions. The
WesternBright ECL chemiluminescent substrate (Advansta Inc., San Jose, CA, USA) was used
and the signal was detected using the ChemiDoc XRS+ gel documentation system (Bio-Rad
Laboratories, Inc., Hercules, CA, USA).

2.4. Obtaining SPs

Tobacco mosaic virus with a concentration of 2 mg/mL was used for obtaining SPs
according to the protocol described in Trifonova et al. (2015) [23].

2.5. Labelling of Proteins and Fluorescence Microscopy

In this case, rPA1+2 and rPA3+4 were labelled with fluorescein isothiocyanate (FITC)
or rhodamine isothiocyanate (RITC), respectively. 50 µL of freshly prepared FITC (Sigma, St.
Louis, MO, USA) or RITC (Sigma, St. Louis, MO, USA) in anhydrous DMSO (1 mg/mL) was
slowly added, in aliquots, with gentle stirring, to 500 µL of corresponding protein solution
in carbonate-bicarbonate buffer (pH = 9.1). rPA1+2FITC and rPA3+4RITC solutions were
incubated overnight at +4 ◦C in the dark and then dialysed in the dark against 1 × PBS in
the ratio 1/2000 for 4 h, replacing the 1× PBS every hour. For fluorescence analysis, samples
were loaded on formvar-coated coverslips and dried in air in the dark. Before checking,
coverslips were treated with a photo-protector 1,4-diazabicyclo[2.2.2]octane and fixed on the
slide, followed by examination under an Axiovert 200M fluorescence microscope (Carl Zeiss,
Gottingen, Germany) equipped with an ORCAII-ERG2 integrated camera (Hamamatsu
Photonics, Hamamatsu City, Japan).

2.6. Immunofluorescence Analysis

Immunofluorescence analyses of SPs-rPA1+2, SPs-rPA3+4 and SPs-rPA83m compo-
sitions were performed as described previously [24]. Primary antibodies were used in
1/100 dilution; secondary anti-mouse IgG antibodies conjugated to Alexa Fluor® 546 (A-
11030, Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) or secondary anti-human
IgG antibodies conjugated to CF™ 488A (SAB4600055, Sigma-Aldrich, St. Louis, MO, USA)
were used in 1/200 or 1/100 dilutions, respectively.

2.7. Protein Stability Analysis

A modified recombinant anthrax antigen stability analysis was performed by protein
electrophoresis in 8–20% SDS-PAGE with staining by Coomassie G-250. 1 µg of antigen
was analysed in each gel line.
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2.8. 2D-Electrophoresis Analysis

2D-electrophoresis with the following Coomassie G-250 staining was performed as
described in Zvereva et al., 2015 [25] (second variant). Ampholines with pH 4.6–10 were
used. Equal amount (10 µg) of the rPA83m incubated at +4 ◦C or at +37 ◦C was loaded to
the “acid border” of gel column.

For 2D-electrophoresis with fluorescence detection equal amount (3 µg) of the rPA83m
incubated at +4 ◦C or at +37 ◦C was labelled with 400 pmol of Cyanine2 (cat. #3A041) or
Cyanine5 (cat. #3C041) NHS ester minimal dyes (Lumiprobe RUS Ltd., Moscow, Russia),
respectively, according to the manufacturer’s instructions. After samples were mixed,
0.75% (w/v) DTT and 0.4% (v/v) Ampholine 3–10 (Bio-Rad Laboratories, Hercules, CA,
USA) were added. IEF was performed using 3-10NL nonlinear ReadyStrip IPG Strips
(cat. #1632009, Bio-Rad Laboratories, Hercules, CA, USA). Isoelectrofocusing (IEF) was
performed using PROTEAN i12 IEF system (Bio-Rad Laboratories, Hercules, CA, USA).
After IEF, the ejected strips were incubated in equilibration buffer (6 M urea, 0.375 M Tris-
HCl pH 8.8, 40% (w/v) glycerol, 2% (w/v) SDS, 2% DTT (w/v)) for 30–45 min. The tube gels
were placed onto polyacrylamide gels (12%) of 1-mm thickness, 20 × 20 cm (EV-20, Helicon,
Moscow, Russia) and fixed using 1.0% (w/v) agarose containing 0.01% (w/v) bromphenol
blue. The electrophoresis was carried out at 120–200 V for 5–7 hours. The gels were scanned
with a TYPHOON FLA950 (GE Healthcare, Chicago, IL, USA). The 100 µm resolution of
the scanner was used. The 473 nm laser (with the voltage adjusted to 800 V) or the 635 nm
laser (with the voltage adjusted to 800 V) was used for detection of Cyanine2 or Cyanine5,
respectively. DBR1 (530DF20/665LP) emission filter was applied in both cases of Cyanine2
(515–545 nm wavelength) and Cyanine5 (>665 nm wavelength) detection.

3. Results
3.1. Designing and Obtaining Stable Recombinant Anthrax Antigens

In order to obtain stable recombinant antigens of B. anthracis, three genetically modified
recombinant proteins, rPA3+4, rPA1+2 and rPA83m, were designed, obtained and analysed.
Native PA consists of four domains (Figure 2a). The genetic construction of rPA3+4
containing III and IV domains of PA with Asn713 and Asn719 substitutions for glutamines
(Figure 2c) had been generated previously [15]. Here, rPA1+2 containing domains I and II
of PA with proteolytic sites modifications leading to their deactivation was also developed.
Based on results obtained by Ramirez et al. (2002) [11], in order to inactivate proteolysis
sites, the sequence of 164RKKR167 was replaced by 164SNKE167 at the furin cleavage site
and two phenylalanines in the positions 313 and 314 were deleted at the chymotrypsin
cleavage site (Figure 2b). Deamidation-prone Asn162 [9] was also substituted for glutamine
within the rPA1+2 sequence. The construction of rPA83m (Figure 2d) was obtained on
the basis of rPA1+2 and rPA3+4 expression vectors by overlap PCR. Therefore, rPA83m
included all modifications implemented in rPA1+2 and rPA3+4. A graphical overview of
recombinant antigens, with each modification introduced highlighted in comparison to the
native PA, is shown in Figure 2.

The molecular weights of rPA3+4, rPA1+2 and rPA83m, calculated by amino acid
sequence via the ProtParam EXPaSy proteomics server (Swiss Institute of Bioinformatics,
http://expasy.org/ (accessed on 24 February 2022), were 30 kDa, 56 kDa and 84 kDa,
respectively; these are consistent with those revealed by SDS-PAGE analyses (Figure 3a,
lanes 3, 2 and 1). Modified antigens were shown to be recognised by polyclonal antiserum
to non-modified recombinant full-size PA (Figure 3b, lanes 3, 2 and 1). The rPA83m
and rPA3+4 were also shown to interact clearly with recombinant chimeric monoclonal
anti-PA antibodies, which display neutralising activity [22] (Figure 3c, lanes 1 and 3). The
recognition of proteins with higher electrophoretic mobility in recombinant protein samples
by both polyclonal antiserum and monoclonal antibodies (Figure 3a–c, lanes 1–3, 5), along
with the absence of a reaction with E. coli cell lysate (negative control) (Figure 3a–c, lane 6),
proved these proteins to be antigenically active rPA fragments rather than contaminations
from E.coli cells. Moreover, in the positive control sample with non-modified recombinant

http://expasy.org/
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PA63 (rPA63), degraded forms of protein (Figure 3a, lane 5) prevailed. Conversely, in each
of the modified rPA samples (Figure 3a, lanes 1, 2 and 3), full-size forms predominated,
indicating their relatively high stability.
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Figure 3. Interaction of obtained anthrax modified recombinant antigens with a polyclonal anti-
rPA83 antiserum (b) and chimeric monoclonal PA-neutralising antibodies (c). L—protein molecular
weight markers ladder (molecular weights, in kDa, are indicated on the left), 1—rPA83m, 2—rPA1+2,
3—rPA3+4, 4—Tobacco mosaic virus, 5—rPA63, 6—E. coli cell lysate. Electrophoresis analysis in
8–20% SDS-PAGE, staining by Coomassie G-250 (a). Western blot analysis with primary polyclonal
antiserum to the non-modified rPA83 (1:5000) (b) or chimeric monoclonal PA-neutralising antibodies
(1:5000) (c) and secondary HRP-conjugated antibodies (1:10,000). Original blot membranes’ images
are presented in the Figure S1.
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Since a solution to the PA degradation problem was the main aim of protein modifica-
tions, the stability of each modified recombinant anthrax antigen was evaluated. For this
purpose, proteins were incubated under various temperature conditions. Before incubation
and for each control point after incubation, samples containing an equal amount of protein
were analysed. rPA83m remained stable after 144 days of incubation at +4 ◦C (Figure 4a,
lanes 3–6), the appearance of proteins with higher electrophoretic mobility than rPA83m
was not clearly detected and no decrease in rPA83m content in the samples was observed
after incubation. On the contrary, non-modified rPA83 incubated at the same temperature
underwent relatively rapid degradation and the full-size form was not detected at all after
33 days of incubation; furthermore, the set of proteins with higher electrophoretic mobility
than rPA83 changed in samples during the incubation (Figure 4b, lines 1–7).
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sponded to the non-degraded protein. For rPA3+4, stability for 21 days at +37 °C, which 
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Figure 4. The stability of rPA83m (a), non-modified rPA83 (b), rPA3+4 and rPA1+2 (c); (a)—1, 2—
rPA83m not exposed to incubation. 3–6—four independent replicates of a rPA83m sample incubated
at +4 ◦C for 144 days. (b)—1—non-modified rPA83 not exposed to incubation, 2–7—non-modified
rPA83 incubated at +4 ◦C for 1, 4, 7, 14, 33 and 55 days, respectively. (c)—L—protein molecular
weight markers ladder (molecular weights, in kDa, are indicated on the left). 1, 4—rPA3+4 not
exposed to incubation. 2, 3—rPA3+4 incubated at +25 ◦C for 17 and 160 days, respectively. 5, 6—
rPA3+4 incubated at +37 ◦C for 21 and 160 days, respectively. 7—rPA1+2 not exposed to incubation.
8—rPA1+2 incubated at +25 ◦C for 160 days. 9—rPA1+2 incubated at +37 ◦C for 160 days. Original
gels are presented in the Figure S2.
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Thus, modifications implemented in rPA83m resulted in the considerably higher
stability of the protein compared to the non-modified rPA83 at +4 ◦C, which is a common
vaccine storage temperature.

In this case, rPA3+4 has previously been shown to be stable at +25 ◦C for at least
17 days [15]. The current study continued the assessment of its stability and demonstrated
that rPA3+4 mostly remains stable, even after 160 days of incubation at +25 ◦C (Figure 4c,
lanes 2, 3). Here, rPA1+2 was shown to have similar stability: after 160 days of incubation at
+25 ◦C, the major band revealed by electrophoresis analysis (Figure 4c, lane 8) corresponded
to the non-degraded protein. For rPA3+4, stability for 21 days at +37 ◦C, which was used to
simulate the accelerated ageing of protein, was also demonstrated (Figure 4c, lane 5). After
160 days of rPA3+4 (Figure 4c, lane 6) and rPA1+2 (Figure 4c, lane 9) incubation at +37 ◦C,
the bands corresponding to non-degraded protein were undetectable.

3.2. Modified Recombinant Anthrax Antigens’ Adsorption to SPs

In previous research, the authors have shown that spherical particles obtained from
the tobacco mosaic virus are able to stabilise non-modified rPA83 [15]. In the current study,
the examination of the adsorption of each of three modified anthrax antigens to SPs was
performed using immunofluorescence analysis (Figure 5, Figure S3). It was shown that
rPA83m (Figure 5a,b), rPA1+2 (Figure 5c,d) and rPA3+4 (Figure 5e,f) were able to form SPs-
antigen compositions. According to the authors’ previous study, the SPs/antigen mass ratio
was chosen to be 10/1 [17]. All compositions were obtained in PBS, which is an acceptable
buffer for vaccine formulations. For fluorescence visualisation, SPs-antigen compositions
were treated with mouse polyclonal antiserum to an appropriate antigen and with Alexa
Fluor® 546-conjugated secondary antibodies. In each case, the presence of a signal indicated
the maintenance of antigenic properties of a corresponding modified anthrax antigen
while being adsorbed to SPs. Moreover, the possibility of recognition by monoclonal
neutralising antibodies was studied for the compositions of SPs-rPA83m (Figure 5g,h)
and SPs-rPA3+4 (Figure 5i,j). CF™ 488A-conjugated secondary antibodies specific to
human IgG were employed for visualisation. The presence of the green fluorescent signal
corresponding to SPs’ location illustrated that a neutralising epitope was exposed and was
available for interaction with antibodies within the compositions obtained. rPA1+2 and
rPA3+4 simultaneously adsorbed to SPs could provide an alternative approach to vaccine
development without using the full-size rPA.

In order to examine the possibility of simultaneous adsorption, rPA1+2 and rPA3+4
were labelled with fluorescein isothiocyanate (FITC) or rhodamine isothiocyanate (RITC), re-
spectively and analysed by both fluorescence and SDS-PAGE analysis (Figure 6,
Figures S4 and S5). The resulting labelled proteins were named rPA1+2FITC (Figure 6d,e,
lane 2) and rPA3+4RITC (Figure 6d,e, lane 1). Compositions of SPs with both rPA1+2FITC

and rPA3+4RITC (Figure 6d,e, lane 3) were obtained in PBS with the following mass ratio of
the respective ingredients: 20/1/1, which corresponded to 10/1 of the SPs/total antigen
ratio. Pictures obtained using fluorescence imaging mode in FITC (Figure 6a) and RITC
(Figure 6b) channels and phase contrast imaging mode (Figure 6c) demonstrated that
particles’ outlines in all three images totally correlated. Therefore, rPA1+2 and rPA3+4 were
shown to be able to simultaneously cover the surface of SPs.
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Figure 5. Compositions of SPs with anthrax modified recombinant antigens. Immunofluorescence 
analysis of SPs-rPA83m (a,b,g,h), SPs-rPA1+2 (c,d) and SPs-rPA3+4 (e,f,i,j) compositions. (a,b), 
Figure 5. Compositions of SPs with anthrax modified recombinant antigens. Immunofluorescence
analysis of SPs-rPA83m (a,b,g,h), SPs-rPA1+2 (c,d) and SPs-rPA3+4 (e,f,i,j) compositions. (a,b), (c,d),
(e,f), (g,h), (i,j) in pairs are the same images presented in fluorescence and phase contrast modes,
respectively. The SPs-protein compositions were treated with polyclonal antiserum to rPA83m (a,b),
to rPA1+2 (c,d) or to rPA3+4 (e,f) or with chimeric monoclonal PA-neutralising antibodies (g–j) and
secondary antibodies conjugated to Alexa Fluor® 546 (a–f) or to CF™ 488A (g–j). Scale bars, 5 µm.
SPs/antigen mass ratio within compositions is 10/1. Compositions were obtained in 1× PBS. Images
of corresponding negative control samples (not incubated with primary antibodies) are presented in
the Figure S3a–j, respectively. Images of SPs-rPA1+2 compositions treated with chimeric monoclonal
PA-neutralising antibodies and secondary antibodies conjugated to CF™ 488A as a negative control
represented in Figure S3k,l (k—fluorescence analysis, l—phase contrast).
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Figure 6. Simultaneous adsorption of rPA1+2 and rPA3+4 to SPs. (a–c)—Fluorescence microscopy of
rPA1+2 labelled with fluorescein isothiocyanate (rPA1+2FITC) and rPA3+4 labelled with rhodamine
isothiocyanate (rPA3+4RITC) simultaneously adsorbed to SPs. Images are presented in FITC fluo-
rescence channel (a), RITC fluorescence channel (b) and phase contrast mode (c). Images of control
samples (SPs compositions with rPA1+2FITC or rPA3+4RITC separately and uncoated SPs) fluorescence
analysis are presented in the Figure S4. (d,e)—Electrophoresis analysis of modified recombinant
anthrax antigens labelled with fluorophores in 8–20% SDS-PAGE. 1—rPA3+4RITC; 2—rPA1+2FITC;
3—Compositions of rPA3+4RITC and rPA1+2FITC with SPs. Unstained gel under UV-light (d) and
Coomassie blue G-250 staining (e). The SPs/rPA1+2FITC/rPA 3+4RITC mass ratio within Compositions
was 20/1/1. Compositions were obtained in 1xPBS. Original gel is presented in the Figure S5.

3.3. Evaluating the Stability of Modified Recombinant Anthrax Antigens in Compositions with SPs

Previously, it has been shown that SPs can increase the stability of non-modified
rPA83 [15]. In the current study, the ability of SPs to stabilise each of three obtained modified
anthrax antigens was evaluated. Compositions of each of the modified proteins with SPs
were formed at the SPs/antigens mass ratio of 10/1. Samples of each individual antigen,
as well as samples of SPs-antigen compositions, were prepared in PBS and incubated at
+37 ◦C for 40 days to simulate accelerated protein ageing. Equal amounts of antigens were
analysed before incubation and for each control point during incubation.

The band corresponding to the non-degraded rPA83m was clearly detectable after
40 days of incubation at +37 ◦C in the sample of SPs-rPA83m compositions (Figure 7a,
lane 13), while in the sample of individual rPA83m the full-size protein band was barely
detectable after 40 days of incubation (Figure 7a, lane 14). Similar results were obtained
for rPA3+4 and rPA1+2: in composition with SPs, both rPA3+4 and rPA1+2 were clearly
detectable after 40 days of incubation (Figure 7b, lane 13 and Figure 6c, lane 13, respectively),
while individual antigens were barely detectable after 35 days in the case of rPA3+4
(Figure 7b, lane 12) and after 20 days in the case of rPA1+2 (Figure 7c, lane 6). At each control
point, the stability of each anthrax antigen within SPs-antigen compositions was higher
than the stability of the corresponding antigen in an individual formulation (Figure 7).
Replicates for each of three stability experiments (Figure 7a–c) are presented in Appendix A
(Figure A1a–c, respectively). For both replicates the relative analysis of recombinant
proteins’ degradation rate through the experiment is presented in Table A1. Considering
all obtained data, the stabilisation of modified recombinant anthrax antigens by SPs was
demonstrated. It is worth noting that SPs protein suffers dimerisation and trimerisation
while being stored, starting from day 10 in each of three stability evaluation experiments.
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Figure 7. Comparative stability of SPs-antigen compositions and individual antigens at +37 ◦C
for rPA83m (a), rPA3+4 (b) and rPA1+2 (c). (a)—1, 3, 5, 7, 9, 11, 13—rPA83m within SPs-rPA83m
compositions incubated at +37 ◦C for 0, 9, 15, 21, 27, 33 and 40 days, respectively. 2, 4, 6, 8, 10,
12, 14—Individual rPA83m incubated at +37 ◦C for 0, 9, 15, 21, 27, 33 and 40 days, respectively.
L—Protein molecular weight markers ladder (molecular weights, in kDa, are indicated on the right).
(b)—1, 3, 5, 7, 9, 11, 13—rPA3+4 within SPs-rPA3+4 compositions incubated at +37 ◦C for 0, 10, 20, 25,
30, 35 and 40 days, respectively. 2, 4, 6, 8, 10, 12, 14—Individual rPA3+4 incubated at +37 ◦C for 0,
10, 20, 25, 30, 35 and 40 days, respectively. L—Protein molecular weight markers ladder (molecular
weights, in kDa, are indicated on the right). (c)—1, 3, 5, 7, 9, 11, 13—rPA1+2 within SPs-rPA1+2
compositions incubated at +37 ◦C for 0, 10, 20, 25, 30, 35 and 40 days, respectively. 2, 4, 6, 8, 10,
12, 14—Individual rPA1+2 incubated at +37 ◦C for 0, 10, 20, 25, 30, 35 and 40 days, respectively.
L—Protein molecular weight markers ladder (molecular weights, in kDa, are indicated on the right).
Relative analysis of recombinant proteins degradation rate is presented in Table A1.
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The maintenance of antigenic specificity for each modified anthrax antigen after
40 days of incubation within SPs-protein compositions at +37 ◦C was examined using
immunofluorescence analysis (Figure 8 and Figure S6), in a similar way to which the
antigens’ adsorption to SPs was evaluated. rPA83m (Figure 8a,b), rPA1+2 (Figure 8c,d)
and rPA3+4 (Figure 8e,f) were shown to be able to interact with a polyclonal antiserum
to an appropriate antigen. The correlation between the outline of each spherical particle
in pictures obtained using fluorescence imaging mode and phase contrast imaging mode
demonstrated that, after 40 days of incubation at +37 ◦C, each modified antigen cover-
ing SPs remained stable and kept its antigenic properties unchanged. For SPs-rPA83m
(Figure 8g,h) and SPs-rPA3+4 (Figure 8i,j) compositions, the maintenance of neutralising
epitope availability for recognition by antibodies after 40 days of incubation at +37 ◦C
was also confirmed.
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(a,b,g,h), SPs-rPA1+2 (c,d) and SPs-rPA3+4 (e,f,i,j) compositions. (a,b), (c,d), (e,f), (g,h), (i,j) in pairs
are the same images presented in fluorescence and phase contrast modes, respectively. The SPs-
protein compositions were treated with polyclonal antiserum to rPA83m (a,b), to rPA1+2 (c,d) or to
rPA3+4 (e,f) or with chimeric monoclonal PA-neutralising antibodies (g–j) and secondary antibodies
conjugated to Alexa Fluor® 546 (a–f) or to CF™ 488A (g–j). Scale bars, 5 µm. SPs/antigen mass ratio
within compositions is 10/1. Compositions were obtained in 1xPBS and incubated at +37 ◦C for 40
days. Images of corresponding negative control samples (not incubated with primary antibodies) are
presented in the Figure S6a–j, respectively.

4. Discussion

Currently used anthrax vaccines have several disadvantages. The development of
recombinant anthrax vaccine is desirable. The main problem with such vaccine design is
the instability of rPA [7]. In the current research, we offer two approaches to rPA stabilisa-
tion. The first combines two variants of stabilising protein modifications: inactivation of
proteolysis cleavage sites and deamidation-prone asparagine residue substitutions. Here,
we pioneeringly implemented these two modification variants simultaneously. The sec-
ond approach is the use of unique carrying platform with adjuvant properties based on
plant viruses. The SPs ability to additionally improve the stability of modified full-length
rPA83m containing the mutations in both proteolysis and deamidation sites was also
studied for the first time.

Proteolysis and deamidation are thought to be the main causes of rPA instability [9–11].
Deamidation mediates the decrease in the rPA pI and the appearance of multiple rPA isoforms
with pI values less than the one of freshly prepared protein. For non-modified rPA heterogeneity
in terms of pI, which considerably increases after storage, thermal treatment or freeze/thaw
cycles, was showed in several studies [9,10,26]. At the same time, rPA contains two ma-
jor proteolysis sites [11], which predispose high fragmentation rate of the protein. Thus,
suppression of deamidation and proteolysis can lead to stable rPA generation. To achieve
this aim, three proteins were designed: rPA1+2 (56 kDa) containing I and II PA domains
with inactivated furin and chymotrypsin cleavage sites (Figure 2b), rPA3+4 (30 kDa) con-
taining III and IV PA domains with two crucial deamidation-prone Asn residues being
replaced by Gln (had been developed previously by the authors’ group [15]) (Figure 2c)
and rPA83m (84 kDa)—a full-size rPA in which both types of the aforementioned modifi-
cations were implemented (Figure 2d). Modifications of protease-sensitive regions were
carried out according to results obtained by Ramirez et al. (2002). They showed that the
replacement of the 164RKKR167 sequence by 164SNKE167 at the furin-sensitive site and the
deletion of 313 and 314 phenylalanine residues at the chymotrypsin-sensitive site resulted
in the generation of proteolysis-resistant rPA, which showed an ability to be accumulated
in high concentrations. rPA modified in this way was able to induce the production of
antibodies with neutralising properties [11]. Asn residues substitutions were based on
research by Verma and Burns (2018) [12]. In their study, it was demonstrated that the
replacement of located in the receptor-binding large loop domain deamidation-prone Asn713

and Asn719 residues by glutamines did not lead to a decrease in immunogenic properties.
Moreover, this replacement increased immunogenicity compared with wild-type rPA in
stored formulations [12]. The decrease in wild-type rPA immunogenicity after storage may
be due to the inability of deamidated rPA to interact with its receptors on the surface of
antigen-presenting cells, while this interaction was shown to have resulted in an enhanced
toxin-neutralising antibody response [27]. Deamidation-prone Asn162 with a predicted
half-life of 38 days [9] was also replaced by Gln in the present study. In the current research,
approaches to full-size rPA stabilisation by site-specific mutagenesis of deamidation-prone
asparagine residues and by inactivation of proteolysis sites have been combined for the
first time. The deamidation of rPA83m was studied through assessing its pI upon storage.
Zomber et al. (2005) showed by means of isoelectrofocusing that non-modified rPA divided
into the multiple acidic isoforms [9] after incubation at +25 ◦C for as little as 7 days. In
present work 2D-electrophoresis of rPA83m did not reveal the appearance of any additional
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protein isoforms after 7 days incubation at +37 ◦C (Appendix B, Figure A2a,b). Further-
more, the exact match of pI was demonstrated for the samples stored for 5 days at +4 ◦C
and at +37 ◦C rPA83m (Appendix B, Figure A2c–e). That confirms that rPA83m is not
considerably susceptible to deamidation and enables to suppose that rPA1+2 and rPA3+4
are also deamidation-resistant since they are identical to corresponding rPA83m regions
sequences. Modified proteins obtained, containing particular PA domains (rPA1+2 and
rPA3+4), may be a prospective basis for a vaccine since the protective properties of PA can
be attributed to individual PA domains. It was demonstrated that separated PA domain IV
was able to fully protect A/J mice against 100 median lethal doses of STI spores [13]. At the
same time, sera from C57BL/6 mice immunised with PA domain I displayed a considerable
ability to neutralise lethal toxin [14]. All three modified antigens obtained demonstrated an
interaction with a polyclonal anti-rPA83 antiserum. Moreover, rPA3+4 and rPA83m were
shown to interact with chimeric monoclonal anti-PA antibodies. These antibodies have a
neutralising effect [22] and results obtained in the current work have confirmed that the
epitope corresponding to them is located in either III or IV PA domain, since these antibodies
do not interact with rPA1+2 while interacting with rPA3+4. Taking all of the data collected
into account, three of the proteins obtained can be considered to be promising recombinant
anthrax antigens. Another problem associated with rPA instability alongside deamidation
and proteolysis is its susceptibility to aggregation. rPA rapidly loses its biological activity
under high temperature conditions, and aggregation is considered to be the main reason
for its thermal inactivation [28]. Dissolved rPA has been shown to form large aggregates
when exposed to the temperatures above 44 ◦C. These aggregates could easily be visually
detected [29–31]. Immunisation of mice with the aggregated rPA led to a dramatic decrease
of toxin-neutralising antibodies (TNA) titers in blood sera, in comparison with TNA titers
elicited by freshly prepared rPA [32].

The stability of modified anthrax antigens was evaluated. rPA83m protein remained
stable at +4 ◦C (a common vaccine storage temperature) for at least 144 days. For comparison,
non-modified rPA83 was not detectable after 14 days of incubation at +4 ◦C. Two groups
of amino-acid sequence modifications provided the only difference between the analysed
antigens, thus leading to dramatic protein stabilisation. rPA1+2 and rPA3+4 demonstrated a
high level of stability at +25 ◦C (room temperature) for at least 160 days. This indicates that
vaccines containing these PA domains-based antigens could be suitable for use even after
disruption to the vaccine cold chain. Moreover, modified antigens were not shown to form
visually detectable aggregates while being stored even at +37 ◦C (Appendix C, Figure A3a,b),
in contradistinction to previously demonstrated features of non-modified rPA [27]. Further
SDS-PAGE analysis was carried out for rPA83m specifically. The amount of rPA83m in the
supernatant of centrifuged stored samples and in corresponding non-centrifuged stored
samples turned out to be equal (Appendix C, Figure A3c,d). This evidence demonstrates
the absence of large aggregates even after storage at +37 ◦C for 20 days.

All three modified antigens were shown to be stable, however, a certain level of
degradation was still detected. Thus, an additional approach to rPA stabilisation was
desirable. Previously, rPA83 adsorption to spherical particles obtained from the tobacco
mosaic virus via its thermally induced structural rearrangement has been shown to lead to
an increase in rPA83 stability [15]. At the same time, SPs have been demonstrated to have
immunostimulating properties [17,33,34] and therefore presumably could serve not only
as a stabiliser, but also as an adjuvant, being a more successful alternative to aluminum-
based adjuvants [7,8]. It should be mentioned that the possibility of rPA stabilisation by
chemically synthesised amphiphilic polyanhydride nanoparticles in dry-powdered formu-
lations has been shown [35]. Moreover, rPA stabilised in this way induced a neutralising
antibody response against B. anthracis with cyclic di-guanosine monophosphate used as an
adjuvant [36]. In the light of these facts, we consider the adsorption to carrying platforms
as a prospective way to stabilise rPA. Here, an examination was made of the adsorption of
each of three modified anthrax antigens obtained to SPs. It was demonstrated that rPA1+2,
rPA3+4 and rPA83m were still recognisable by polyclonal antiserum to an appropriate
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antigen while having been adsorbed to SPs. In addition, SPs-rPA3+4 and SPs-rPA83m
compositions were able to interact with the above-mentioned chimeric monoclonal PA-
neutralising antibodies, which indicates that the neutralising epitope is exposed. It enables
assuming the presence of at least some native conformation within recombinant proteins.
The further studies of immunogenicity and protectivity are necessary to confirm the ac-
ceptability of designed proteins as B. anthracis antigens. Nevertheless, the fact that this
epitope remains recognisable by PA-neutralising antibodies being a part of modified recom-
binant anthrax antigens adsorbed to SPs, gives hope that the corresponding SPs-antigen
compositions will be able to induce toxin-neutralising antibodies. The results obtained
provide new opportunities for the use of modified anthrax antigens as a vaccine basis. For
example, formulations based on both rPA1+2 and rPA3+4 adsorbed to SPs can provide a
prospective field of research into the use of certain PA domains in vaccines. The current
research has also demonstrated the possibility of simultaneous adsorption of these proteins
to SPs with a view to developing a binary anthrax vaccine containing all PA epitopes while
not including a full-size rPA.

The effective adsorption of rPA83m, rPA1+2 and rPA3+4 to SPs while maintaining the
antigenic specificity of modified anthrax antigens within SPs-antigen compositions, and the
possibility of SPs to stabilise non-modified rPA83, have encouraged consideration of the
influence of SPs on the stability of each of three modified antigens. Stability was evaluated
at +37 ◦C. Temperature conditions for the experiment were selected for the purpose of
simulating accelerated protein ageing. At each control point, a pairwise visual comparison
showed that anthrax antigens were less susceptible to degradation within SPs-antigen
compositions than as individual proteins. In the latter case, each modified anthrax antigen
was barely detected after 20–40 days of incubation, while within SPs-antigen compositions
each antigen mostly remained stable for at least 40 days, which means that SPs were able
to markedly stabilize rPA83m, rPA3+4 and rPA1+2. Immunofluorescence analysis carried
out to examine the state of the antigen adsorbed to SPs for 40 days demonstrated the
maintenance of antigenic specificity of each of three anthrax antigens and the ability of
rPA83m and rPA3+4 to interact with monoclonal PA-neutralising antibodies. The latter
indicated that the epitope crucial for anthrax toxin neutralisation was still exposed and
was not subject to degradation during a relatively long incubation at +37 ◦C. We suggest
that the interactions of rPA83m, rPA1+2, rPA3+4 with SPs surface slow antigens aging.
Previously, we have shown the presence of hydrophobic amino acids on SPs surface [37].
Presumably, hydrophobic interactions between SPs and rPA antigens preserve the proteins
conformation during storage and enhance their stability.

5. Conclusions

Results obtained in the current research enable the claim that modified anthrax anti-
gens rPA1+2, rPA3+4 and rPA83m are resistant to degradation during extended storage
under various temperature conditions and can serve as the basis for an anthrax vaccine.
SPs can be used as a platform-carrier in such vaccines, since they are able to adsorb each
of three modified anthrax antigens and increase their stability, while maintaining the
antigenic properties of these antigens. Previously demonstrated adjuvant properties of
SPs [17,33,34] suggest that SPs can serve not only as a stabiliser, but also as an adjuvant
within SPs-recombinant antigen compositions. Safe anthrax vaccines that demonstrate
long-term stability of formulation are needed as an essential means of mass immunisation
in emergency situations. Further examination of SPs-rPA83m, SPs-rPA1+2 and SPs-rPA3+4
compositions will probably show that modified antigens of lesser size that therefore are
easier to produce could offer sufficient levels of protection. Thus, we consider the composi-
tions of SPs with any one of modified anthrax antigen or with the combination of rPA1+2
and rPA3+4 as prospective anthrax vaccine candidates that are worthy of further study.
The ability of all obtained anthrax antigens to induce protective immunity is undoubtedly
the next step in the development of stable and effective modern anthrax vaccine.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14040806/s1, Figure S1: Original images of the
western blot membranes represented in Figure 3; Figure S2: Original images of the gels represented
in Figure 4; Figure S3: Images of the negative control samples without primary antibodies for the
fluorescence analysis represented in the Figure 5a–j, and negative control (k—fluorescence analysis,
l—phase contrast) represented by SPs-rPA1+2 compositions treated with chimeric monoclonal PA-
neutralising antibodies and secondary antibodies conjugated to CF™ 488A; Figure S4: Images of
the control samples for the fluorescence analysis represented in the Figure 6a–c; Figure S5: Original
images of the gels represented in Figure 6d–e; Figure S6: Images of the negative control samples
without primary antibodies for the fluorescence analysis represented in the Figure 8.
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Appendix A

Figure A1 represents the replicates for comparative stability of SPs-antigen compo-
sitions and individual antigens at +37 ◦C for rPA83m, rPA3+4 and rPA1+2. Table A1
represents dynamics of recombinant PA proteins’ degradation calculated based on gels
presented in Figures 7 and A1. In each of 6 control points from incubation day 10–40 the
relative volume of a major (non-degraded) rPA band was calculated through comparing it
with a relative band (a major band of non-incubated rPA). The calculation was performed
using ChemiDoc XRS+ gel documentation system software. Current data is not intended
for comparing between different gels.

https://www.mdpi.com/article/10.3390/pharmaceutics14040806/s1
https://www.mdpi.com/article/10.3390/pharmaceutics14040806/s1
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Figure A1. Replicates for comparative stability of SPs-antigen compositions and individual anti-
gens at +37 °C for rPA83m (a), rPA3+4 (b) and rPA1+2 (c). (a–c)—replicates for the results repre-Figure A1. Replicates for comparative stability of SPs-antigen compositions and individual antigens

at +37 ◦C for rPA83m (a), rPA3+4 (b) and rPA1+2 (c). (a–c)—replicates for the results represented
in Figure 7. (a)—1, 3, 5, 7, 9, 11, 13—rPA83m within SPs-rPA83m compositions incubated at +37 ◦C
for 0, 9, 15, 21, 27, 33 and 40 days, respectively. 2, 4, 6, 8, 10, 12, 14—Individual rPA83m incubated
at +37 ◦C for 0, 9, 15, 21, 27, 33 and 40 days, respectively. L—Protein molecular weight markers
ladder (molecular weights, in kDa, are indicated on the right). (b)—1, 3, 5, 7, 9, 11, 13—rPA3+4 within
SPs-rPA3+4 compositions incubated at +37 ◦C for 0, 10, 20, 25, 30, 35 and 40 days, respectively. 2, 4, 6,
8, 10, 12, 14—Individual rPA3+4 incubated at +37 ◦C for 0, 10, 20, 25, 30, 35 and 40 days, respectively.
L—Protein molecular weight markers ladder (molecular weights, in kDa, are indicated on the right).
(c)—1, 3, 5, 7, 9, 11, 13—rPA1+2 within SPs-rPA1+2 compositions incubated at +37 ◦C for 0, 10, 20, 25,
30, 35 and 40 days, respectively. 2, 4, 6, 8, 10, 12, 14—Individual rPA1+2 incubated at +37 ◦C for 0,
10, 20, 25, 30, 35 and 40 days, respectively. L—Protein molecular weight markers ladder (molecular
weights, in kDa, are indicated on the right). Relative analysis of recombinant proteins quantity is
presented in Table A1.
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Table A1. Dynamics of rPA83m, rPA3+4 and rPA1+2 degradation in individual form and within
compositions with SPs.

Protein Data Source Sample Type
Relative Volume of Major rPA Band

Day 10 Day 20 Day 25 Day 30 Day 35 Day 40

rPA83m

Figure 7a
SPs-rPA83m 0.84 0.48 0.35 0.26 0.24 0.22

rPA83m 0.54 0.32 0.11 0.11 0.04 0.04

Figure A1a
SPs-rPA83m 0.73 0.63 0.4 0.32 0.29 0.23

rPA83m 0.51 0.28 0.1 0.06 0.04 0.05

rPA3+4

Figure 7b
SPs-rPA3+4 0.62 0.55 0.31 0.49 0.19 0.25

rPA3+4 0.73 0.42 0.38 0.32 0.05 0.02

Figure A1b
SPs-rPA3+4 0.91 0.68 0.6 0.5 0.42 0.52

rPA3+4 0.56 0.16 0.39 0.05 0.07 0.07

rPA1+2

Figure 7c
SPs-rPA1+2 0.63 0.42 0.38 0.37 0.3 0.47

rPA831+2 0.16 0.05 0 0 0 0

Figure A1c
SPs-rPA1+2 1.07 0.59 0.61 0.55 0.33 0.69

rPA1+2 0.29 0.1 0 0 0 0

Appendix B

Considering the deamidation is known to lead to the appearance of protein isoforms
with lower pI values [9,10], the presence of pI heterogeneity within rPA83m sample was
studied by 2D-electrophoresis analysis. Only one major spot was detected for rPA83m
stored for 7 days at +4 ◦C as well as for the one stored for 7 days at +37 ◦C. It means
that both samples were homogenic in terms of isoelectric point (Figure A2a,b). To ex-
amine if pI changes during storage at +4 ◦C or at +37 ◦C (for 5 days) rPA83m labelled
by green (Cyanine2) or red (Cyanine5) fluorophores, respectively, were mixed and anal-
ysed together. A clear match of signals detected in red and green fluorescence channels
confirmed that isoelectric point value of rPA83m maintained after 5 days of incubation
at +37 ◦C (Figure A2c–e).
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was loaded on each gel. Protein molecular mass ladder (10–170 kDa) (Fermentas, Thermo Fisher 
Scientific, Waltham, MA, USA) was added during the stage of separation of molecular weight. 
Coomassie G-250 blue staining. (c–e) Simultaneous analysis of rPA83m samples stored for 5 days at 
+4 °С or +37 °С. After storage rPA83m samples incubated at +4 °С or at +37 °С were labelled with 
Cyanine2 (green) or Cyanine5 (red) fluorophore, respectively. 3 µg of each sample was simulta-
neously loaded on the gel. Images of gel scanning in green (c) and red (d) fluorescence channel as 
well as merged image (e) are represented. 
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Figure A2. 2D-electrophoresis analysis of rPA83m stored at +4 ◦C or at +37 ◦C. (a,b) 2D-
electrophoresis of rPA83m samples stored for 7 days at +4 ◦C (a) or +37 ◦C (b).
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10 µg of rPA83m was loaded on each gel. Protein molecular mass ladder (10–170 kDa) (Fermentas,
Thermo Fisher Scientific, Waltham, MA, USA) was added during the stage of separation of molecular
weight. Coomassie G-250 blue staining. (c–e) Simultaneous analysis of rPA83m samples stored for
5 days at +4 ◦C or +37 ◦C. After storage rPA83m samples incubated at +4 ◦C or at +37 ◦C were
labelled with Cyanine2 (green) or Cyanine5 (red) fluorophore, respectively. 3 µg of each sample
was simultaneously loaded on the gel. Images of gel scanning in green (c) and red (d) fluorescence
channel as well as merged image (e) are represented.

Appendix C

In this case, rPA was described to be subjected to thermally-induced aggregation that
leads to the formation of large aggregates which could be visually detected [26–28] and
precipitated from the solution during centrifugation [29]. The aggregation state of stored
rPA83m was checked (Figure A3). No visual differences between solutions of rPA83m
stored at +4 ◦C, +25 ◦C or +37 ◦C were detected neither after 7 days (Figure A3a), nor after
20 days (Figure A3b). Moreover, SDS–PAGE analysis revealed the equality of rPA83m
amount in the supernatant of the stored samples after centrifugation (20 min; 16,100× g)
and in non-centrifuged stored samples (Figure A3c,d). This fact indicates the lack of large
aggregates in rPA83m solution even after 20 days storage at +37 ◦C.
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