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SUMMARY

Computer-coded verbal autopsy (CCVA) algorithms predict cause of death from high-dimensional family
questionnaire data (verbal autopsy) of a deceased individual, which are then aggregated to generate
national and regional estimates of cause-specific mortality fractions. These estimates may be inaccurate if
CCVA is trained on non-local training data different from the local population of interest. This problem is
a special case of transfer learning, i.e., improving classification within a target domain (e.g., a particular
population) with the classifier trained in a source-domain. Most transfer learning approaches concern
individual-level (e.g., a person’s) classification. Social and health scientists such as epidemiologists are
often more interested with understanding etiological distributions at the population-level. The sample sizes
of their data sets are typically orders of magnitude smaller than those used for common transfer learning
applications like image classification, document identification, etc. We present a parsimonious hierarchical
Bayesian transfer learning framework to directly estimate population-level class probabilities in a target
domain, using any baseline classifier trained on source-domain, and a small labeled target-domain dataset.
To address small sample sizes, we introduce a novel shrinkage prior for the transfer error rates guaranteeing
that, in absence of any labeled target-domain data or when the baseline classifier is perfectly accurate,
our transfer learning agrees with direct aggregation of predictions from the baseline classifier, thereby
subsuming the default practice as a special case. We then extend our approach to use an ensemble of
baseline classifiers producing an unified estimate. Theoretical and empirical results demonstrate how the
ensemble model favors the most accurate baseline classifier. We present data analyses demonstrating the
utility of our approach.
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1. INTRODUCTION

Verbal autopsy—A survey of the household members of a deceased individual, act as a surrogate for
medical autopsy report in many countries. Computer-coded verbal autopsy (CCVA) algorithms are
high-dimensional classifiers that predict cause of death (COD) from these high-dimensional family ques-
tionnaires which are then aggregated to generate national and regional estimates of cause-specific mortality
fractions (CSMF). These estimates may be inaccurate as CCVA are usually trained using non-local infor-
mation not representative of the local population of interest. This problem is a special case of transfer
learning, a burgeoning area in statistics and machine learning.

Classifiers trained on source-domain data tend to predict inaccurately in a target domain different from
the source-domain in terms of marginal and conditional distributions of the features (covariates) and labels
(responses) (Shimodaira, 2000). Various domain adaptation strategies have been explored for transfer
learning of generic classifiers which adjust for this distributional difference between the two domains. We
refer the readers toWeiss and others (2016) and Pan andYang (2010) for a comprehensive review of transfer
learning for classification problems.We focus on the setting where there is abundant labeled source-domain
data, abundant unlabeled target-domain data, and limited labeled target data. Transfer learning approaches
pertaining to this setting include multi-source-domain adaptation (CP-MDA, Chattopadhyay and others,
2012), neural networks (TCNN, Oquab and others, 2014), adaptive boosting (TrAdaBoost, Dai and others,
2007; Yao and Doretto, 2010), feature augmentation method (FAM, Daumé III, 2009), spectral feature
alignment (SFA, Pan and others, 2010) among others.

All of the aforementioned transfer learning classification approaches are motivated by applications in
image, video or document classification, text sentiment identification, and natural language processing
where individual classification is the goal. Hence, they usually focus on the individual’s (e.g., a person’s
or an image’s) classification within a target domain (e.g., a particular population) with training performed
in data from a different source-domain.

Social and health scientists such as epidemiologists are often more interested with understanding
etiological distributions at the population-level rather than classifying individuals. For example, we aim
to estimate national and regional estimates of cause-specific fractions of child mortality. Hence, our goal
is not individual prediction but rather transfer learning of population-level class probabilities in the target
domain. None of the current transfer learning approaches are designed to directly estimate population-level
class membership probabilities.

Additionally, the extant transfer learning approaches rely on large source-domain databases of millions
of observations for training the richly parameterized algorithms. The sample sizes of datasets in epidemi-
ology are typically orders of magnitude smaller. Most epidemiological applications use field data from
surveys, leading to databases with much smaller sample sizes and yet with high-dimensional covariates
(survey records). For example, in our application, the covariate space is high-dimensional (∼200–350
covariates), the “abundant” source-domain data have around ∼2000 samples, while the local labeled data
can have as few as 20–100 samples. Clearly, in such cases, the local labeled data are too small to train
a classifier on a high-dimensional set of covariates, as the resulting estimates will be highly variable. A
baseline classifier trained on the larger source-domain data will tend to produce more stable estimates,
but the high precision will come at the cost of sacrificing accuracy if the source- and target-domains differ
substantially.

Our parsimonious solution to this bias-variance trade-off problem is to use the baseline classifier trained
on source-domain information to obtain an initial prediction of target-domain class probabilities, but then
refine it with the labeled target-domain data. We proffer a hierarchical Bayesian framework that unifies
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Table 1. Glossary of acronyms used in the manuscript

Acronym Full form Acronym Full form

VA Verbal autopsy PHMRC Population Health Metrics Research Consortium
CCVA Computer-coded VA COMSA Countrywide Mortality Surveillance for Action
COD Cause of Death CSMF Cause-Specific Mortality Fraction
CSMFA CSMF accuracy GS-COD Gold-standard Cause of Death

these two steps. With C classes and S-dimensional covariates, the advantage of this new approach is
that the small labeled data for the target domain is only used to estimate the C × C confusion matrix of
the transfer error (misclassification) rates instead of trying to estimate O(SC) parameters of the classifier
directly from the target-domain data. Since S � C, this approach considerably reduces the dimensionality
of the problem. To ensure a stable estimation of the confusion matrix, we additionally use a regularization
prior that shrinks the matrix towards identity unless there is substantial transfer error. We show that, in
the absence of any target-domain labeled data or in case of zero transfer error, posterior means of class
probability estimates from our approach coincide with those from the baseline learner, establishing that
the naive estimation that ignores transfer error is a special case of our algorithm. We devise a novel, fast
Gibbs sampler with augmented data for our Bayesian hierarchical model.

We then extend our approach to one that uses an ensemble of input predictions from multiple classifiers.
The ensemble model accomplishes method-averaging over different classifiers to reduce the risk of using
one method that is inferior to others in a particular study. We establish a theoretical result that the class
probability estimates from the ensemble model coincides with that from a classifier with zero transfer error.
A Gibbs sampler for the ensemble model is also developed, as well as a computationally lighter version
of the model that is much faster and involves fewer parameters. Simulation and data analyses demonstrate
how the ensemble sampler consistently produces estimates similar to those produced by using our transfer
learning on the single best classifier.

Our approach is also post hoc, i.e., only uses pre-trained baseline classifier(s), instead of attempting
to retrain the classifier(s) multiple times with different versions of training data. This enables us to use
publicly available implementations of these classifier(s) and circumvents iterative training runs of the
baseline classifier(s) which can be time-consuming and inconvenient in epidemiological settings where
data collection continues for many years, and the class probabilities needs to be updated continually
with the addition of every new survey record. The post hoc approach also ensures we can work with
non-statistical classifiers that do not use a training data but some sort of source-domain information (e.g.,
CCVA algorithms InterVA and EAVA).

The rest of the manuscript is organized as follows. We present the motivating application in Section
1.1. In Sections 2 and 3, we present the methodology and its extension to the ensemble case. Section 4
considers the extension where class probabilities can be modeled as a function of a few covariates like age,
sex, seasons, spatial regions, etc. Section 5 presents simulation results. Section 6 returns to the motivating
dataset and uses our transfer learning model to estimate national CSMFs for children deaths in India
and Tanzania. We end the manuscript in Section 7 with a discussion of limitations and future research
opportunities. A glossary of the different abbreviations used throughout the text is. provided in Table 1.

1.1. Motivating dataset

In low- and middle-income countries, it is infeasible to conduct full autopsies for the majority of deaths
due to economic and infrastructural constraints, and/or religious or cultural prohibitions against autopsies
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Fig. 1. Confusion matrices for PHMRC child cases in Tanzania using Tariff and InSilicoVA trained on all cases
outside of Tanzania. CVD, cardio-vascular diseases.

(AbouZahr and others, 2015; Allotey and others, 2015). An alternative method to infer the COD (or
“etiology”) is to conduct verbal autopsy (VA)—a systematic interview of the relatives of the deceased
individual—to obtain information about symptoms observed prior to death (Soleman and others, 2006).
Statisticians have developed several specialized classifiers that predict COD using the high-dimensional
VA records as input. Examples include Tariff (James and others, 2011; Serina and others, 2015), InterVA
(Byass and others, 2012), InSilicoVA (McCormick and others, 2016), the King and Lu method (King
and others, 2008), EAVA or expert algorithm (Kalter and others, 2015), etc. Software for many of these
algorithms are publicly available, e.g., Tariff (Li and others, 2018c), InSilicoVA (Li and others, 2018a),
InterVA (Thomas and others, 2018), and the openVA R-package (Li and others, 2018b) has consolidated
most of these individual software into a single package. Generic classifiers like random forests (Breiman,
2001), naive Bayes classifiers (Minsky, 1961), and support vector machines (Cortes and Vapnik, 1995)
have also been used (Flaxman and others, 2011; Miasnikof and others, 2015; Koopman and others, 2015)
for classifying verbal autopsies. Predicted COD labels for each VA record in a nationally representative VA
database is aggregated to obtain national CSMF—the population-level class membership probabilities,
that are often the main quantities of interest for epidemiologists, local governments, and global health
organizations.

Formally, a CCVA algorithm is simply a classifier using the S × 1 covariate vector (VA report) s
to predict c—one of C possible COD categories. Owing to the high dimensionality of the covariate
space (VA record consists of responses to 200–350 questions), learning this mapping P(c | s) requires
substantial amount of gold standard (labeled) training data. Usually in the country of interest, VA records
are available for a large representative subset of the entire population, but gold standard cause of death
(GS-COD) is ascertained for only a very small fraction of these deaths. In other words, there is abundant
unlabeled data but extremely limited labeled data in the target domain. The ongoing project Countrywide
Mortality Surveillance for Action (COMSA) Mozambique typify this circumstance, where, in addition
to conducting a nationally representative VA survey, researchers will have access to gold standard COD
for a small number of deaths from one or two local hospitals using minimally invasive autopsies (MIA)
(Byass, 2016). Budgetary constraints and socio-cultural factors unfortunately imply that only a handful
of deaths can eventually be autopsied (up to a few hundred).
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Lack of sufficient labeled target-domain data implies that CCVA classifiers need to be trained on non-
local data like the publicly available Population Health Metrics Research Consortium (PHMRC) Gold
Standard VA database (Murray and others, 2011a), that has more than 10 000 paired physician and VA
assessments of cause of death across four countries. However, there exists considerable skepticism about
the utility of CCVA trained on non-local data (McCormick and others, 2016; Flaxman and others, 2018).
To illustrate the issue, in Figure 1, we plot the confusion matrices between the true COD of the PHMRC
child cases in Tanzania against the predicted COD for these cases using two CCVA algorithms, Tariff
and InSilicoVA, both trained on all PHMRC child data non-local to Tanzania. Both matrices reveal very
large transfer errors, some as high as 60% indicating that the naive estimates of population-level class
probabilities from CCVA classifiers trained on non-local source data are likely to be inaccurate thereby
highlighting the need for transfer learning in this application. Additionally, like for any other application
area, there exists considerable disagreement about which CCVA algorithm is the most accurate (Leitao and
others, 2014; McCormick and others, 2016; Flaxman and others, 2018). In our experience, no method is
universally superior, and a robust ensemble transfer learning approach guarding against use of inaccurate
classifiers is desirable.

2. TRANSFER LEARNING FOR POPULATION-LEVEL CLASS PROBABILITIES

2.1. Naive approach

Let p = (p1, p2, . . . , pC)′ denote the true population-level class probabilities in a target domain where we
have abundant unlabeled covariate data, which we denote by U , and a very small labeled data L of paired
labels G and covariates s. Our estimand is pi = P(G = i) where G denote the true (gold standard) class-
membership. For a case r with covariate sr , let Ar = A(sr | G) denote the predicted class membership,
based on sr , from the baseline classification algorithm A trained on some large “gold-standard” information
G. Our methodology is agnostic to the type of G, it can be either a labeled data set from the source-domain
or set of context-specific information (e.g., medical guidelines for determining COD) used to construct
the classifier. If we do not use any transfer learning, the naive estimate of p from A is given by

q̂ = (q̂1, . . . , q̂C)′, where q̂i =
∑
r∈U

I (Ar = i)/N = vi/N , (2.1)

where vi is the number of observations in U classified by A to category i, and N = ∑
i vi is the sample

size of U . If U is large enough to be representative of the target population, it is clear that

q̂ ≈ q = (q1, . . . , qC)′ where qi =
∫

s∈U
A(s | G)dP(s) = P(A = i),

i.e., q̂ is the method-of-moments estimator of q.
Unless the algorithm A trained on source-domain information perfectly agrees with the true member-

ship assignment mechanism G in the target domain, there is no reason to consider q or q̂ to be a good
estimate of p. More realistically, accuracy depends on how similar the algorithm A is in the source- and
target-domains. Hence, more generally we can think of q as the expected population class probabilities in
the target domain that would be predicted by A(· | G).

Marginally, both G and A are categorical variables. So, we can write

A ∼ Multinomial(1, q), G ∼ Multinomial(1, p). (2.2)

To infer about G from A, we need to model their joint distributions. We express qj = ∑C
i=1 mijpi, where

mij = p(A = j | G = i). In matrix notation, we have q = M′p where M = (mij) is a transition matrix (i.e.,
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M1 = 1) which we refer to as the confusion matrix. First note that, if M = I, then p = q and hence this
subsumes the case where class probabilities from the baseline algorithm is trusted as reliable surrogates
of the true class probabilities.

For transfer learning to improve estimation of p, instead of assuming M = I, we can opt to use the
more general relationship q = M′p and estimate the transfer error rates mij’s from L. Let n = ∑C

i=1 ni

denote the sample size of L with ni denoting the number of objects belonging to class i. Also let

T = (tij) =
∑
r∈L

I (Ar = j | Gr = i)

denote the transfer error matrix for algorithm A. Like many transfer learning algorithms, exploiting the
transfer errors is key to our strategy. It is clear that tij/ni is a method-of-moments estimator of mij.

We can use these estimates of mij, along with the earlier estimate of q to obtain a substantially improved
estimate of p. Formally we can specify this via a hierarchical model as:

Ar
iid∼ Multinomial(1, M′p), r = 1, 2, . . . , N

Ti∗
ind∼ Multinomial(ni, Mi∗), i = 1, 2, . . . , C,

(2.3)

where for r = 1, 2, . . . , N , and for any matrix M, Mi∗ and M∗j denote its ith row and jth column respectively.
The top-row of (2.3) represents the relationship q = M′p and yields the method-of-moments estimators
q̂ = (v1, v2, . . . , vC)′/N . The bottom-row of (2.3) is consistent with the naive estimates tij/ni of mij.

To estimate p, one can adopt a modular two-step approach where first q̂ and M̂ are calculated separately
and then obtain

p̂ = arg min
p:1′p=1, pi≥0

L(̂q, M̂′p),

where L is some loss function like the squared-error or, more appropriately, the Kullback–Liebler diver-
gence between the probability vectors. This approach fails to propagate the uncertainty in the estimation of
M in the final estimates of p. Benefits of a one-stage approach over a two-stage one has been demonstrated
in recent work in transfer learning (Long and others, 2014). Alternatively, one can estimate the joint MLE
of M and p from (2.3).

The advantage of this simple transfer learning method is that it circumvents the need to improve the
individual predictions of A and directly calibrates the population-level class probabilities p, which are
the quantities of interest here. We deliberately model the distribution of (A, G) marginalized over the
covariates s, allowing us to use this in situations where the covariates are discarded after predictions or
cannot be provided due to privacy concerns, and only the predictions Ar are available. Even if the covariates
were available, trying to use the extremely small L to estimate P(s | G) relationship is not advisable.
Instead, we efficiently exploit the small local training data L to reduce cross-domain bias learning about
the (P(A | G)) confusion matrix. This involves estimation of only C(C − 1) parameters as opposed to the
O(SC) parameters if trying to estimate P(s | G). For verbal autopsy data, S is typically around 250 while
we can choose C to be small focusing on the top 3–5 causes. Hence, our approach achieves considerable
dimension reduction by switching from the original covariate space to the predicted class space.

In (2.3) above, q = M′p can be directly estimated precisely because N is large. However, M has
C × (C − 1) parameters so that if there are many classes, the estimates of mij will have large variances
owing to the small size of L. Furthermore, in epidemiological studies, data collection often spans a few
years; in the early stages, L may only have a very small sample size resulting in an extremely imprecise
estimate of M, even if we group the classes to a handful of larger classes. This can lead to an imprecise
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estimate of p based on estimates of q and M, as the latter will have high variance. Consequently, in the
next section we propose a regularized approach that stabilizes the transfer learning.

2.2. Bayesian regularized approach

We champion the idea that in absence of enough target-domain labeled data, our method should shrink
towards the default method familiar to practitioners. If L was not available, i.e., there is no labeled data
in the target domain, we only have U and G. Then in many applications (including verbal autopsies) the
current practice is to train A once using G and then predict on U to obtain q̂ as the estimate for p. This is
equivalent to setting p = q and M = I, i.e., assuming that the algorithm A perfectly classifies in the target
domain even when trained only using source-domain information G. Extending this argument, when L is
very small, direct estimates of M would be unstable and we can rely more on this default practice. Hence,
for small L, we will shrink p towards q i.e., we shrink towards the default assumption that the baseline
learner is accurate. This is equivalent to shrinking the estimate of M towards I. The simplest way to achieve
this is by using the regularized estimate M̃ = (1 − λ)M̂ + λI, where M̂ = (m̂ij) = tij/ni is the unshrunk
method-of-moments estimate of mij as derived in the previous section. The regularized estimate M̃ (like
M̂ and M) remains a transition matrix. The parameter λ quantifies the degree of shrinkage with λ = 0
yielding the unbiased method-of-moments estimate and λ = 1 leading to p̂ = q̂. Hence, λ represents the
bias variance trade-off for estimation of transition matrices and for small sample sizes some intermediate
values of λ may lead to better estimates of M and p.

In epidemiological applications, as data will often come in batches over a period spanning few years,
one needs to rerun the transfer learning procedure periodically to update the class probabilities. In the
beginning, when L is extremely small, it is expected that more regularization is required. Eventually,
when L becomes large, we could rely on the direct estimate M̂. Hence, λ should be a function of the
size n of L, with λ = 1 for n = 0 and λ ≈ 0 for large n. Furthermore, at intermediate stages, since
the distribution of true class memberships in L will be non-uniform across the classes, we will have a
disparity in sample sizes ni for estimating the different rows of M. Consequently, it makes more sense to
regularize each row of M separately instead of using a single λ. A more flexible regularized estimate is
given by M̃i∗ = (1 − λi)M̂i∗ + λiIi∗. The row specific weights λi should be chosen such that λi = 1 when
ni = ∑C

j=1 tij = 0, and λi ≈ 0 when ni is large. One choice is given by λi = γi/(ni + γi) for some fixed
positive γi’s.

We now propose a hierarchical Bayesian formulation that accomplishes this regularized estima-

tion of any transition matrix M. We consider a Dirichlet prior Mi∗
ind∼ Dirichlet(γi(Ii∗ + ε1)) for the

rows of M. We first offer some heuristics expounding choice of this prior. We will have Mi∗ | Ti∗, γi

∼ Dirichlet(Ti∗ + γi(Ii∗ + ε1)). Hence,

E(Mi∗ | Ti∗, γi) = Ti∗ + γi(Ii∗ + ε1)

ni + γi(1 + Cε)

ε→0→ (1 − λi)
Ti∗
ni

+ λiIi∗, where λi = γi

ni + γi
.

Hence, using a small enough ε, the Bayes estimator (posterior mean) for M becomes equivalent with
the desired shrinkage estimator M̃i∗ proposed above. When n = 0, the Bayes estimate E(M | T, γ =
(γ1, γ2, . . . , γC)′) ≈ I, and for large n, E(M | T, γ ) becomes the method-of-moments estimator M̂. Hence,
the Dirichlet prior ensures that in data-scarce setting, M is shrunk towards I and consequently p towards q.
In Theorem 2.1, we will present a more formal result that looks at the properties of the marginal posterior
of p.
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To complete the hierarchical formulation, we augment (2.3) with the priors:

Mi∗
ind∼ Dirichlet(γi(Ii∗ + ε1)), i = 1, 2, . . . , C

p ∼ Dirichlet(δ1)

γi
ind∼ Gamma(α, β), i = 1, 2, . . . , C

(2.4)

In practice, we need to use a small ε > 0 to ensure a proper posterior for M when any off-diagonal
entries of T are zero, which is very likely due to the limited size of L. Note that our model only uses the
data from L to estimate the conditional probabilities P(A | G). We do not model the marginal distribution
of A or G in L like we do for U . This is because often data for the labeled set are collected under controlled
settings, and marginal distribution of G (and hence of A) for the samples in L is not representative
of their true target-domain marginal distributions. Hence, we only use L to estimate the conditional
probabilities M.

Our previous heuristic arguments, illustrating the shrinkage estimation of M induced by the Dirichlet
prior, are limited to the estimation of M from L as an independent piece and disregards the data and model
for U , i.e. the first row of (2.3). In a hierarchical setup, however, the models for U and L contribute jointly to
the estimation of M and p. We will now state a more general result that argues that for our full hierarchical
model specified through (2.3) and (2.4), when there is no labeled target-domain data or if the algorithm A
demonstrates perfect accuracy (zero transfer error) on L, then the marginal posterior estimates of p from
our model coincides with the baseline estimates q̂. Before stating the result, first note that the likelihood
for a = (A1, A2, . . . , AN )′ can be represented using the sufficient statistics v = (v1, v2, . . . , vC)′. We can
write p(a) ∝ ∏C

j=1 q
vj
j and hence p, M, γ |data = p, M, γ | v, T.

THEOREM 2.1 If T is a diagonal matrix, i.e., either there is no L, or A classifies perfectly on L, then
limε→0 p | v, T ∼ Dirichlet(v + δ1). For δ = 0, limε→0 E(p | v, T) = q̂.

The proofs of the theorems are provided in Section S4 of the Supplementary Materials available at
Biostatistics online. Note that Theorem 2.1 is a result about the posterior of our quantity of interest p,
marginalizing out the other parameters M, and the γi’s from the hierarchical model specified through (2.3)
and (2.4). We also highlight that this is not an asymptotic result and holds true for any sample size as long
as we take the limit ε → 0. This is important as our manuscript pertains to epidemiological applications
where the sample size of L will be extremely small.

Theorem 2.1 also does not require any assumption about the underlying data generation scheme and is
simply a desirable property of our transfer learning model. If there is no labeled target-domain data, then
we give the same estimate from the method currently used by practitioners, i.e., we trust A trained on a
source-domain and only use the target-domain marginal distributions of s from U to arrive at the estimates
q̂ of p. Similarly, in the best-case scenario, when A is absolutely accurate for the target domain, Theorem
2.1 guarantees that our model automatically recognizes this accuracy and does not modify the baseline
estimates q̂ from A. This shrinkage towards the default method familiar to practitioners, in absence
of enough evidence, is a desirable property. The result of Theorem 2.1 is confirmed in simulations in
Section 5.

Although Theorem 2.1 is assumption-free, it only concerns with the performance of the model when
there is no L or when A is perfect on L. While this is a good sanity check for our model, realistically
we will have a small L where A will be inaccurate. In such cases, the performance of our model will of
course depend on the data generation process. Hence, we summarize the data generation assumption that
drive the model formulation. Since, there is no labeled data in U , we need to assume some commonality
between L and U in order for the labeled data in L to be useful for estimating the CSMFs in U . Hence,
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the model assumes that the conditional distribution of A | G (i.e., the M matrix) is same in U and L.
This is a transportability assumption that the error rates on the validation set L reflects the true error rates
in the population U . These rates are then used to correct for bias in the estimates of p. This process is
thus analogous to applying measurement error correction to a study by assuming transportability of the
measurement error distribution from some validation samples (Carroll and others, 2006). We would like
to emphasize that we do not assume that the marginal distributions of the cause G (i.e., the CSMFs) and
hence also of the symptoms s are same in any of G, U and L. Of course, the assumption of same confusion
matrix M for U and L can also be incorrect (all models are wrong). However, the class of models spanned
by use of a general M is a superset of the default approach of using the baseline classifier (i.e., assuming
M = I). Also, we can relax the assumption of constant M between U and L to make entries of M function
of some covariates. This model and its implementation is discussed in Section 4. This would lead to
substantial increase in parameter dimensionality and is only recommended when L is large.

2.3. Gibbs sampler using augmented data

We devise an efficient implementation of the hierarchical transfer learning model using a data augmented
Gibbs sampler. The joint posterior density can be expressed as

p(p, M, γ | v, T) ∝ p(v | M, p)p(T | M)p(M | γ )p(p)p(γ ).

Let p | · denote the full conditional distribution of p. We use similar notation for other full conditionals.
First note that since p(v | M, p) ∝ ∏

j(
∑

i mijpi)
vj , the full conditional densities p | · and M | · do not

belong to any standard family of distributions, thereby prohibiting a direct Gibbs sampler. We here use a
data augmentation scheme enabling a Gibbs sampler using conjugate distributions.

The term (
∑

i mijpi)
vj can be expanded using the multinomial theorem, with each term corresponding

to one of the partitions of vj into C non-negative integers. Equivalently we can write(∑
i

mijpi

)vj

∝ E

(∏
i

(mijpi)
bij

)
where bj = (b1j, . . . , bCj)

′ ∼ Multinomial(vj, 1/C).

Choosing b1, b2, . . . , bC to be independent, we can express
∏

j(
∑

i mijpi)
vj ∝ E(

∏
j

∏
i(mijpi)

bij ) where
the proportionality constant only depends on the observed vj’s. Using the augmented data matrix B =
(b1, b2, . . . , bC) = (bij), we can write the complete posterior as

p(p, M, γ , B | v, T) ∝ ∏
j

∏
i(mijpi)

bij ×∏
i pδ−1

i ×∏
i γ

α−1
i exp(−βγi)×∏

i

(
�(Cγiε+γi)

�(γiε)C−1�(γiε+γi)

∏
j(mij)

tij+γiε+γi1(i=j)−1
)

.
(2.5)

The full conditional distributions can be updated as follows (derivations omitted):

bj | · ∼ Multinomial(vj,
1∑

i mijpi
(m1jp1, m2jp2, . . . , mCjpC)′)

Mi∗ | · ∼ Dirichlet(bi1 + γiε + ti1, . . . , bii + γiε + tii + γi, . . . , biC + γiε + tiC)

p | · ∼ Dirichlet

(∑
j

b1j + δ, . . . ,
∑

j

bCj + δ

)

p(γi | ·) ∝ �(Cγiε + γi)

�(γiε)C−1�(γiε + γi)
γ α−1

i exp(−βγi)
∏

j

mγiε+γi1(i=j)
ij .
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The data augmentation ensures that, except the C γi’s, which are updated using a metropolis random
walk with log-normal proposals, all the other O(C2) parameters are update by sampling from standard
distributions leading to an extremely fast and efficient Gibbs sampler.

3. ENSEMBLE TRANSFER LEARNING

Let there be K classifiers A(1), . . . , A(K) and let a(k) = (a(k)

1 , a(k)

2 , . . . , a(k)

N )′ be the predicted class member-
ships from the kth algorithm for all the N observations in U . Let v(k) denote the vector of counts of predicted
class memberships on U using A(k). We expect variation among the predictions from the different classi-
fiers and consequently among the baseline estimates of population-level class probabilities q̂(k) = v(k)/N
and their population equivalents q(k) = P(A(k)). Since the true population class probability vector p is
unique, following Section 2.1 we can write q(k) = (q(k)

1 , q(k)

2 , . . . , q(k)

C )′ = M(k)′p, where M(k) = (m(k)
ij ) is

now the classifier-specific confusion matrix. The predicted class membership for the rth observation in
U by algorithm A(k), denoted by a(k)

r , marginally follows a Multinomial(1, q(k)) distribution. We have K
such predictions for the same observation, one for each classifier, and these are expected to be correlated.
So, we need to look at the joint distribution of the K C-dimensional multinomial random variables. Since,
in its most general form this will involve O(CK) parameters, we use a pragmatic simplifying assumption
to derive the joint distribution. We assume that a(1)

r , a(2)
r , . . . , a(K)

r are independent conditional on Gr , i.e.,

p(a(1)
r = j1, a(2)

r = j2, . . . , a(K)
r = jK | Gr = i) =

K∏
k=1

m(k)
ijk

. (3.6)

This assumption is unlikely to hold in reality but is a common dimension reducing assumption used in
classification problems. For example, the naive Bayes classifier uses this assumption to jointly model the
probability of covariates given the true class memberships. Similar assumptions are used by InSilicoVA
and InterVA to derive the joint distribution of the vector of symptoms sr . Here, we are applying the same
assumption but not on sr but on the lower-dimensional prediction vector (a(1)

r , a(2)
r , . . . , a(K)

r )′.
Under this assumption, the marginal independence of the a(k)

r ’s will not generally hold. Instead we will
have

p(ar = j) = p(a(1)
r = j1, a(2)

r = j2, . . . , a(K)
r = jK) =

C∑
i=1

(
K∏

k=1

m(k)
ijk

)
pi = wj, (3.7)

where j = (j1, j2, . . . , jK) denotes a C × 1 vector index.
From the limited labeled data set L in the target domain, the classifier-specific transfer error matrices

T(k) = (t(k)
ij ) = (

∑
r∈L I (A(k)

r = j | Gr = i)) are also known and can be used to estimate the respective
confusion matrices M(k) in the same way M was estimated from T in Section 2.1. To introduce shrinkage
in the estimation of M(k), like in Section 2.2, we assign Dirichlet priors for each M(k).

Let w denote a CK × 1 vector formed by stacking up all the wj1,j2,...,jK ’s defined in (3.7). The full
specifications for the ensemble model that incorporates the predictions from all the algorithms is given
by:

ar
iid∼ Multinomial(1, w), r = 1, 2, . . . , N

T(k)
i∗

ind∼ Multinomial(ni, M(k)
i∗ ), i = 1, 2, . . . , C; k = 1, 2, . . . , K

M(k)
i∗

ind∼ Dirichlet(γ (k)
i (Ii∗ + ε1)), i = 1, 2, . . . , C; k = 1, 2, . . . , K

p ∼ Dirichlet(δ1)

γ
(k)
i

ind∼ Gamma(α, β), i = 1, 2, . . . , C; k = 1, 2, . . . , K

(3.8)
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Although w is a CK × 1 vector, courtesy of the conditional independence assumption (3.6), it is
only parameterized using the matrices M(k) and p as specified in (3.7), and hence involves KC2 + C
parameters. This ensures that there is adequate data to estimate the enhanced number of parameters for
this ensemble method, as for each M(k) we observe the corresponding transfer error matrix T(k). The
Gibbs sampler for (3.8) is provided in Section S3 of the supplementary material available at Biostatistics
online (http://www.biostatistics.oxfordjournals.org). To understand how the different classifiers are given
importance based on their transfer errors on L, we present the following result:

THEOREM 3.1 If T(1) is diagonal with positive diagonal entries, and all entries of T(k) are ≥ 1 for all k > 1,
then p | data ∼ Dirichlet (v(1) + δ). For δ = 0, E(p | data) = q(1).

Theorem 3.1 reveals that if one of the K algorithms (which we assume to be the first algorithm without
loss of generality) produce perfect prediction on L, then posterior mean estimate of p from the ensemble
model coincides with that of the baseline estimate from that classifier. The perfect agreement assumed
in Theorem 3.1 will not occur in practice. However, simulation and data analyses will confirm that the
estimate of p from the ensemble model tend to agree with that from the single-classifier model in Section
2.2 with the more accurate algorithm. This offers a more efficient way to weight the multiple algorithms,
yielding a unified estimate of class probabilities that is more robust to inclusion of an inaccurate algorithm
in the decision making. In comparison, a simple average of estimated p’s from single-classifier transfer
learning models for each of the K algorithms would be more adversely affected by inaccurate algorithms.

3.1. Independent ensemble model

The likelihood for the top-row of (3.8) is proportional to
∏

j w
yj
j where yj = ∑

r∈U I (a(1) = j1, . . . , a(K)
r =

jK) denote the total number of observations in U where the predicted class-memberships from the K
algorithms corresponds to the combination j = (j1, . . . , jK)′. Even though U will be moderately large
(few thousand observations in most epidemiological applications), unless both C and K are very small
(C ≤ 5 and K ≤ 3), yj’s will be zero for most of the CK possible combinations j. This will in-turn affect
the estimates of w. For applications to verbal autopsy-based estimation of population CSMFs, there are
many CCVA algorithms (as introduced in Section 1), and researchers often want to use all of them in
an analysis. We also may be interested in more than 3–5 top causes. In such cases, the extremely sparse
CK vector formed by stacking up the yj’s will destabilize the estimation of w. Also, the Gibbs sampler
(see Section S3 of the supplementary material available at Biostatistics online) of the joint-ensemble
model introduces an additional CK independent multinomial variables of dimension C thereby accruing
substantial computational overhead and entailing long runs of the high-dimensional Markov chain to
achieve convergence.

In this section, we offer a pragmatic alternative model for ensemble transfer learning that is
computationally less demanding. From (3.7), we note that

p(a(k)
r = jk) =

∑
js:s �=k

C∑
i=1

(
K∏

k=1

m(k)
ijk

)
pi =

C∑
i=1

m(k)
ijk

pi (3.9)

by exchanging the summations. Hence, the marginal distribution of a(k)
r is Multinomial(1, q(k)), where

q(k) = (M(k))′p. We model the a(k)
r ’s independently for each k , ignoring the correlation among the

predictions in U from the K classifiers as follows:

ar = (a(1)
r , a(2)

r , . . . , a(K)
r )′ iid∼

K∏
k=1

Multinomial(1, q(k)), r = 1, . . . , N (3.10)

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa001#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa001#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa001#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa001#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa001#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa001#supplementary-data
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We replace the top-row of (3.8) with (3.10), keeping the other specification same as in (3.8). We call this
the independent ensemble model. Note that, while we only use the marginal distributions of the a(k)

r ’s
ignoring their joint dependence, the joint distribution is preserved in the model for the transfer errors on L
specified in the second-row of (3.8), as all the M(k)’s are tied to the common truth p through the equations
q(k) = M(k)′p. While the total number of parameters for the joint and independent ensemble models
remain the same, eliminating the joint model for each of the CK combination of predicted causes from the
K algorithms allows decomposing the likelihood for (3.10) as product of individual likelihoods on U for
each of the K classifiers. Additionally, the Gibbs sampler for the independent ensemble model is much
simpler and closely resembles the sampler for the single-classifier model in Section 2.3. We only need to
introduce K C ×C matrices B(k) = (b(k)

1 , b(k)

2 , . . . , b(k)

C ), one corresponding to each CCVA algorithm, akin
to the matrix B introduced in Section 2.3. The Gibbs sampler steps for the independent ensemble model
are:

b(k)
j | · ∼ Multinomial(v(k)

j ,
1∑

i m(k)
ij pi

(m(k)

1j p1, m(k)

2j p2, . . . m(k)

Cj pC)′)

M(k)
i∗ | · ∼ Dirichlet(B(k)

i∗ + T(k)
i∗ + γ

(k)
i Ii∗ + εγ

(k)
i 1)

p | · ∼ Dirichlet(
∑

k

∑
j

b(k)

1j + δ, . . . ,
∑

k

∑
j

b(k)

Cj + δ)

Observe that the sampler for the independent model uses CK additional parameters as opposed to
CK parameters introduced in the joint sampler. This ensures that the Markov Chain dimensionality does
not exponentially increase if predictions from more algorithms are included in the ensemble model.
The theoretical result in Theorem 3.1 no longer remains true for the independent model. However,
our simulation results in Section S5.5 of the supplementary material available at Biostatistics online
(http://www.biostatistics.oxfordjournals.org) show that in practice it continues to put higher weights on the
more accurate algorithm and consistently performs similar to or better than the joint model. In Section S1,
we present an EM algorithm approach to obtain maximum a posteriori (MAP) estimates for the model as
a fast alternative to the fully Bayesian approach adopted here. In Section S2, an algorithm for generating
posterior samples of individual-level class predictions is outlined.

4. DEMOGRAPHIC COVARIATES AND SPATIAL INFORMATION

The transfer-learning model introduced up to this point is focused on generating population-level estimates
of the CSMF p.An important extension for epidemiological applications would be to model p as a function
of covariates like geographic region, seasonality, social economic status (SES), sex and age groups. This
will enable the estimation of regional and age-sex stratified estimates. In this section, we generalize the
model to accommodate covariates. We illustrate for the single-classifier model in Section 2.2; a similar
approach extends the ensemble model.

Let xr denote a vector of covariates for the rth VA record in U . We propose the following modifications
to the model for allowing covariate-specific class distributions pr = (pr1, pr2, . . . , prC)′:

Ar
ind∼ Multinomial(M′pr), r = 1, 2, . . . , N

pri = exp(x′
rβi)∑C

i=1 exp(x′
rβi)

, i = 1, 2, . . . , C, βC = 0

β i
ind∼ N (m0i, W0i)

(4.11)

All other components of the original model in (2.3) and (2.4) remain unchanged. The middle row of
(4.11) specify a multi-logistic model for the class probabilities using the covariates. The top row uses

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa001#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa001#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa001#supplementary-data
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the covariate specific pr to model the analogous class probabilities qr = M′pr as would be predicted
by A. Finally, the bottom row specifies Normal priors for the regression coefficients. The switch from
a Dirichlet prior for p to the multi-logistic model implies we can no longer directly leverage conjugacy
in the Gibbs sampler. Polson and others (2013) proposed a Polya-Gamma data augmentation scheme to
allow conjugate sampling for generalized linear models. We now show how our own data augmentation
scheme introduced in Section 2.3 harmonizes with the Polya-Gamma sampler to create a streamlined
Gibbs sampler.

4.1. Gibbs sampler using Polya-Gamma scheme

We will assume there are H unique combinations of covariate values—for example, if there are four
geographic regions and three age groups, then H = 12. If we have a continuous covariate, then H = N ,
where N is the number of subjects sampled in U . Then letting h, h = 1, . . . , H , represent a specific
covariate combination xh, we can again represent the likelihood for a = (A1, A2, . . . , AN )′ using the H ×C
sufficient statistics V = (vhj), where vhj is the total number of subjects with covariate values h that were
predicted to have died of cause j. Let β = (β1, β2, . . . , βC−1). We now have

p(V | M, β) ∝
H∏

h=1

C∏
j=1

(

C∑
i=1

mijphi)
vhj

and the joint posterior density can now be expressed as

p(β, M, γ | V, T) ∝ p(V | M, β)p(T | M)p(M | γ )p(β)p(γ ).

The terms that are different from Section 2.3 are p(V | M, β) and p(β). The sampling step for γ remains
exactly the same as previously discussed. We will use a similar data augmentation strategy as in Section
2.3 and combine with a Polya-Gamma data augmentation to sample from this posterior distribution. We
expand the term (

∑
i mijphi)

vhj ∝ E(
∏

i(mijphi)
bhij ) where

bhj = (bh1j, . . . , bhCj)
′ ind∼ Multinomial(vhj, 1/C).

Let B denote the HC × C matrix formed by stacking all the bhj’s row-wise. We can write

p(β, B, M, γ | V, T) ∝
∏

h

∏
i

∏
j

(mijphi)
bhij × p(T | M)p(M | γ )p(β)p(γ ).

The following updates ensue immediately:

bhj | · ∼ Multinomial(vhj,
1∑

i mijphi
(m1jph1, m2jph2, . . . , mCjphC)′)

Mi∗ | · ∼ Dirichlet

(
Ti∗ + γ iIi∗ + γ i1 +

(∑
h

bhi1, . . . ,
∑

h

bhiC

)′)
.
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For β i’s, we introduce the Polya-Gamma variables ωhi’s and define �i = diag({ωhi}H
h=1), nh = ∑

j vhj, and
κ i = (κ1i, . . . , κHi)

′, where κhi = ∑
j bhij − nh/2. Defining W−1

i = X′�iX + W−1
0i , we then have

ωhi | · ∼ PG(nh, xT
h β i − chi) where chi = log

⎛⎝∑
k �=i

exp(xT
h βk)

⎞⎠
β i | · ∼ N (mi, Wi) where mi = Wi

(
X′(κ i − �ici) + W−1

0i m0i

)
.

Here PG denotes the Polya-Gamma distribution and ci = (c1i, c2i, . . . , cHi)
′. This completes the steps of a

Gibbs sampler where all the parameters except γ are updated via sampling from conjugate distributions.
We can transform the posterior samples of β to obtain posterior samples of phi. Estimates of the marginal
class distribution for the whole country can also be obtained by using the relationship pi = ∫

phidP(h),
where an empirical estimate of the covariate distribution P(h) can be obtained from U .

4.2. Covariate-specific transfer error

Until now, we have assumed that the transition matrix M is independent of the covariates. We can also
introduce covariates in modeling the conditional probabilities mij’s using a similar multi-logistic regression.
This model will be particularly useful if there is prior knowledge about covariate-dependent biases in the
predictions from a classifier. Letting mrij denoting the conditional probabilities p(A = j | G = i, xr), we
can model

mrij = exp(x′
rζ ij )∑C

i=1 exp(x′
rζ ij )

, i, j ∈ {1, 2, . . . , C}, ζ iC = 0

ζ ij
ind∼ N (m0ij, W0ij), j < C.

(4.12)

The implementation will involve Polya-Gamma samplers for each row of M in a manner exactly similar
to the sampler outlined above (we omit the details). Since we can only estimate the parameters ζ ij from
the limited local data, we can only adopt this approach with a very small set of covariates for modeling
the transfer error rates.

5. SIMULATION STUDIES

The PHMRC study, conducted in four countries across six sites, is a benchmark database of paired
VA records and GS-COD of children, neonates and adults. PHMRC data are frequently used to assess
performance of CCVA algorithms. We conduct a set of simulation studies using the PHMRC data (obtained
through the openVA package, version 1.0.5) to generate a wide range of plausible scenarios where the
performance of our transfer learning models needs to be assessed with respect to the popular CCVA
algorithms. First, we randomly split the PHMRC child data (2064 samples) into three parts representing G,
and initial L and initial U respectively using a 2:1:2 ratio, containing roughly 800, 400, and 800 samples,
respectively. As accurate estimation of mortality fractions from most prevalent causes are usually the
priority, we restrict our attention to four causes: the top three most prevalent causes in the target-domain
data (L ∪ U)—Pneumonia, Diarrhea/Dysentery, Sepsis, and an Other cause grouping together all the
remaining causes.

We wanted to simulate scenarios where both (i) the marginal distributions P(G) of the classes and (ii)
the conditional distributions P(A | G) are different between the source- and target-domains. To ensure the
latter, given a confusion matrix M = (mij) we want P(A = j | G = i) = mij on L ∪ U . We will achieve
this by discarding the actual labels in L∪U and generating new labels such that an algorithm A trained on
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G shows transfer error rates quantified by M on L∪U . Additionally, the new labels need to be assigned in
a way to ensure that the target-domain class probability vector is pU , for any choice of pU different from
the source-domain class probabilities in pG .

Note that if the true population class probabilities in the target domain needs to be pU , then qU , the
population class probabilities as predicted by A is given by qU = M′pU . Hence, we first use A trained on
G to predict the labels for each case in the initial U . We then resample cases from the initial U to create a
final U such that the predicted labels of A has the marginal distribution qU . Next, from Bayes theorem,

p(G = i | A = j) = mijpU ,i∑
i mijpU ,i

= αij.

For cases in U such that A = j, we generate the new “true” labels from Multinomial(1, (α1j, α2j, . . . , αCj)
′).

This data generation process ensures that for any case in U both G ∼ Multinomial(1, pU) and A | G =
i ∼ Multinomial(1, Mi∗) are approximately true. We repeat the procedure for L, using the same M but a
different pL. This reflects the reality for verbal autopsy data where the symptom-given-cause dynamics
is same for all deaths L ∪ U in the new country, but the hospital distribution of causes pL is unlikely to
match the population CSMF pU . For resampling to create the final L, we also vary n—the size of L as 50,
100, 200, and 400, to represent varying amount of local labeled that will be available at different stages
of a project.

We consider two choices of A: Tariff (version 1.0.3) and InSilicoVA (version 1.2.2). For M, we use
three choices. We have M1 = I,

M2 =

⎛⎜⎜⎝
1.00 0 0 0
0.65 0.35 0 0

0 0 0.5 0.5
0 0 0 1

⎞⎟⎟⎠
and M3 = 0.6 ∗ I + 0.1 ∗ 11′. The first choice represents the case where the algorithm A is perfect for
predicting in the target domain. M2 with two large off-diagonal entries and all other off-diagonal ones
being zero represents the scenario where there are one or two systematic sources of bias in A when trained
on a source-domain different from the target domain. The specific choice of M2 depicts the scenario that
65% of Diarrhea/Dysentery cases are classified as pneumonia and 50% of sepsis deaths are categorized
as some other cause. Finally, M3 represents the scenario where there are many small misclassifications.

To ensure that pU and pL are different, we generate pairs of probability vectors (pL, pU)′ from
Dirichlet(1) distribution and divide the cases into three scenarios: low: CSMFA(pL, pU) < 0.4, medium:
0.4 < CSMFA(pL, pU) < 0.6, and high: CSMFA(pL, pU) > 0.6. Here, CSMFA denoting the CSMF
accuracy is a metric quantifying the distance of a probability vector (pL) from a reference probability

Table 2. List of models used to estimate population CSMF

Model name Description

TariffG Tariff trained on the source-domain gold standard data G
TariffBTL Bayesian transfer learner using the output from TariffG
InSilicoG InSilicoVA trained on the source-domain gold standard data G
InSilicoVABTL Bayesian transfer learner using the output from InSilicoVAG
EnsembleI Ensemble Bayesian transfer learner (independent) using TariffG and InsilicoG
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Fig. 2. CSMF of ensemble and single-classifier transfer learners. (a) Data generated using Tariff. (b) Data generated
using InSilicoVA.

vector (pU ) and is given by (Murray and others, 2011b):

CSMFA(pL, pU) = 1 − ||pL − pU ||1
2(1 − min pU)

.

For each scenario, we generated 100 pairs of pL and pU . For each generated dataset, we use all the
algorithms listed in Table 2 for predicting pU . For an estimate p̂U(x) generate by a model x, we
assess the performance of x using CSMFA(x)= CSMFA(̂pU(x), pU). We present a brief summary of
the results here. A much more detailed analysis is provided in Section S5 of the supplementary material
(http://www.biostatistics.oxfordjournals.org). Figure 2 presents the CSMFA for all the five models for
n = 400.

The three columns are for the three choices of M described above, and in each figure the x-axis from
left to right marks the low, medium, and high settings.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa001#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa001#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa001#supplementary-data


852 A. DATTA AND OTHERS

We observe that for almost all settings the Bayesian transfer learning approach was better than its cor-
responding baseline, i.e., TariffBTL was better than TariffG and InSilicoVABTL was better than InSilicoVAG .
The improvement in CSMFA was most drastic for M2 (middle column) where it was as much as 0.3 in
some cases. Only for M1, i.e., when the classifier is assumed to be perfect for predicting in the target
domain, we see TariffBTL and TariffG produce similar CSMFA in the (top-left) and InSilicoVABTL and
InSilicoVAG produce similar CSMFA (bottom-left). This just corroborates Theorem 2.1 that the transfer
learning keeps things unchanged if the classifier has zero transfer error. We also observe that within each
figure, CSMFA’s generally increase as we go from the low to the high setting, indicating that increased
representativeness of the class distribution in the small labeled set L leads to improved performance. Also,
across all settings we see that transfer learning based on algorithms used to simulate the data performs
better, i.e., for the top-row TariffBTL performs better than InSilicoVABTL as in this case they respectively
correspond to a true and a misspecified model. Similarly, for the bottom-row InSilicoVABTL performs better
than TariffBTL. However, even under model misspecification, the transfer learning models perform better
than their baselines, i.e., even when data are generated using Tariff, InSilicoVABTL performs better than
InSilicoVAG . Finally, across all scenarios, the ensemble learner performs close to the better performing
individual learner, highlighting its utility and robustness.

In Section S5 of the supplementary material available at Biostatistics online (http://www.biostatistics.
oxfordjournals.org), we present more insights into the simulation study. Section S5.1 assesses the impact
of the disparity in the class distributions between the source- and target-domains. In Section S5.2, we
compare the biases in the estimates of individual class probabilities. Section S5.3 delves into the role
of the sample size and quality of the limited labeled set L. Section S5.4 demonstrates the value of the
Bayesian shrinkage by comparing with the frequentist transfer learning outlined in Section 2.1. In Section
S5.5, we compare the joint and independent ensemble models and demonstrate how they favorably weight
the more accurate algorithm. Section S5.6 shows how one can use informed shrinkage, if a practitioner
has a priori knowledge of which causes are likely to be misclassified by an algorithm. Finally, in Section
S5.7, we compare the individual-level prediction performance of the models using the algorithm outlined
in Section S5.2.

6. PREDICTING CSMF IN INDIA AND TANZANIA

We evaluate the performance of baseline CCVA algorithms and our transfer learning approach when
predicting the CSMF for under 5 children in India and Tanzania using the PHMRC data with actual COD
labels. We used both India and Tanzania, as they were the only countries with substantial enough sample
sizes (NIndia = 948, NTanzania = 728). For a given country (either India or Tanzania), we first split the
PHMRC child data into subjects from within the country (L and U) and from outside of the country
(G). We then used weighted sampling to select n(∈ {50, 100, 200}) subjects from within the country
of interest to be in L, using weights such that CSMFA(pL, pU) was low. Figure S8 in Section S6 of
the supplementary material available at Biostatistics online (http://www.biostatistics.oxfordjournals.org)
shows the difference in the marginal symptom distribution between U and L. All the subjects from the
country were put in U . We trained models InsilicoG and TariffG using the non-local data G, which were
then used to predict the top COD for all subjects in L and U . We classified all causes of death into
“External,” “Pneumonia,” “Diarrhea/Dysentery,” “Other Infectious,” and “Other.” These predictions were
then used to estimate the baseline CSMFs and as an input to our transfer learning models TariffBTL,
InSilicoVABTL, and EnsembleI. Since the true labels (GS-COD) are available in PHMRC, we calculated
the true pU for a country as the empirical proportions of deaths from each cause, based on all the records
within the country. This pU was used to calculate the CSMF accuracy of each model. This whole process
was repeated 500 times for each combination of country and value of n. This made sure that the results

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa001#supplementary-data
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https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa001#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa001#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa001#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa001#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa001#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa001#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa001#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa001#supplementary-data
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Fig. 3. PHMRC analysis: average CSMFA using true GS-COD labels

presented are average over 500 different random samples of L for each country, and are not for an arbitrary
sample.

Figure 3 presents the results of this analysis. The top and bottom rows represent the results for India
and Tanzania, respectively. The four columns correspond to four different choices of n.

There are several notable observations. First, regardless of n, choice of algorithm A, and country, the
calibrated estimates of prevalence from our transfer learning model performed better than or similar to
the analogous baseline CSMFs, i.e., TariffBTL performed better than TariffG , and InSilicoVABTL performed
better than InSilicoVAG . Second, the magnitude of improvement for the our approach depends on the
country and the size of L. Within India, the CSMFA of TariffBTL and InSilicoVABTL is similar to respectively
those from TariffG and InSilicoVAG . Tariff does better than InsilicoVA for India with TariffBTL being the
best performer. In Tanzania, the baseline InsilicoVA model InSilicoVAG does better than TariffG , and
similarly InSilicoVABTL does better than InSilicoVABTL. The improvement of TariffBTL and InSilicoVABTL,
respectively over TariffG and InSilicoVAG is more prominent than in India, with InSilicoVABTL being the
most accurate. The magnitude of improvement in the three TL approaches also increased with increase in n
for Tanzania. In Section S7 of the Supplementary material available at Biostatistics online, we investigate
the effect of adding more causes of death on the transfer learning CSMFA.

7. DISCUSSION

Epidemiological studies pose unique challenges to transfer learning, stemming from its focus on estimating
population-level quantities as opposed to individual predictions, small sample sizes coupled with high-
dimensional covariate spaces (survey records), and lack of large training databases available for many
other machine learning tasks. Motivated by these settings, we have presented a parsimonious hierarchical
model-based approach to transfer learning of population-level class probabilities, using a pre-trained
classifier, limited labeled target-domain data, and abundant unlabeled target-domain data.

In order for the transfer learning approach to work, the labeled data L has to be useful for improving
CSMF estimation in U , i.e., there has to be some commonality between the distributions in L and U .
Usually L is not going to be representative of the marginal cause distribution of U . If additionally, it is

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa001#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa001#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa001#supplementary-data
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also not representative of the conditional distributions of s | G (or, equivalently by marginalizing out s,
of A | G), then L is of no use to improve CSMF estimation in U . Hence, our transfer learning is useful
when the conditional distributions are same (constant M) between L and U , or has the same functional
form (regression approach of Section 4.2) between L and U .

Shrinkage or regularization is at the core of our approach. In data sets with large numbers of vari-
ables (dimensions), regularized methods have become ubiquitous. A vast majority of the literature
focuses on shrinking estimates (mostly regression coefficients and covariance or precision matrices)
towards some known sub-model. We apply the same principle of regularization in a unique way for
estimating the population class probabilities. Instead of shrinking towards any underlying assumptions
about the true population distribution, we shrink towards the baseline estimate. In absence of suffi-
cient target-domain data, this is the estimate that is commonly used, and this shrinkage principle is
desirable for practitioners familiar with this default method. We show how this shrinkage is achieved
by shrinking the confusion matrix towards the identity matrix using appropriate Dirichlet priors. This
regularized estimation of a confusion matrix (or any transition matrix) can also be applied in other
contexts.

The fully Bayesian implementation is fast, owing to a novel data-augmented Gibbs sampler. The
ensemble model ensures robust estimates via data-driven averaging over many classifiers and reduces the
risk of selecting a poor one for a particular application. Our simulations demonstrate the value of transfer
learning, offering substantially improved accuracy. The PHMRC data analysis makes evident the value of
collecting a limited number of labeled data GS-COD in the local population using full or minimally invasive
autopsy, alongside the nationwide VA survey. Subsequently using transfer learning improves the CSMF
estimates. The results also show how our approach benefits from larger sample sizes of the local labeled set
L, and from closer alignment between the marginal class probabilities in L and the true target-domain class
probabilities.

ForVA data analyses, we note that while we used a labeled data set in the source-domain as G, in practice
it can be any other form of gold standard information sufficient to train a VA classifier. CCVA methods like
Tariff and the approach in King and others (2008) represent a traditional supervised learning approach and
needs a substantial labeled training dataset G. InterVA is a semi-supervised learning approach where G is a
standard matrix of letter grades representing the propensity of each symptom given each cause. InSilicoVA
generalizes InterVA and endows the problem with a proper probabilistic framework allowing coherent
statistical inference. It adapts to the type of G and can work with either the default symptom-cause matrix
used in InterVA or estimate this matrix based on some labeled training data of paired VA and GS-COD
records. Our transfer learning is completely agnostic to the choice of this baseline CCVA algorithm and
the form of G they require. We only need the predictions from a pre-trained algorithm for all observations
in L ∪ U .

One important direction forward would be to generalize this approach for more complex COD outcomes.
Currently COD outcome is viewed as a discrete variable taking values on a set of causes like pneumonia
or sepsis. In practice, death is a complex chronological series of several events starting from some root
causes and ending at the immediate or proximal cause. In addition to understanding prevalence of causes
in the population, another goal for many of the aforementioned programs is to identify medical events that
occurred before death for which an intervention could prevent or delay mortality. Extending the current
setup for hierarchical or tree-structured COD outcome would be a useful tool to address this aim. Many
CCVA algorithms, in addition to predicting the most likely COD, also predict the (posterior) distribution
of likely causes. Our current implementation only uses the most likely COD as an input. An extension
enabling the use of the full predictive distribution as an input can improve the method. Finally, the VA
records, containing about 250 questions for thousands of individuals, naturally has several erroneous
entries. Preprocessing VA records to eliminate absurd entries and records entails onerous manual efforts.
It is challenging to develop quality control models for VA data due to the high dimensionality of the
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symptoms. Akin to what we did here, one can consider dimension reduction via the predictions of CCVA
algorithms for automated statistical quality control.

8. SOFTWARE

R-package “calibratedVA” containing code to obtain estimates of population CSMFs from our
transfer learning approach using baseline predictions from any verbal autopsy algorithm is
available at https://github.com/jfiksel/CalibratedVA/. The package also contains the code for
the ensemble model for using outputs from several VA algorithms. A vignette describing
how to navigate the package and demonstrating the use of the methodology is provided in
https://github.com/jfiksel/CalibratedVA/blob/master/vignettes/CalibratedVA.Rmd. All results in this arti-
cle can be recreated using the scripts contained in https://github.com/jfiksel/BayesTLScripts.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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