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Objectives: Distinction of malignant pulmonary nodules from the benign ones based on
computed tomography (CT) images can be time-consuming but significant in routine
clinical management. The advent of artificial intelligence (AI) has provided an opportunity to
improve the accuracy of cancer risk prediction.

Methods: A total of 8950 detected pulmonary nodules with complete pathological results
were retrospectively enrolled. The different radiological manifestations were identified
mainly as various nodules densities andmorphological features. Then, these nodules were
classified into benign and malignant groups, both of which were subdivided into finer
specific pathological types. Here, we proposed a deep convolutional neural network for
the assessment of lung nodules named DeepLN to identify the radiological features and
predict the pathologic subtypes of pulmonary nodules.

Results: In terms of density, the area under the receiver operating characteristic curves
(AUCs) of DeepLN were 0.9707 (95% confidence interval, CI: 0.9645-0.9765), 0.7789
(95%CI: 0.7569-0.7995), and 0.8950 (95%CI: 0.8822-0.9088) for the pure-ground glass
opacity (pGGO), mixed-ground glass opacity (mGGO) and solid nodules. As for the
morphological features, the AUCs were 0.8347 (95%CI: 0.8193-0.8499) and 0.9074
(95%CI: 0.8834-0.9314) for spiculation and lung cavity respectively. For the identification
of malignant nodules, our DeepLN algorithm achieved an AUC of 0.8503 (95%CI: 0.8319-
0.8681) in the test set. Pertaining to predicting the pathological subtypes in the test set,
the multi-task AUCs were 0.8841 (95%CI: 0.8567-0.9083) for benign tumors, 0.8265
(95%CI: 0.8004-0.8499) for inflammation, and 0.8022 (95%CI: 0.7616-0.8445) for other
benign ones, while AUCs were 0.8675 (95%CI: 0.8525-0.8813) for lung adenocarcinoma
(LUAD), 0.8792 (95%CI: 0.8640-0.8950) for squamous cell carcinoma (LUSC), 0.7404 (95%
CI: 0.7031-0.7782) for other malignant ones respectively in the malignant group.
May 2022 | Volume 12 | Article 6837921

https://www.frontiersin.org/articles/10.3389/fonc.2022.683792/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.683792/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.683792/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.683792/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.683792/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:weimi003@scu.edu.cn
mailto:zhangyi@scu.edu.cn
https://doi.org/10.3389/fonc.2022.683792
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.683792
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.683792&domain=pdf&date_stamp=2022-05-11


Wang et al. DeepLN Predicts Pathological Subtypes

Frontiers in Oncology | www.frontiersin.org
Conclusions: The DeepLN based on deep learning algorithm represented a competitive
performance to predict the imaging characteristics, malignancy and pathologic subtypes
on the basis of non-invasive CT images, and thus had great possibility to be utilized in the
routine clinical workflow.
Keywords: pulmonary nodules, pathological subtypes, artificial intelligence, deep learning, computed tomography
INTRODUCTION

Lung cancer is the most commonly diagnosed cancer (11.6% of
all cases) and the leading cause of cancer-related deaths (18.4% of
the total cancer deaths) globally (1). The wide application
of computed tomography (CT) in routine clinical practice has
enabled lung cancer detection and intervention at a relatively
early stage, markedly improving the survival outcomes of the
whole patient population. There have been widely known lung
cancer screening programs such as the National Lung Screening
Trial (NLST) and Nederlands–Leuvens Longkanker Screenings
Onderzoek (NELSON) demonstrating a reduction in the lung-
cancer mortality with low-dose computed tomography (LDCT)
screening of about 20% as compared with the mortality in the
chest radiography group (2–4). However, more than 96% of all
positive screens detected by LDCT were false positives (2).
Therefore, despite the observed contribution of the LDCT
screening in improving the prognosis of certain patients with
early confirmed lung cancer, this method can also cause deleterious
effects in the patient cohorts with benign lung nodules or even
without any diseases, such as unnecessary investigations, increased
anxiety and high financial expenses. At a time when healthcare
resources are generally limited, considering the heterogeneous
manifestations of medical imaging methods, a more rapid
thorough interpretation of the imaging results will entail to better
grasp the biological nature of lung nodules.

An in-depth interpretation requires a wide coverage of
multidimensional characteristics. There have been several
classical guidelines (e.g., Lung‐RADS, Fleischner Society 2017,
clinical practice consensus guidelines for Asia) that consider
elements including but not limited to nodule size and the density
presented on CT images in classification (5–7). And the
morphology of nodules, with features such as spiculation,
lobulation, pleural indentation and lung cavity, has also been
reported to have a clear positive relationship with the risk of
malignancy (8). However, the manual classification task by
human visual analyses is tedious and time-consuming, and it
highly depends on the clinical experience of the doctors,
resulting in substantial inter-observer variability, even among
experienced radiologists (9). In areas where the adequate
experienced thoracic radiologists are unavailable, this problem
becomes considerably more severe. Therefore, computer-based
techniques that could provide potential assistance to clinical
decision making in evaluating the imaging results, defining the
sub-classifications, and eventually predicting the malignancy
risks of lung nodules would be of significant value.

Deep learning, a subset of machine learning, has achieved
impressive results with accuracy at least equivalent to expert
2

physicians in several medical image classification tasks such as
grading of diabetic retinopathy, assessment of skin lesions as
benign or malignant, and detection of lymph node metastasis in
breast cancer (10–13). In the field of respiratory diseases, deep
learning algorithms have also been utilized and trained to detect
the pulmonary nodules, to predict the cancer risk of nodules, and
to assess the tumor invasiveness especially in adenocarcinoma, the
most common subtype of lung cancer (14–16). However,
investigations digging into the classification of more specific
subtypes within benign and malignant pulmonary nodules with
deep learning methods were relatively limited. However, due to
the heterogeneous pathologic nature and continuously evolving
characteristics of these nodules, finer taxonomy should be fed into
the deep learning algorithms to make this advanced technical
modality better fit with routine clinical practice, which thus
became the goal we sought to achieve in the present study.

Previously, we proposed a novel deep learning system for the
assessment of lung nodules named DeepLN for screening throax
pathologies to identify the location and general nature of lung
nodules, which presented a favorable performance (17, 18). In
the current study, we extended this deep learning algorithm
(DeepLN) to account for a wide range of radiological
manifestations like the tumor densities and the morphologic
features, predict the pathological subtypes including the benign
status (benign tumors, inflammation, other lesions) and the
malignant status (adenocarcinoma, squamous cell carcinoma,
other types). Our developing, training, and test procedures were
all based on a large real-world CT-related images dataset.
MATERIALS AND METHODS

Patients Population and Nodules Dataset
We built a retrospective cohort comprising 8950 nodules from
5823 patients at the West China Hospital of Sichuan University.
Patients of older than 18 years old, with radiological examination
reporting pulmonary nodules were included. Nodules were only
included if they had a diagnosis confirmed by pathology.
Pathological results were regarded as the gold standard for
clinical diagnoses, which could distinguish malignant nodules
from the benign ones. Furthermore, the pathological results were
used to distinguish various subtypes of benign and malignant
nodules. Benign nodules were divided into benign tumors,
inflammatory nodules, and other benign lesions, whereas
malignant nodules were classified as lung adenocarcinoma
(LUAD), squamous cell carcinoma (LUSC), and other cancer
types. In our study, all nodule tissues were collected after surgery
May 2022 | Volume 12 | Article 683792

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. DeepLN Predicts Pathological Subtypes
or biopsy. Ethics approval was obtained from the ethics
committee of West China Hospital, Sichuan University.

The latest preoperative chest CT images of the whole cohort
were collected after anonymization in Digital Imaging and
Communications in Medicine (DICOM) format, including
both thin-section (1-3 mm) and thick-section (5mm) scans.
Scanning parameters were set according to the operating
specifications: 120 kV tube voltage, 200-500 mA tube current,
0.4-0.7 s rotation time, 512 × 512 pixel matrix.

First, the nodules on CT images were annotated by junior
radiologists and were reviewed by senior radiologists, with the
assistance of a semi-automatic annotation system constructed
previously (19). The characteristics annotated by radiologists in
our dataset included density (pure-ground glass opacity called
pGGO, mixed-ground glass opacity named mGGO, solid) and
morphology (spiculation, lobulation, pleural indentation, and
lung cavity). Biases were minimized with the final annotations
coming from the consensus from 2 senior radiologists. The
whole dataset was randomly divided into a training set (70%),
a validation set (10%), and a test set (20%).

Multi-Task DeepLN Architecture
We built deep learning models for classifying benign/malignant
nature, and pathological subtypes assisted by the auxiliary tasks
of nodule imaging feature classification. The architecture of our
model was shown in Figure 1, where we used 3D-ResNet as the
backbone network. To be started, all the nodules were cropped
into 20×96×96 patches from the raw images according to the
nodules’ center, and then the patches were enlarged to
32×128×128. Besides, the CT values were clipped in the range
of [-1300, 500] and normalized to [0, 1]. Before feeding to the
networks, the patches were converted to tensors with the channel
of 1, and several data augmentation operations, involving
random flip, rotation and center location perturbation, were
conducted. The 3D-ResNet backbone computed and further
extracted the discriminative features, and in the output phase,
the last fully-connected (FC) layer was placed to obtain the final
classification probabilities using sigmoid for binary classification
Frontiers in Oncology | www.frontiersin.org 3
tasks and softmax for multi-class classification tasks. The 3D-
ResNet backbone (20), which inherited the nature of ResNet (21)
and was modified for three-dimensional input, was stacked by a
3D convolutional (Conv) layer, a max-pooling (MP) layer, four
3D residual blocks (ResBlocks), and an average-pooling (AP)
layer (20). The residual block, as the key component of ResNet,
was a strong feature extractor and utilized the shortcut
connections to effectively train the deep neural networks while
maintaining fast convergence. Each block consisted of several
convolutional layers with different parameters. The residual
block could be categorized into two types according to the
types of shortcut connection. The shortcut connection in
IDBlock was an identify mapping, while it was an 1×1×1
convolution mapping in ConvBlocks. The max-pooling layer
served as a downsampling function and was used to generate
high-level features. Since it was reported that deep learning
models were capable of transferring image representations
from large-scale datasets, the constructed model was facilitated
by the pretrained parameters based upon Kinetics (21, 22), an
action recognition dataset that commonly used for 3D
convolutional neural network pretraining. More specifically, we
initialized the parameters of four ResBlocks using network
parameters that had been converged at the Kinetics dataset (20).

Referred to Lung‐RADS, in which nodules size, density and
morphology could be employed to identify the malignancy of lung
nodules, we employed lung nodule density and morphology as
auxiliary labels to train the proposed model sufficiently using multi-
task learning. Moreover, these morphology features also served as
auxiliary tasks for classifying pulmonary nodule pathological
subtypes. As shown in Figure 1, for the main task, we employed
one neuron to output the probability of the nodule being
malignancy or six neurons to output the probabilities of the
nodule belonging to a certain pathological subtype. For the
auxiliary tasks, three neurons were employed to output the
probabilities of the nodule density, namely pGGO, mGGO and
solid, and four neurons were employed to output the probabilities of
four characteristics of morphology. These auxiliary tasks would
provide more feedback and reduce the certain noisy patterns
FIGURE 1 | Architecture of our deep learning model.
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regarding the single task, so that more general representations of
pulmonary nodules could be extracted from the networks and
facilitate more accurate prediction. The DeepLN learning
framework was guided by the multi-task loss function, which was
the weighted combination of the binary cross-entropy (BCE) loss
and softmax cross-entropy (SCE) loss. BCE loss was used for binary
classification tasks, namely the benign/malignant classification and
characteristic classification. SCE loss was used for multi-class
classification tasks, namely the pathological subtypes classification
and density classification. Supposing LbmBCE ,   L

subtype
SCE ,   LdenSCE ,   L

morph
BCE

denoted the loss functions of the benign/malignancy classification,
pathological subtype classification, nodule density classification, and
morphology characteristic classification task, respectively. The
multi-task learning loss functions were defined as follows:

L1 = l1L
bm
BCE +  l2L

den
SCE +  l3L

morph
BCE

L2 = l1L
subtype
SCE + l2L

den
SCE + l3L

morph
BCE

Here, l denoted the weight factors of the classification tasks.
As can be seen, benign/malignancy and pathological subtype
classification were respectively regarded as the main task, and the
nodule density and characteristic classification were regarded as
the assisted tasks. We chosed l1 = 0.4, l2 = 0.2, and l3 = 0.4 in L1,
and since the subtype classification was a more difficult task than
benign/malignancy classification, we selected a larger value of l1,
i.e., l1 = 0.8, l2 = 0.05, and l3 = 0.15 in L2.
Implementation and Training Details
The training experiments were conducted with Pytorch (v.1.0.0)
on the Red Hat 4.8.5 server with one NVIDIA Tesla V100 GPU
(32GB). To reach the best training result, the hyper-parameters
of the models were carefully tuned by 100 epochs, with a learning
rate of 0.001, a weight decay of 0.001, and a momentum of 0.9.
The learning rate would be multiplied by 0.1 if the error in
validation set did not reduce in 20 epochs. To accelerate and
optimize the training progress, mini-batch stochastic gradient
descent was adopted, with a batch size of 32.
Evaluation Metrics
The performance of each trained model was evaluated in
validation and test sets from dimensions of its accuracy (ACC),
recall, precision, specificity, F1 score, the area under the curve
(AUC) and 95% confidence interval (CI). To ensure best practice
in application of AI in medical imaging, CLAIM (Checklist for
AI in Medical Imaging) was rigorously applied (Supplementary
Table 1) (23).
RESULTS

Demographic and Clinical Characteristics
In total, 2211 benign nodules and 6739 malignancy nodules
from 5823 patients were included (Table 1). Adenocarcinoma
Frontiers in Oncology | www.frontiersin.org 4
was the most prevalent subtype with 4666 cases. The majority
density of nodules was solid, accounting for 62% of malignant
nodules and 68% of benign lesions. Spiculation (46%) and
lobulation (49%) were common features of malignant
nodules. Circos of nodules characteristics illustrated the
correlation of pathological subtypes and morphological
features (Figure 2). For example, adenocarcinoma occupied
the most samples of all the cases and closely related to
lobulation, spiculation, lung cavity and solid. Lobulation
always appeared with solid and spiculation at the same time,
which indicated that imaging manifestation features might
assist the diagnosis of subtypes.
Feature Detection Performance
The density of nodules was of paramount importance for
clinicians. The AUCs of pGGO nodules were 0.9707 (95% CI:
0.9578-0.9819), 0.9707 (95% CI: 0.9645-0.9765) in the
validation set and the test set respectively (Table 2 and
Figure 3). The AUCs of solid nodules were 0.8858 (95%CI:
0.8649-0.9049) and 0.8950 (95%CI: 0.8822-0.9088) in the
validation and test set. Nevertheless, the identification
performance of the model for mGGO was relatively poor
with an AUC of 0.7822 (95%CI: 0.7506-0.8129) in validation
set and 0.7789 (95%CI: 0.7569-0.7995) in test set. The
confusion matrix was shown in Supplementary Figure 1.

As for the morphological characteristics, the lung cavity was
identified accurately, with an AUC of 0.9176(95%CI: 0.8743-
0.9553) in the validation set and 0.9074 (95%CI: 0.8834-0.9314)
in the test set (Table 2 and Figure 3). Spiculation, lobulation
and pleural indentation reached the AUCs of 0.8466 (95%CI:
0.8236-0.8687), 0.7975 (95%CI: 0.7709-0.8204), 0.7971 (95%
CI: 0.7717-0.8226) in the validation set, and of 0.8347 (95%CI:
0.8193-0.8499), 0.7818 (95%CI: 0.7642-0.7989), 0.8037 (95%CI:
0.7860-0.8203) in the test set, respectively, which could be
regarded as a superior predicting performance.
Classification Performance
The AUC of DeepLN-single task were 0.8636 (95%CI: 0.8412-
0.8866), 0.8361 (95%CI: 0.8172-0.8542) for malignancy in the
validation set, test set, respectively. After being fed with
morphological characteristics of nodules, DeepLN achieved an
excellent performance in distinguishing benign and malignant
nodules (AUC = 0.8696, 95%CI: 0.8468-0.8911 in the validation
set, AUC = 0.8503, 95%CI: 0.8319-0.8681 in the test set), and
achieved an accuracy of 0.8331 (95%CI: 0.8185-0.8465), a
precision rate of 0.8619 (95%CI: 0.8474-0.8756), and a F1
score of 0.8935 (95%CI: 0.8834-0.9034) (Table 2 and
Figure 4). Input crop size was defined as 20×96×96, which had
superior performance compared to others sizes (Supplementary
Table 2). In the attention maps of the deep learning model, the
suspicious area with dark colors in nodules was the tumor edge and
tissue between tumor and pleura (Figure 5).

Moreover, DeepLN could determine the specific pathological
types of nodules (Table 2, Figure 4 and Supplementary Figure 1).
May 2022 | Volume 12 | Article 683792
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The performance of multi-task model was superior than single-
task one, such as benign tumors (AUC=0.8436, 95%CI: 0.8013-
0.8885), inflammatory ones (AUC=0.8331, 95%CI: 0.8011-
0.8627), and other benign lesions (AUC=0.8073, 95%CI: 0.7556-
0.8533) in the validation set. Also, different types of malignant
nodules were distinguished well including LUAD (AUC=0.8618,
95%CI: 0.8414-0.8810), LUSC (AUC=0.8994, 95%CI: 0.8786-
0.9200), and other cancer types (AUC=0.7212, 95%CI: 0.6687-
0.7709). Then, in the test set, the performance of the model was
stable with an AUC of 0.8841 (95%CI: 0.8567-0.9083) for benign
tumors, 0.8265 (95%CI: 0.8004-0.8499) for inflammatory ones,
and 0.8022 (95%CI: 0.7616-0.8445) for other benign lesions. For
LUAD and LUSC, the AUC were 0.8675 (95%CI: 0.8525-0.8813)
and 0.8792 (95%CI: 0.8640-0.8950) in the test set respectively.
Even the AUC of other malignant tumors was 0.7404 (95%CI:
0.7031-0.7782).
DISCUSSION

LDCT-screening could investigate pulmonary nodules and
detect curable early-stage lung cancer cases with a high sensitivity.
Frontiers in Oncology | www.frontiersin.org 5
Later management can highly help to improve the survival
outcomes of patients with lung cancer. However, with the
spread of LDCT-screening, the management of CT-detected
nodules has become a growing challenging clinical problem.
LDCT could screen up to 30% of participants with lung
nodules, in which only 1-2% of individuals were diagnosed
with lung cancer. Benign pulmonary nodules accounted for the
majority of the detections (24, 25), which may result in
additional investigations, unnecessary resections, and over-
whelmed anxiety. Therefore, precise diagnosis and accurate
pathologic identification of pulmonary nodules were of high
significance, in which the adoption of automatic tools might
work out to alleviate the medical burden of this workflow.
For example, the number of potential benign resection
rates (benign nodules identified as high risk) varying
between 20% (Vanderbilt) and 30% (Oxford) datasets would
potentially be suboptimal kept to a minimum (10%-20%) with
the application of the LCP-CNN model (26, 27). These
desirable decreases in unnecessary resections cast light on
the remarkable potential of technical methods in the
classification of CT-detected lung nodules.

To the best of our knowledge, our study was the first to
propose a deep learning algorithm, called DeepLN, to accurately
TABLE 1 | Characteristics of included patients and nodules dataset.

Malignancy No. (%) Benignancy No. (%)

Patients, No 4384 1439

Age, mean (SD) 58.59 (10.27) 57.90 (10.29)

Sex

Male 2522 (42) 798 (55)

Female 1862 (58) 641 (45)

Smoking status

Former or Current 2036 (46) 80 (6)

Never 2216 (51) 131 (9)

Unknown 132 (3) 1228 (85)

Nodules, No 6739 2211

Subtypes

Benign Tumor – 695(31)

Inflammatory Nodule – 1106(50)

Other Benign Lesions – 410(19)

Adenocarcinoma 4666 (69) –

Squamous Carcinoma 1366 (20) –

Other Malignant Tumors 707 (11) –

Density

pGGO 1089 (16) 251 (11)

mGGO 1474 (22) 457 (21)

Solid 4176 (62) 1503 (68)

Nodule Feature

Spiculation 3111 (46) 426 (19)

Lobulation 3297 (49) 400 (18)

Pleural Indentation 2520 (37) 498 (23)

Lung Cavity 470 (7) 32 (14)
May 2022 | Volum
SD, Standard Deviation; pGGO, pure-ground glass opacity; mGGO, mixed-ground glass opacity.
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detect radiological characteristics and predict the specific
pathological subtypes of pulmonary nodules with an
encouraging performance. Previous attempts have merely
sought to distinguish the malignant nodules from the benign
ones. For instance, the lung cancer prediction convolutional
neural network (LCP-CNN) could distinguish benign (low-
risk) nodules from the malignant (high-risk) ones based on
screening and incidentally-detected indeterminate images with
encouraging performance (26, 28), in which the heterogeneity
within either the malignant or benign group was ignored. In
contrast, our DeepLN model accurately classified the benign
nodules into different subtypes such as neoplasm, tuberculoma,
inflammation, and also divided the malignant nodules into
various histologic subtypes such as LUAD, LUSC and other
cancers. This advancement might provided crucial guidance in
everyday clinical practice. The treatment strategies varied
dramatically among the different types of nodules. Some
malignant nodules must require immediate surgery while
others would better choose chemotherapy at the advanced
stage. For example, in cases where the tumors were all with
molecular alterations, the targeted therapy related to the specific
genetic activations might be an ideal choice for LUAD patients,
while LUSC patients with positive PD-L1 expression will choose
to use immunotherapy to obtain the most favorable prognostic
Frontiers in Oncology | www.frontiersin.org 6
outcome (29). Even different benign nodules may require
different solutions. Some might also entail immediate surgery
to avoid harmful effects, like causing cough, and others might
require regular medical treatment, such as inflammatory
nodules, while others simply require interval clinic follow-ups.
The detailed subtypes could play a pivotal role in the treatment
decision-making, which we made great efforts to provide a novel
deep learning approach to help identify.

Compared with the traditional models of lung nodule
malignancy probability, such as Brock and Mayo models,
deep learning was also called the “black box approach” which
discovers the underlying hierarchical features invisible to naked
human eyes. We used the CAMmethod to achieve better spatial
interpretability of DeepLN and obtain the attention maps
focusing on the microenvironment of nodules and pleura,
which suggested that the morphology of nodules like pleural
indentation was positively correlated with the risk of
malignancy. This finding was consistent with those of
previous studies (8, 30). Therefore, we further input imaging
features with potential diagnostic values to contrast DeepLN
with better classification performance. Meanwhile, this model
could also detect the characteristics and density of nodules.
Although the detection performance of the model was
not satisfactory enough as for the mGGOs probably due to
the subjectivity of annotation and several potential errors, the
overall performance of our ompetetive with the aforementioned
careful design.

In addition, the whole development, training, adjusting, test,
and validating processes of our model were based on a so-far
largest clinical dataset of non-invasive CT images of lung nodules
adopted to address a relative problem in the lung cancer field. We
had a massive coverage of patients and nodules. A total of 8950
lung nodules from 5823 patients were identified and included in
our study, of which there were 2211 benign nodules and 6739
malignancy nodules. Our model achieved a promising
performance on the basis of such a reliable dataset in the
prediction of the histological subtypes when the pathology
results were referred to the gold standard. Recent studies have
reported related radiomic and deep machine learning methods
that exhibit the human-level performance in predicting the
malignant risk of pulmonary nodules, but most of these studies
trained on the model via a small dataset or available public
dataset without pathologic results such as NLST based on Lung-
RADS risk bucket (14, 31, 32). Compared with these previous
studies, our results provided a more comprehensive, reliable,
holistic and heterogeneous automatic tool in the subtype
classification of lung nodule cases developed based on real-
world clinical data and might be of better clinical value,
especially for the Asian population.

There were several limitations in the current study. First, the
biases were inevitable due to the retrospective nature of this
study from a single center, and thus further multicentric and
prospective investigations would be needed. Second, most of
the pathology-diagnosed nodules were more than 8 mm in
diameter in the current study, so there might be smaller sized
FIGURE 2 | Circos of the correlation of pathological subtypes and
morphological features. Outermost circle denoted the total number of
corresponding relationships, the middle and innermost circle denoted the
relationship. The wider the strip, the stronger the correlation. Spi,
Spiculation; Lob, Lobulation; PleInd, Pleural Indentation; Cav, Cavity;
pGGO, pure ground glass opacity; mGGO, mixed ground glass opacity;
BT, Benign Tumors; InfNod, Inflammatory Nodule; OthBen, Other Benign
Lesions; LUAD, Adenocarcinoma; LUSC, Squamous Carcinoma; OthMal,
Other Malignant Tumors.
May 2022 | Volume 12 | Article 683792

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. DeepLN Predicts Pathological Subtypes
TABLE 2 | Performance of DeepLN to predict the imaging characteristics, malignancy, and pathological subtypes.

Characteristics Validation Set Test Set

ACC
(95%CI)

Sensitivity
(95%CI)

Precision
(95%CI)

Specificity
(95%CI)

F1 score
(95%CI)

AUC
(95%CI)

ACC
(95%CI)

Sensitivity
(95%CI)

Precision
(95%CI)

Specificity
(95%CI)

F1 score
(95%CI)

AUC
(95%CI)

Imaging Characteristics
Density
pGGO 0.7897

(0.7685,
0.8110)

0.8406
(0.7829,
0.8897)

0.8169
(0.7639,
0.8675)

– 0.8286
(0.7863,
0.8660)

0.9707
(0.9578,
0.9819)

0.7902
(0.7743,
0.8067)

0.8080
(0.7663,
0.8492)

0.7652
(0.7195,
0.8062)

– 0.7860
(0.7506,
0.8185)

0.9707
(0.9645,
0.9765)

mGGO 0.3810
(0.3263,
0.4332)

0.5581
(0.4839,
0.6242)

– 0.4528
(0.3960,
0.5031)

0.7822
(0.7506,
0.8129)

0.3711
(0.3300,
0.4122)

0.5618
(0.5103,
0.6125)

– 0.4469
(0.4066,
0.4871)

0.7789
(0.7569,
0.7995)

Solid 0.9136
(0.8936,
0.9328)

0.8315
(0.8065,
0.8553)

– 0.8706
(0.8532,
0.8876)

0.8858
(0.8649,
0.9049)

0.9274
(0.9155,
0.9402)

0.8416
(0.8243,
0.8587)

– 0.8824
(0.8713,
0.8941)

0.8950
(0.8822,
0.9088)

Nodule
Feature
Spiculation 0.7823

(0.7596,
0.8061)

0.7224
(0.6815,
0.7606)

0.7307
(0.6907,
0.7686)

0.8223
(0.7943,
0.8487)

0.7265
(0.6940,
0.7558)

0.8466
(0.8236,
0.8687)

0.7594
(0.7443,
0.7772)

0.7166
(0.6894,
0.7448)

0.7023
(0.6766,
0.7305)

0.7890
(0.7700,
0.8097)

0.7094
(0.6885,
0.7306)

0.8347
(0.8193,
0.8499)

Lobulation 0.7438
(0.7200,
0.7676)

0.7247
(0.6854,
0.7618)

0.6992
(0.6626,
0.7366)

0.7586
(0.7300,
0.7910)

0.7117
(0.6816,
0.7400)

0.7975
(0.7709,
0.8204)

0.7130
(0.6957,
0.7314)

0.6653
(0.6373,
0.6920)

0.6513
(0.6235,
0.6805)

0.7469
(0.7243,
0.7696)

0.6582
(0.6352,
0.6813)

0.7818
(0.7642,
0.7989)

Pleural
Indentation

0.7426
(0.7188,
0.7676)

0.5898
(0.5404,
0.6385)

0.6214
(0.5714,
0.6693)

0.8194
(0.7926,
0.8473)

0.6052
(0.5625,
0.6427)

0.7971
(0.7717,
0.8226)

0.7337
(0.7180,
0.7504)

0.6019
(0.5691,
0.6320)

0.6404
(0.6068,
0.6739)

0.8084
(0.7899,
0.8276)

0.6205
(0.5937,
0.6463)

0.8037
(0.7860,
0.8203)

Lung Cavity 0.9603
(0.9501,
0.9705)

0.5902
(0.4918,
0.6949)

0.7826
(0.6818,
0.8810)

0.9878
(0.9807,
0.9939)

0.6729
(0.5833,
0.7568)

0.9176
(0.8743,
0.9553)

0.9470
(0.9380,
0.9559)

0.4420
(0.3750,
0.5113)

0.7722
(0.6944,
0.8462)

0.9891
(0.9847,
0.9932)

0.5622
(0.4974,
0.6293)

0.9074
(0.8834,
0.9314)

Malignancy
Single-Task 0.8333

(0.8129,
0.8549)

0.9145
(0.8959,
0.9319)

0.8714
(0.8509,
0.8926)

0.5814
(0.5300,
0.6414)

0.8925
(0.8773,
0.9078)

0.8636
(0.8412,
0.8866)

0.8269
(0.8118,
0.8414)

0.9142
(0.9023,
0.9266)

0.8643
(0.8490,
0.8782)

0.5581
(0.5189,
0.5959)

0.8886
(0.8783,
0.8987)

0.8361
(0.8172,
0.8542)

Multi-Task 0.8356
(0.8152,
0.8560)

0.9250
(0.9081,
0.9413)

0.8666
(0.8450,
0.8876)

0.5581
(0.5025,
0.6143)

0.8949
(0.8802,
0.9086)

0.8696
(0.8468,
0.8911)

0.8331
(0.8185,
0.8465)

0.9275
(0.9152,
0.9388)

0.8619
(0.8474,
0.8756)

0.5421
(0.5033,
0.5779)

0.8935
(0.8834,
0.9034)

0.8503
(0.8319,
0.8681)

Subtype classification (Multi-task)
Benign Tumors 0.6435

(0.6159,
0.6700)

0.3385
(0.2459,
0.4500)

0.5238
(0.3953,
0.6538)

– 0.4112
(0.3089,
0.5149)

0.8436
(0.8013,
0.8885)

0.6499
(0.6311,
0.6699)

0.4825
(0.4067,
0.5520)

0.6053
(0.5321,
0.6860)

– 0.5370
(0.4715,
0.5978)

0.8841
(0.8567,
0.9083)

Inflammatory
Nodules

0.3675
(0.2889,
0.4444)

0.4674
(0.3750,
0.5542)

– 0.4115
(0.3299,
0.4810)

0.8331
(0.8011,
0.8627)

0.3349
(0.2844,
0.3889)

0.4828
(0.4138,
0.5484)

– 0.3955
(0.3402,
0.4471)

0.8265
(0.8004,
0.8499)

Other Benign
Lesions

0.1000
(0.0286,
0.1818)

0.1333
(0.0385,
0.2414)

– 0.1143
(0.0370,
0.2105)

0.8073
(0.7556,
0.8533)

0.0921
(0.0441,
0.1528)

0.2593
(0.1304,
0.4167)

– 0.1359
(0.0667,
0.2157)

0.8022
(0.7616,
0.8445)

Adenocarcinoma 0.8971
(0.8733,
0.9196)

0.7291
(0.6982,
0.7584)

– 0.8044
(0.7819,
0.8247)

0.8618
(0.8414,
0.8810)

0.9044
(0.8872,
0.9205)

0.7226
(0.7027,
0.7436)

– 0.8033
(0.7867,
0.8189)

0.8675
(0.8525,
0.8813)

Squamous
Carcinoma

0.5231
(0.4545,
0.5985)

0.5913
(0.5169,
0.6667)

– 0.5551
(0.4936,
0.6166)

0.8994
(0.8786,
0.9200)

0.5423
(0.4947,
0.5897)

0.5600
(0.5095,
0.6111)

– 0.5510
(0.5075,
0.5915)

0.8792
(0.8640,
0.8950)

Other Malignant
Tumors

0.1471
(0.0800,
0.2222)

0.3448
(0.2000,
0.5000)

– 0.2062
(0.1163,
0.2979)

0.7212
(0.6687,
0.7709)

0.1288
(0.0827,
0.1778)

0.3148
(0.2143,
0.4200)

– 0.1828
(0.1222,
0.2449)

0.7404
(0.7031,
0.7782)

Subtype classification (Single-task)
Benign Tumors 0.6501

(0.6236,
0.6744)

0.3692
(0.2698,
0.4714)

0.5000
(0.3750,
0.6250)

– 0.4248
(0.3191,
0.5192)

0.8386
(0.7952,
0.8795)

0.6300
(0.6100,
0.6477)

0.4476
(0.3776,
0.5133)

0.5333
(0.4615,
0.6017)

– 0.4867
(0.4228,
0.5434)

0.8573
(0.8262,
0.8852)

Inflammatory
Nodule

0.3932
(0.3232,
0.4632)

0.5287
(0.4375,
0.6170)

– 0.4510
(0.3787,
0.5171)

0.8348
(0.8023,
0.8623)

0.3493
(0.2965,
0.4000)

0.4294
(0.3632,
0.4880)

– 0.3852
(0.3298,
0.4327)

0.8048
(0.7747,
0.8318)

Other Benign
Lesions

– –
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nodules that were neglected. But our algorithm could exhibit a
great performance in the detection in the small nodules less
than 8 mm (17, 18), so the exploration might be properly
extended. Third, our study showed that 24.70% of the nodules
were benign, which was far less than expected. In the whole
patient population, benign cases comprised the majority of all
the pulmonary nodules detected, which made training the
reliable classification model vital to avoid unnecessary biopsy
Frontiers in Oncology | www.frontiersin.org 8
or surgery. The inclusion of patients limited the general
applicability of our model. Its robustness and generality
should be further validated in more representative cohorts.

This study provided a promising diagnostic tool named
DeepLN that could identify the radiological morphological
manifestations such as spiculation, lobulation or pleural
indentation, as well as differentiate the malignant tumors (such
as LUAD and LUSC) from the benign lesions (such as neoplasm
TABLE 2 | Continued

Characteristics Validation Set Test Set

ACC
(95%CI)

Sensitivity
(95%CI)

Precision
(95%CI)

Specificity
(95%CI)

F1 score
(95%CI)

AUC
(95%CI)

ACC
(95%CI)

Sensitivity
(95%CI)

Precision
(95%CI)

Specificity
(95%CI)

F1 score
(95%CI)

AUC
(95%CI)

0.0750
(0.0000,
0.1515)

0.1667
(0.0000,
0.3158)

0.1034
(0.0357,
NA)

0.8032
(0.7404,
0.8602)

0.0921
(0.0423,
0.1538)

0.2333
(0.1111,
0.3684)

0.1321
(0.0612,
0.2056)

0.7853
(0.7474,
0.8280)

Adenocarcinoma 0.8951
(0.8708,
0.9177)

0.7166
(0.6878,
0.7462)

– 0.7960
(0.7744,
0.8181)

0.8504
(0.8282,
0.8704)

0.8813
(0.8630,
0.8987)

0.7148
(0.6936,
0.7371)

– 0.7894
(0.7728,
0.8048)

0.8572
(0.8418,
0.8715)

Squamous
Carcinoma

0.5692
(0.4926,
0.6434)

0.6325
(0.5577,
0.7075)

– 0.5992
(0.5356,
0.6613)

0.8912
(0.8688,
0.9138)

0.4965
(0.4470,
0.5445)

0.5595
(0.5073,
0.6116)

– 0.5261
(0.4791,
0.5662)

0.8766
(0.8606,
0.8929)

Other Malignant
Tumors

0.1029
(0.0429,
0.1642)

0.2414
(0.1111,
0.3750)

– 0.1443
(0.0638,
0.2200)

0.7354
(0.6844,
0.7826)

0.1364
(0.0903,
0.1885)

0.3000
(0.2000,
0.3962)

– 0.1875
(0.1270,
0.2500)

0.7320
(0.6982,
0.7680)
May
 2022 | Volum
e 12 | Arti
CI, confidence interval; ACC, accuracy; AUC, area under the curve; pGGO, pure-ground glass opacity; mGGO, mixed-ground glass opacity; NA, not applicable.
A

B

FIGURE 3 | Receiver operating characteristics (ROC) curves of DeepLN to identify, (A) density, (B) morphology of nodules. AUC, area under curve; pGGO, pure-
ground glass opacity; mGGO, mixed-ground glass opacity.
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and inflammation). All the classification processes conducted by
the proposed DeepLN algorithm were based on chest CT scans,
offering a noninvasive and reproducible solution to define the
histological subtypes of lung nodules. Furthermore, the
morphological features that contribute most to our model can
Frontiers in Oncology | www.frontiersin.org 9
be investigated. Our method could also be extended in larger,
multicentric, prospective randomized studies to verify and
enhance its superiority in stratifying the subtypes and
predicting the actual clinical outcomes of patients with CT-
detected nodules.
A

B

FIGURE 4 | Receiver operating characteristics (ROC) curves of DeepLN to identify (A) malignant nodules from benign nodules and (B) pathological subtypes. ST,
Single-task; MT, Multi-task.
FIGURE 5 | Attention map of DeepLN model in the triage of benign and malignant nodules.
May 2022 | Volume 12 | Article 683792
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Supplementary Figure 1 | Confusion matrix of DeepLN to identify (A) density of
nodules, (B) malignancy nodules from benign nodules, (C) six subtypes(1, benign
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