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Abstract
SARS-CoV-2 remains infectious for several hours on surfaces. It can be inactivated by UV-C irradiation but optimal condi-
tions for rapid inactivation, especially on non-plastic surfaces remains unclear. A SARS-CoV-2 inoculum was irradiated with 
a UV-C LED (265 nm) or a UV-C mercury lamp (254 nm). Infectivity titers (TCID50/mL) and inactivation rates were then 
quantified on plastic, steel, tissue, paper and cardboard surfaces. We demonstrated that efficient SARS-CoV-2 inactivation 
(> 99.999% on plastic and steel, ≥ 99.8% on tissue, paper and cardboard) can be achieved by both a UV-C mercury lamp 
and a UV-C LED after 30 s of irradiations at 3 cm, corresponding to UV-C doses of 92.85 and 44.7 mJ/cm2, respectively. 
Inactivation on a plastic surface was more efficient with the mercury UV-C lamp (p < 0.005). The mercury UV-C lamp could 
be more relevant than the LED in high-risk settings, such as medical care or research laboratories.
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1 � Background

The human coronavirus named SARS-CoV-2 is a Beta-
coronavirus identified for the first time in late 2019 in 
Wuhan, China and is now responsible for a major pandemic 
worldwide. This virus is transmitted mainly via respira-
tory droplets and also by direct contact with symptomatic 
or asymptomatic patients or with contaminated surfaces 
[1]. SARS-CoV-2 can remain infectious for up to 72 h on 
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non-absorbent surfaces like plastic or steel and up to 24 h 
on absorbent surfaces like cardboard [1]. UV-C irradiation 
(200–280 nm) is an effective disinfection approach to inac-
tivate pathogens on surfaces, especially when detergents are 
not suitable (electronic devices or water treatment). UV-C 
has a strong germicidal activity, particularly at 260 nm, 
the maximal wavelength of absorption for nucleic acids 
[2]. They inactivate pathogens by inducing the formation 
of pyrimidine dimers, thus inhibiting the genome replica-
tion [2, 3]. UV-C can inactivate SARS-CoV-2 on plastic or 
wood surfaces in a few seconds or minutes but have not been 
evaluated on cardboard or paper [4–8]. UV-C irradiation can 
be performed with UV light-emitting diodes (UV LEDs) or 
classical mercury lamps [2]. Our objective was to evaluate 
the efficiency of a UV-C mercury lamp and a UV-C LED for 
the inactivation of SARS-CoV-2 on non-absorbent (plastic, 
steel) and absorbent surfaces (tissue, paper and cardboard).

2 � Methods

2.1 � Cell culture and virus

Vero cells (ATCC, CCL-81) and Vero-E6 cells (ATCC, 
CRL-1586) were maintained in DMEM medium supple-
mented with 10% FCS and 1% penicillin–streptomycin at 
37 °C, under an atmosphere containing 5% CO2. A clinical 
isolate of SARS-CoV-2 was isolated from a nasopharyn-
geal swab collected from a patient suffering from COVID-19 
at the Tours University Hospital. The virus was amplified 
using Vero cells expressing Transmembrane Protease Serine 
2 (TMPRSS2) to prepare a viral stock in DMEM medium 
supplemented with 2% FCS and 1% penicillin–streptomy-
cin. This supplemented DMEM medium was defined as 
infection medium. Viral titer was expressed in 50% tissue 
culture infective dose (TCID50). This measurement reflects 
the dilution at which 50% of wells show cytopathic effect. 
This was quantified by endpoint dilution, using the Spear-
man and Kärber formula [9, 10], previously used for similar 
applications [8]. The limit of detection was 4 TCID50/mL. 
Results below 4 TCID50/mL were considered as equivalent 
to 1 TCID50/mL. Concentration of the viral stock used in 
this study was 3 × 105 TCID50/mL (5.5-log10 TCID50/mL). 
Absorbance of this viral stock in DMEM was 2.39 cm−1 and 
2.53 cm−1 at 254 and 265 nm, respectively (Denovix DS11 
spectrophotometer). Viral stock was stored at – 80 °C.

2.2 � UV‑C lamps

The first UV-C lamp was the Puritec HNS-L 2G11 UV-C 
germicidal mercury lamp (OSRAM, Rosny-sous-bois, 
France), emitting at 254 nm with a nominal wattage of 
18 W. Lamp dimensions were 31.5 cm × 4 cm. The second 

UV-C lamp was the KL265-50  V-SM-WD UV-C LED 
(Klaran, Green Island, USA), emitting between 260 and 
270 nm with a peak at 265 nm and consuming 70 mW 
of power. LED dimensions were 3.5 × 3.5 mm. Irradia-
tions were performed at 3, 5 or 10 cm with the lamp posi-
tioned directly above the irradiated well for durations of 
5, 15, 30 or 60 s. UV-C irradiances received by the sam-
ple were measured with an optometer X1-5 and a detec-
tor UV-3726-5 (Gigahertz-Optik, GmbH). This device was 
calibrated at 254 nm and a spectral mismatch correction 
was calculated for measurements at 265 nm. UV-C irradi-
ances (254 nm) received by the sample after irradiation with 
the mercury lamp at 3, 5 and 10 cm were 3.10 mW/cm2, 
3.25 mW/cm2 and 1.43 mW/cm2, respectively. UV-C irra-
diances (265 nm) received by the sample after irradiation 
with the LED at 3, 5 and 10 cm were 1.49 mW/cm2, 1.47 
mW/cm2 and 0.64 mW/cm2, respectively. UV-C doses (mJ/ 
cm2) for each duration (seconds) were calculated as follows: 
UV − Cdose = UV − Cirradiance × durationofexposure

2.3 � Quantification of SARS‑CoV‑2 inactivation 
after UV‑C irradiation

The SARS-CoV-2 inoculum (200 µL at 3 × 105 
TCID50 inoculum/ml) was deposited as a drop at a single spot 
using a pipettor on relevant surfaces in 12-well plates. Plas-
tic (bottom of the well), steel (1 cm2 steel ring), tissue (1 cm2 
punch of cotton cloth), paper (1 cm2 punch of 80 g/m2 white 
paper), and cardboard (1 cm2 punch of solid unbleached 
board) were used in this experiment.

A five minutes contact time between the inoculum and 
all tested surfaces was applied. It allowed complete 
absorption on absorbent surfaces. Viruses were then 
directly exposed to UV-C irradiation at 3, 5 or 10 cm (on 
top, without cover) for 5, 15, 30 or 60 s. A control condi-
tion without UV-C exposure was considered for each mate-
rial in duplicate for each experiment. The exposed inocu-
lum (200 µL) was directly collected for non-absorbent 
surfaces or eluted for absorbent surfaces by 5 min soaking 
in 200 µL of infection medium (described above). It was 
then deposited on Vero-E6 cells to amplify remaining 
infectious viruses. These cells had previously been plated 
at 3 × 105 cells / well in 12-well plates, 24 h before the 
experiment. After 1 h of infection, the viral suspension 
was removed, the cells were washed with 500 µL of PBS 
and 1 ml of infection medium was added to each well. 
Twenty-four hours later, the supernatant was collected and 
the viral titer was determined by endpoint dilution and 
calculation of the TCID50 (TCID50 UV-C). This amplifica-
tion step was necessary to ensure optimal sensitivity of the 
SARS-CoV-2 concentration measurement. A standard 
curve was performed with tenfold serial dilutions of the 
stock concentrations titrated before and after amplification 
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in a single experiment to confirm that linearity was main-
tained after amplification. SARS-CoV-2 concentration 
after mock-irradiation and amplification (TCID50 control) 
was used as a control to take into account the amplification 
step and the intrinsic properties of each surface (absorp-
tion and inactivation). SARS-CoV-2 inactivation (%) was 
calculated as follows: Inactivation (%) = (1 − TCID50UV−C

TCID50control

)*100. SARS-CoV-2 inactivation experiments were per-
formed in duplicate in three independent experiments to 
obtain six individual values used to calculate the mean and 
standard deviation. SARS-CoV-2 inactivation efficiencies 
were compared between different UV-C sources, different 
distance and different durations of irradiation, using the 
Mann–Whitney (two groups) or the two-way ANOVA tests 
(more than two groups) with the GraphPad 9 software.

3 � Results

3.1 � Linearity of SARS‑CoV‑2 titration is maintained 
after amplification

Serial dilutions of the SARS-CoV-2 initial viral stock were 
titrated before (0.3–5.3 log TCID50/mL) and after viral 
amplification (1.5–6.2 log TCID50/mL). The amplifica-
tion step was associated with an increase in SARS-CoV-2 
concentration (+ 1.2 log TCID50/mL). Linearity was main-
tained in this range of concentrations (95% confidence 
interval for slope = 0.8–1.0) (Fig. 1).

3.2 � SARS‑CoV‑2 inactivation by UV‑C on a plastic 
surface

TCID50 for the control condition was 6.4 ± 0.5 log TCID50/
mL (mock irradiated). No infectious virus was detected after 
irradiation with the mercury UV-C lamp, even for low UV-C 
doses (7.14 to 48.8 mJ/cm2) (Fig. 2A). This corresponded to 
a 6.4-log10 decrease in SARS-CoV-2 TCID50. Low doses of 
UV-C LED light (3.2 to 44.7 mJ/cm2) were associated with 
a 4-log10 reduction in SARS-CoV-2 TCID50 (Fig. 2A). When 
considering similar UV-C doses (3.2 to 48.8 mJ/cm2), reduc-
tion in SARS-CoV-2 TCID50 on plastic was higher with the 
mercury lamp than with the LED (p < 0.005). We searched 
for the optimal distances (3, 5 or 10 cm) and durations (5, 
15, 30 or 60 s) of UV-C irradiation for SARS-CoV-2 inac-
tivation on a plastic surface. SARS-CoV-2 inactivation 
by the UV-C mercury lamp was > 99.9999% in all condi-
tions regardless of the distance or duration of irradiation 
(Fig. 2B). In contrast, high level SARS-CoV-2 inactivation 
by the UV-C LED (> 99.999%) required a close position 
of the lamp (3 or 5 cm) and longer irradiations (≥ 15 s) 
(Fig. 2B). In these conditions, the irradiance level of the 
LED was lower than that of the mercury lamp (1.49 mW/

Fig. 1   Measurement of SARS-CoV-2 concentration before and after 
amplification. Results are represented as individual values from a 
single experiment (circles) with linear regression (plain line) and its 
95% confidence interval (dotted lines). Concentration of the last dilu-
tion (empty circle) could only be measured after amplification. It was 
below the limit of detection (4 TCID50/mL) before amplification and 
was represented with its theoretical value (2 TCID50/mL)

Fig. 2   SARS-CoV-2 inactivation on plastic by mercury and LED 
UV-C lamps. A SARS-CoV-2 TCID50 depending on the dose of 
UV-C received after irradiation on a plastic surface by the mercury 
lamp or the LED, compared with the non-irradiated control sample. 
Results are represented as mean with standard deviation. B SARS-
CoV-2 inactivation rates by UV-C lamps on a plastic surface depend-
ing on the duration (5 to 60  s) and the distance of irradiation. Dis-
tances of 10, 5 and 3 cm are represented with white/orange/red bars 
for the mercury lamp (plain bars) and the LED (dotted bars). Results 
are represented as mean with standard deviation. **p < 0.01
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cm2 vs 3.10 mW/cm2 at 3 cm). The mercury UV-C lamp was 
associated with significantly higher SARS-CoV-2 inactiva-
tion rates than the LED at 10 cm during 5 s (> 99.999% 
vs > 99.9%, p < 0.01) (Fig. 2B).

3.3 � SARS‑CoV‑2 inactivation on steel, tissue, paper 
and cardboard

In light of previous results, SARS-CoV-2 inactivation by the 
UV-C lamps on steel, tissue, paper and cardboard was quan-
tified after 15, 30 and 60 s of irradiation at a single distance 
of 3 cm (Fig. 3B). These conditions corresponded to UV-C 
doses between 46.43 and 185.7 mJ/cm2 for the mercury lamp 
and 22.35 and 89.4 mJ/cm2 for the LED. TCID50s for the 
mock-irradiated control condition were 3.8 ± 0, 4.2 ± 0.9, 
2.9 ± 1.6 and 3.3 ± 1.4 log TCID50/mL for steel, tissue, paper 
and cardboard, respectively. No infectious virus was detected 
after irradiation with the mercury or the LED UV-C lamp on 
a steel surface (Fig. 3A). This corresponded to inactivation 
rates > 99.999% on steel (Fig. 3B). In contrast, infectious 
viruses were still detected after irradiation with the mer-
cury or the LED UV-C lamp on absorbent surfaces (tissue, 

paper or cardboard) (Fig. 3A).There were no significant dif-
ferences in reduction of SARS-CoV-2 TCID50/mL between 
both lamps on steel and absorbent surfaces for comparable 
UV-C doses (40–50 mJ/cm2, Fig. 3A). SARS-CoV-2 inac-
tivation was ≥ 99.8% on steel, tissue, paper and cardboard 
after irradiation by a UV-C mercury lamp or a UV-C LED, at 
a distance of 3 cm during 30 s. This condition corresponded 
to 92.85 and 44.7 mJ/cm2 for the mercury and LED UV-C 
lamps, respectively (Fig. 3B). Shorter irradiation times (15 
vs 30 s) were less effective (90–99% inactivation vs ≥ 99.8%, 
p < 0.05) on absorbent surfaces (Fig. 3B).

4 � Discussion

Efficient inactivation of SARS-CoV-2 on contaminated sur-
faces (> 99.999% on plastic and steel and ≥ 99.8% on tissue, 
paper and cardboard) can be achieved by both the UV-C 
mercury lamp and the UV-C LED at a distance of 3 cm dur-
ing 30 s. No infectious virus was detected after irradiation 
with the mercury UV-C lamp on a plastic surface for a UV-C 
dose of 7.14 mJ/cm2 (10 cm, 5 s), which is in line with most 
previous studies [8, 11, 12]. Lower performances have been 
described for less powerful mercury lamps (4 W vs 18 W in 
this study) [4]. This irradiation (7.14 mJ/cm2) corresponded 
to a 6.4-log10 decrease in SARS-CoV-2 TCID50/mL, rarely 
observed with other mercury lamps for comparable UV-C 
doses (3 to 4-log10 decrease) [8, 11–13]. These other stud-
ies were probably limited more by a lower infectious titer of 
the viral inoculum than by the performances of the mercury 
lamps, because no infectious viruses were detected after irra-
diation [8, 11, 12].

A 4-log10 reduction in SARS-CoV-2 TCID50 was 
observed after irradiation with the UV-C LED light at 
3.2 mJ/cm2 (10 cm, 5 s) on plastic. These performances were 
in line with another study, in which a 3.5-log10 decrease was 
observed after irradiation with comparable UV-C doses [8]. 
Another study, by Inagaki et al., demonstrated comparable 
UV-C LED performances with a 3-log10 reduction in SARS-
CoV-2 TCID50 after 10 s of irradiation at 2 cm using a deep 
UV-C LED (280 nm) [5]. Considering that sample droplet 
thickness was 1 mm and sample absorbance of cell culture 
medium at 254 and 265 nm was around 2.39–2.53 cm−1, 
UV-C exposure was reduced by a 25 to 34 factor by com-
parison with neutral medium (PBS or water) used in other 
studies [8]. This can be explained by absorbance of amino 
acids present in the cell culture medium [14]. Inactivation 
rates are expected to be lower in our experiments than in 
neutral medium [8] but were considered closer to inactiva-
tion rates in biological fluids.

Interestingly, SARS-CoV-2 inactivation on a plastic sur-
face was more efficient with the mercury UV-C lamp than 
with the UV-C LED lamp, even when considering similar 

Fig. 3   SARS-CoV-2 inactivation on steel, tissue, paper and cardboard 
by mercury and LED UV-C lamps. A SARS-CoV-2 TCID50 depend-
ing on the dose of UV-C received after irradiation on steel, tissue, 
paper or cardboards surfaces by the mercury lamp (Hg) or the LED. 
B SARS-CoV-2 inactivation rates by UV-C lamps at 3  cm depend-
ing on the irradiated surface (steel, tissue, paper or cardboard) and the 
duration of irradiation. Durations of 15, 30 and 60 s are represented 
with white/orange/red bars for the mercury lamp (plain bars) and the 
LED (dotted bars). Results are represented as mean with standard 
deviation for both panels. **p < 0.01; ***p < 0.001; ****p < 0.0001
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UV-C doses (p < 0.005). The UV-C LED has wider emis-
sion peaks than the mercury lamp. This could contribute 
to a lower irradiance of DNA at 260 nm with the LED than 
with the mercury lamp. The UV-C LED is associated with 
twofold lower irradiances than the mercury lamp. Longer 
irradiations are thus required to reach similar UV-C doses. 
Both these factors could contribute to lower inactivation 
rates with the LED than with the mercury lamp.

This study is one of the first description of viral inactiva-
tion on steel and absorbent materials by UV-C lamps. Inter-
estingly, inactivation rates were lower on absorbent materi-
als (tissue, paper and cardboard: ≥ 99.8%) than on plastic 
(> 99.999%). This was probably because a fraction of the 
inoculum (200 µL) was absorbed inside the materials and 
shielded from the UV-C light, which is less likely to happen 
with respiratory droplets (5 µL). In contrast, SARS-CoV-2 
inactivation rates on steel were above 99.999% for each 
lamp, comparable to results obtained on plastic (> 99.999%).

The mercury UV-C lamp demonstrated a higher efficacy 
than the LED on a plastic surface for a range of UV-C doses 
between 3.2 and 48.8 mJ/cm2. For this reason, the mercury 
UV-C lamp could be more relevant in high-risk settings, 
such as medical care or research laboratories. In contrast, 
the UV-C LED demonstrated good efficacy on absorbent 
surfaces and has several advantages over the mercury lamp, 
especially a lower power consumption (18 mW vs 70 W) 
and a smaller size (3.5 vs 31 cm). In addition, its perfor-
mance could probably be improved by combining several 
LEDs emitting at different wavelengths. For these reasons, 
the LED could be especially interesting in industry or house-
hold applications.
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