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Genome-wide off-rates reveal how DNA binding
dynamics shape transcription factor function
Wim J de Jonge, Mariël Brok, Philip Lijnzaad , Patrick Kemmeren & Frank CP Holstege*

Abstract

Protein–DNA interactions are dynamic, and these dynamics are an
important aspect of chromatin-associated processes such as tran-
scription or replication. Due to a lack of methods to study on- and
off-rates across entire genomes, protein–DNA interaction dynamics
have not been studied extensively. Here, we determine in vivo off-
rates for the Saccharomyces cerevisiae chromatin organizing factor
Abf1, at 191 sites simultaneously across the yeast genome. Average
Abf1 residence times span a wide range, varying between 4.2 and
33 min. Sites with different off-rates are associated with different
functional characteristics. This includes their transcriptional
dependency on Abf1, nucleosome positioning and the size of the
nucleosome-free region, as well as the ability to roadblock RNA
polymerase II for termination. The results show how off-rates
contribute to transcription factor function and that DIVORSEQ
(Determining In Vivo Off-Rates by SEQuencing) is a meaningful way
of investigating protein–DNA binding dynamics genome-wide.
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Introduction

Processes that act on chromatin, such as transcription or replication,

are controlled by molecular interactions. This includes proteins

interacting with DNA. Protein–DNA interactions are dynamic, and

these dynamics are likely important to achieve appropriate regula-

tion of DNA-dependent processes. During transcription for example,

different types of transcription factors (TFs) are continuously inter-

acting with chromatin in a variety of ways. Each brings different

functions into play: opening or closing chromatin, creating loops,

modifying or evicting nucleosomes, recruiting cofactors and, in the

case of activation, ultimately causing formation of a pre-initiation

complex that includes RNA polymerase (Hahn & Young, 2011; de

Laat & Dekker, 2012; Spitz & Furlong, 2012; Struhl & Segal, 2013;

Friedman & Rando, 2015; Kubik et al, 2017; Lai & Pugh, 2017; Woo

et al, 2017; Cramer, 2019; Brahma & Henikoff, 2020). TFs are there-

fore constantly moving off and onto different loci, probing for

appropriate interactions, also under conditions of steady-state tran-

scriptional output (Hammar et al, 2014). The rates with which

proteins interact with DNA, their on- and off-rates, dictate the

outcome of all kinds of regulatory programmes. Understanding how

DNA-dependent processes work at the molecular level therefore

requires methods to measure the dynamics of protein–DNA binding

interactions in a systematic manner.

Different methods have been applied to investigate protein–DNA

interaction dynamics. Initial in vitro measurements showed very

stable TF-DNA binding that could last for more than an hour

(Perlmann et al, 1990; Hoopes et al, 1992). This view was chal-

lenged by in vivo measurements showing much more dynamic inter-

actions (Hager et al, 2009; Larson, 2011; Mueller et al, 2013; Voss &

Hager, 2014; Coleman et al, 2015; Brignall et al, 2019; Elf & Barke-

fors, 2019), likely in part due to the presence of nucleosomes (Luo

et al, 2014; Donovan et al, 2019a; Mivelaz et al, 2020). Direct visu-

alization of protein–DNA interaction dynamics by fluorescence

microscopy has been pivotal in forming the current view that bind-

ing of many proteins is indeed highly dynamic (McNally et al, 2000;

Elbi et al, 2004; Karpova et al, 2004, 2008; Stavreva et al, 2004;

Bosisio et al, 2006; Yao et al, 2006; Kloster-Landsberg et al, 2012).

These studies have also been crucial for showing the importance of

dynamics and how this can be regulated through distinct mecha-

nisms. A drawback of microscopy is scope however. Information is

provided for only part of the nucleus collectively, or only for a

single locus. It would be very useful to determine interaction

dynamics at many different binding sites individually, preferably

across an entire genome.

Genome-wide protein–DNA binding can be measured by chro-

matin immunoprecipitation (ChIP) in vivo (Gilmour & Lis, 1984;

Kuo & Allis, 1999; Park, 2009; Collas, 2010; Furey, 2012). On its

own, ChIP only provides a static indication of the degree of binding

during the time-window of protein–DNA cross-linking. ChIP cannot

measure protein–DNA binding dynamics directly. Competition ChIP

is a ChIP variant that uses inducible switching between two dif-

ferentially tagged isoforms of the same protein and has been applied

to measure turnover of nucleosomes and TFs (Dion et al, 2007;

Rufiange et al, 2007; van Werven et al, 2009; Lickwar et al, 2012;

Hasegawa & Struhl, 2019). Although limited by the induction
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kinetics of the competing isoform, competition ChIP has neverthe-

less highlighted the advantage of determining dynamics at different

loci in a genome-wide manner. It has revealed differences in dynam-

ics between promoter classes, differences in nucleosome turnover

between promoters and gene bodies and showed that differential TF

turnover at different loci is an important basis of transcription regu-

lation.

Binding dynamics are determined by TF concentrations, and by

on- and off-rates. On- and off-rates are two distinct facets of dynam-

ics. Both would be useful to measure separately since they are likely

influenced and regulated by different molecular mechanisms.

Having both would also enable the estimation of dissociation

constants and the binding free energy. A second adaptation of ChIP

has indeed focused on determining on-rates by measuring the kinet-

ics of binding during a formaldehyde cross-linking time–course

(Poorey et al, 2013). As a method, this is still under development

(Zaidi et al, 2017) and has only been applied to a few binding sites

and not genome-wide as yet. Here, we devised a method that

directly determines off-rates and does so for all binding sites across

a genome. This was achieved by applying anchor-away to rapidly

deplete unbound proteins from the nucleus (Haruki et al, 2008;

Grimaldi et al, 2014), thereby removing the on-rate contribution to

binding levels. Monitoring the time-dependent decay of protein–

DNA binding across all genomic locations results in determination

of off-rates, also in the form of locus-specific mean residence times.

The method DIVORSEQ (Determining In Vivo Off-Rates by SEQuenc-

ing) is applied here to Abf1, a Saccharomyces cerevisiae general

regulatory factor akin to chromatin pioneering TFs in mammals

(Zaret & Carroll, 2011; Kubik et al, 2017). Alongside roles in shap-

ing chromatin architecture (Venditti et al, 1994; Lascaris et al, 2000;

Yarragudi et al, 2004; Hartley & Madhani, 2009), several different

functions have been attributed to Abf1, including involvement in

transcription regulation (Gailus-Durner et al, 1996), telomere bind-

ing (Enomoto et al, 1994; Pryde & Louis, 1999), DNA replication

(Marahrens & Stillman, 1992), DNA repair (Reed et al, 1999) and

RNA polymerase II roadblock termination (Roy et al, 2016; Candelli

et al, 2018). Applying DIVORSEQ to Abf1 results in determination of

off-rates for 191 different binding sites, with estimated mean resi-

dence times ranging from 4.2 to 33 min. Sites with different off-rates

are associated with different functional characteristics that include

their transcriptional dependency on Abf1, nucleosome positioning

and the ability to roadblock RNA polymerase II thereby aiding tran-

scription termination. The results emphasize that off-rate is an

important characteristic of TF function and indicate that DIVORSEQ

is a useful method for investigating protein–DNA binding dynamics

genome-wide.

Results

Nuclear depletion of Abf1

To inducibly remove unbound Abf1 from the nucleus, an Abf1

anchor-away strain (Haruki et al, 2008) was created in the Saccha-

romyces cerevisiae BY4742 background (de Jonge et al, 2017). Abf1

was tagged with an FK506 binding protein–rapamycin binding

(FRB) domain for nuclear depletion, green fluorescent protein (GFP)

to monitor cellular localization and a V5 epitope for ChIP (Southern

et al, 1991). ABF1 deletion is lethal (Halfter et al, 1989; Rhode et al,

1989). To investigate whether tagging of Abf1 interferes with its

function, growth of tagged strains was compared to the untagged

background. Tagging Abf1 has only a slight effect on growth

(Fig EV1A), indicating that tagging does not greatly interfere with

Abf1 function, as has been observed before (Kubik et al, 2015).

Because of its essential nature, cells are expected to cease growth

when Abf1 is depleted from the nucleus. Indeed, upon inducing

nuclear depletion, cells show a clear disruption of growth, leading

to complete growth cessation (Fig EV1B). Because loss of growth is

a downstream effect, the rate of growth cessation does not necessar-

ily reflect the speed of nuclear depletion (de Jonge et al, 2017). To

directly visualize depletion, cellular localization of Abf1 was moni-

tored using fluorescence microscopy. As expected, nuclear depletion

of Abf1 indeed occurs much more rapidly than growth cessation

(Fig EV1C and D).

Determining in vivo off-rates by sequencing: DIVORSEQ

Having ascertained Abf1 depletion, we next determined whether

the system can be used to measure TF mean residence times (de-

fined as 1/koff) at different sites across the genome. As published

elsewhere (preprint: de Jonge et al, 2019), first the ChIP protocol

was extensively optimized at almost all steps, to yield results better

comparable between different time points. Next, to determine off-

rates, Abf1 was depleted from the nucleus and its binding levels

were measured genome-wide using the optimized ChIP-seq protocol

at 11 time points during 90 min of depletion, all in biological tripli-

cate (Fig 1A). The binding sites detected before depletion (t = 0)

correspond well with previously published Abf1 binding sites (Kasi-

nathan et al, 2014; Zentner et al, 2015; Rossi et al, 2018b). Over

90% of binding sites overlap with previously reported sites

(Fig EV2A). As exemplified, different genomic locations show

distinct rates of binding peak decay (Fig 1B), indicating different

mean Abf1 residence times at these sites. Quantification and fitting

the exponential decay model (Fig 1A) to the data (Fig 1C–E) yields

an estimated site-specific off-rate that can also be expressed as an

average TF residence time for that site. The examples (Fig 1B–E)

were chosen to cover the wide range of different off-rates/mean

residence times observed. First, stringent peak filtering was

performed to obtain only reliable signals, by selecting sites with

strong binding (fold enrichment > 4) as well as sites that have a G/

C residue at �8 bp from the motif (Fig EV2B) and therefore can

efficiently be cross-linked (Rossi et al, 2018a). Next, off-rates and

the corresponding mean residence times were obtained for these

191 selected Abf1 binding sites by fitting exponential decay models

to the ChIP-seq data of each individual binding peak. Almost all

models closely match the actual binding data, with low residuals

(Fig EV2C) and a median R2 of 0.94 (Fig EV2D, lowest R2 = 0.65).

Based on these models, the off-rates for Abf1 range between 0.030

and 0.24 min�1 (Fig 1F). This corresponds to a mean residence

time of 4.2 min for the most dynamic Abf1 site, the divergent

promoter of SRB2 and NCP1, and a mean residence time of 33 min

for the promoter of OCA5 which has a very stable Abf1 binding

peak (Fig 1G). This is the first indication that DIVORSEQ can

measure mean residence times over a considerable range and that

Abf1 has distinct mean residence times at different locations across

the genome.
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ª 2020 The Authors Molecular Systems Biology 16: e9885 | 2020 3 of 16

Wim J de Jonge et al Molecular Systems Biology



DIVORSEQ-derived TF mean residence times correspond to
MNase protection rates

To initially test whether DIVORSEQ-derived off-rates are realistic

measures of Abf1 binding stability, two strategies were employed.

First, mean residence times were compared to Abf1 binding at t = 0.

Since off-rates influence steady-state binding levels, some degree of

correspondence is expected. There is indeed correlation between the

DIVORSEQ-derived off-rates and binding levels (Fig 1H), whereby

sites with low off-rates have higher Abf1 binding levels. That the

correspondence is not complete is also expected because on-rate

contributes to steady-state binding levels as well. These results

therefore also indicate that the relative importance of on- and off-

rates may differ for different genomic binding sites. A second verifi-

cation of the DIVORSEQ-derived off-rates was therefore also sought.

This was based on an independently generated MNase cleavage

dataset, derived from a strain expressing free MNase (Kubik et al,

2018). Since it is well known that TF occupancy can result in protec-

tion against MNase cleavage, it is expected that Abf1 binding sites

with the lowest off-rate should show the highest degree of MNase

protection. This is indeed the case. Abf1 binding sites were divided

into the four quartiles with the longest, long, short and shortest

mean Abf1 residence times (Fig 1F and G). The average MNase

cleavage is plotted for each quartile relative to the Abf1 binding

motif (Fig 1I, grey area) and is indeed seen to increase in the four

quartiles from left (longest mean residence times, least MNase

cleavage) to right (shortest mean residence times, most cleavage).

That protection against MNase cleavage in the quartiles with long

mean Abf1 residence times is indeed dependent on Abf1 is demon-

strated by an overall increase in MNase cleavage after prolonged

Abf1 depletion (Fig 1I, dashed line). The extent of MNase protection

is also shown for each individual site in each quartile (Fig 1J).

DIVORSEQ-derived Abf1 off-rates correspond well to the degree of

MNase protection. This indicates that the method performs as

designed and provides meaningful data for a wide range of TF bind-

ing stabilities at different locations across the genome.

Increased Abf1 binding stability is associated with larger
nucleosome-free regions

Having established that the DIVORSEQ-derived off-rates are mean-

ingful reflections of binding stability, we next asked whether there

are mechanistic relationships between stability as measured in this

manner and the roles of Abf1. Abf1 is important for shaping local

chromatin architecture (Venditti et al, 1994; Lascaris et al, 2000;

Yarragudi et al, 2004; Hartley & Madhani, 2009; Ganapathi et al,

2011; Krietenstein et al, 2016; Kubik et al, 2018) and contributes to

the creation of nucleosome-free regions (NFRs) by competing with

nucleosomes and acting as a barrier that chromatin remodellers use

to position surrounding nucleosomes. To investigate whether Abf1

binding stability is related to its role in creating NFRs, nucleosome

positioning data (Kubik et al, 2015) were investigated in the context

of different mean Abf1 residence times. Sites with more stable Abf1

binding (longer mean residence times, Fig 2, top) have larger NFRs

(308 bp) compared to sites with shorter mean residence time sites

(Fig 2, bottom, 272 bp). These results obviously fit well with the

idea that more stably bound Abf1 can more efficiently repel nucleo-

somes. However, this does not rule out the converse whereby nucle-

osome remodelling and nucleosome competition causes increased

Abf1 off-rates at those sites with reduced mean residence times.

Most importantly for the goals of our study, alongside the MNase

protection data (Fig 1I and J), the NFR size associated differences

shows that DIVORSEQ-derived Abf1 off-rates can be functionally

meaningful in this manner too.

Changes in mRNA synthesis rates match Abf1 binding dynamics

We next investigated whether Abf1 binding dynamics play a role in

the function of Abf1 as a transcriptional regulator (Buchman &

Kornberg, 1990; Gailus-Durner et al, 1996; Miyake et al, 2002,

2004; Yarragudi et al, 2007; Paul et al, 2015; Kubik et al, 2018).

Previous studies have shown that not all Abf1 bound promoters

show transcriptional dependency on Abf1 (Schroeder & Weil, 1998;

Yarragudi et al, 2007; Paul et al, 2015). This has been ascribed to

either lower inherent propensity for nucleosome formation at some

sites, binding too far away from a transcription start site, or redun-

dancy with other TFs (Paul et al, 2015; Kubik et al, 2018). We

therefore first determined which genes are dependent on Abf1 by

measuring mRNA synthesis rates genome-wide using 4-thiouracil

labelling of nascent transcripts (Sun et al, 2012) during a 90 min

Abf1 depletion time–course, at the same times points that were used

to determine off-rates (Fig 3A). Approximately half of the genes

with Abf1 promoter binding show a decrease in mRNA synthesis

rates upon Abf1 depletion, in agreement with what has previously

◀ Figure 1. DIVORSEQ measures distinct mean residence times at different genomic sites.

A Schematic overview of the DIVORSEQ method. Unbound protein of interest is depleted from the nucleus, and at several time points during the depletion, binding
levels are measured using ChIP-seq. The decrease in binding levels is fitted using an exponential decay model and off-rates and mean residence times are
estimated for all binding sites across the genome.

B Abf1 binding during the depletion time–course at three Abf1 binding sites with different rates of binding decrease. The signal at each time point is the average of
three biological replicates, except for the 10 min time point, where one time point was discarded.

C–E Fit of the exponential decay model for the examples shown in (B). The estimates for off-rates, mean residence time and goodness of fit are shown in the plots.
F, G Cumulative distribution of the off-rates (F) or mean residence times (G) of the 191 binding sites. The four different mean residence time quartiles are highlighted

with different colours.
H Relationship between Abf1 binding levels before depletion and off-rates for the 191 Abf1 binding sites.
I Average in vivo MNase sensitivity of the mean residence time quartiles, plotted as the average number of MNase cuts at each position relative to the Abf1 binding

motif (MacIsaac et al, 2006) before (grey fill) or after (dashed line) nuclear Abf1 depletion. The data were smoothed using a 3 bp window.
J Extent of MNase protection by Abf1 for each mean residence time quartile. The MNase protection ratio is the mean number of cuts in the region protected by Abf1

(�8 bp until +8 bp) after depletion of Abf1 (I, dashed line), divided by the mean number of cuts in the same region before depletion (I, light grey fill). Asterisks
denote a significant difference between the quartiles, calculated using a one-way ANOVA followed by Tukey’s honest significant difference (HSD) test (*P < 0.05
and ****P < 0.0001).

4 of 16 Molecular Systems Biology 16: e9885 | 2020 ª 2020 The Authors

Molecular Systems Biology Wim J de Jonge et al



been described for Abf1 (Schroeder & Weil, 1998; Yarragudi et al,

2007; Paul et al, 2015). The non-responsive genes show little, if

any, concomitant change in nucleosome repositioning (Figs 3B and

EV3A), also in agreement with previous studies (Kubik et al, 2018).

The set of genes that do show Abf1-dependency were next used to

investigate the role of binding dynamics.

First, steady-state synthesis rates (transcripts per minute per

cell, Sun et al, 2012) were compared to steady-state binding levels

of Abf1. In contrast to what might be expected, there is virtually

no relationship between the amount of Abf1 at a promoter and

promoter activity at steady state (Fig 3C). Regardless of absolute

binding levels, promoters with more stably bound Abf1 also do

not show higher synthesis rates (Fig 3D). There is however some

association between the steady-state amount of bound Abf1 and

the early changes in synthesis rates observed upon Abf1 depletion

(Figs 3E and EV3B). The relationship between Abf1 presence and

transcriptional dependency is markedly stronger when taking into

account the DIVORSEQ-derived off-rates (Figs 3F and EV3C).

Genes showing the largest change in promoter output are those

with the highest off-rates. This holds both for the 10 min time

point analysed in Fig 3F, as well as when fitting an exponential

decay model to the entire mRNA synthesis rate time–course

(Fig 3G). For those genes that are dependent on Abf1 for transcrip-

tional activity, there is a strong correspondence between the loss

of Abf1 and the reduction in synthesis rate. The relationship

between Abf1 and transcriptional output only becomes clear when

plotting off-rates (Fig 3F and G). This emphasizes the importance

of methods to investigate interaction dynamics genome-wide and

the utility of DIVORSEQ for this purpose. As discussed later, our

analyses agree with the idea that an Abf1-dependent NFR is the

most important determinant for setting up transcription, resulting

in associated dependencies on Abf1 (Paul et al, 2015; Kubik et al,

2018; Fig 3B), but that fine-tuning the absolute levels of steady-

state transcriptional output is further dependent on other

contributing transcription (co-)factors.

Stably bound sites are more efficient roadblocks for pervasive
Pol II transcription

In addition to being a chromatin organizer, Abf1 has been shown to

function as roadblock for pervasive transcription (Roy et al, 2016;

Candelli et al, 2018). In this role, Abf1, like the other general regula-

tory factors Reb1 and Rap1, can block transcribing RNA polymerase

II (Pol II). This collision causes Pol II to stall, to become ubiquitiny-

lated and likely degraded (Colin et al, 2014; Candelli et al, 2018).

An obvious hypothesis, as has indeed been suggested (Roy & Chanf-

reau, 2018), is that TF binding stability may contribute to roadblock

function. To test this idea, data of actively transcribing Pol II

(Schaughency et al, 2014) were analysed. The average Pol II pres-

ence relative to the Abf1 binding motif was plotted for each of the

mean residence time quartiles (Fig 4A). A roadblock peak (Fig 4A,

arrow) can be observed immediately upstream of the Abf1 motif for

the quartile with the longest mean residence times, and this

becomes less pronounced with shorter mean residence times. Quan-

tification of roadblock efficiency at each individual site confirms

that stronger roadblocks are observed in the quartile with the

longest mean residence times (Fig 4B). In agreement with this, sites

with stalled Pol II have significantly lower off-rates compared to

sites that do not (Fig 4C). More stably bound Abf1 is a more effi-

cient roadblock for transcribing Pol II, further demonstrating the

utility of genome-wide off-rate measurements for molecular mecha-

nistical understanding.

Factors contributing to Abf1 binding stability

When applied to Abf1, DIVORSEQ indicates that there is a consider-

able range of off-rates and that this contributes to different aspects
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residence times.

Average nucleosome occupancy of the mean residence time quartiles before
(light grey) and after (dark grey) Abf1 depletion, centred on the Abf1 binding
motif. Nucleosomes of all mean residence time quartiles reposition upon Abf1
depletion, which indicates that Abf1 contributes to the positioning of
nucleosomes for all quartiles. The average distance between the midpoints of
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binding data are from (Kubik et al, 2015).
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Figure 3. Dynamics of mRNA synthesis changes follow the dynamics of Abf1 dissociation.

A Schematic overview of the experiment set-up for measuring promoter output dynamics by labelling nascent RNA. The protein of interest is depleted from the
nucleus and nascent RNA is labelled for 6 min using 4-thiouracil (4tU) at several time points during the depletion. Total RNA is extracted, nascent RNA is purified
by biotinylating 4tU labelled RNA and the purified RNA is sequenced. Samples were taken such that the centre of the labelling period was the same as the time
points that were used for DIVORSEQ.

B Average nucleosome occupancy relative to +1 nucleosome dyad, of genes with Abf1 binding to the promoter that show strong changes (fold change > 2 at t = 20,
top panel, n=44), weak changes (1.5 ≤ fold change ≤ 2 at t = 20, middle panel, n = 42) or no changes (fold change < 1.5 at t = 20, bottom panel, n = 112) in
mRNA synthesis upon Abf1 depletion. Nucleosome occupancy is shown before (light grey) and after (dark grey) Abf1 depletion. The confidence intervals are
indicated as in Fig 2 by a transparent grey fill, calculated as the mean � SEM. Nucleosome binding data and +1 nucleosome positions are from (Kubik et al, 2015).
Downregulated and Abf1 bound genes without an annotated +1 nucleosome were omitted from the plots.

C, D Relationship between steady-state synthesis rates (Sun et al, 2012) and binding levels before depletion (C), or off-rates (D). Genes are shown that are Abf1 bound
and downregulated (fold change > 1.5 and P < 0.01 at 20 and 30 min of depletion, yielding 88 genes) and have available synthesis rates (n = 87).

E, F Relationship between log2 mRNA synthesis rate changes after 10 min of depletion and binding levels before depletion (E) or off-rates (F). Genes are shown that are
Abf1 bound and downregulated (fold change > 1.5 and P < 0.01 at 20 and 30 min of depletion, n = 88).

G Relationship between expression decrease rates of downregulated genes and off-rates of the corresponding Abf1 binding site. The expression decrease rates were
calculated by fitting the 4tU-seq time data course using the same exponential decay model that was used for the off-rates. The genes from (E-F) are shown, except
for the ones where the 4tU-seq data could not be fitted with an exponential decay model (n = 82).
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of Abf1 function. The ability to determine mean residence times also

allows for investigation into the factors that determine different off-

rates. The DNA binding motif is obviously an important factor for

determining Abf1 binding stability. To evaluate the contribution of

motif frequency, the number of Abf1 motifs in the vicinity of each

Abf1 peak was counted. Although there are only a few peaks with

multiple motifs, it is clear that most sites with more than one Abf1

binding motif have significantly longer mean residence times

compared to sites with only a single binding motif (Fig 5A). Such

increases in stability are likely caused by different types of coopera-

tive effects associated with the presence of multiple motifs (Adams

& Workman, 1995; Polach & Widom, 1996; Miller & Widom, 2003;

Hager et al, 2009; Mirny, 2010).

Beside the number of motifs, the sequence composition of the

binding motif is also likely to contribute to binding stability. To

investigate how motif composition affects Abf1 binding stability, the

motif score of each of the binding motifs was compared between the

mean residence time groups. Binding sites with the longest mean

residence time have a motif that is closer to the consensus compared

to the other sites (Fig 5B), which indicates that having a stronger

binding motif leads to more stable binding. Indeed, mutating the

binding site of another well-studied TF, Gal4, results in a shorter

residence time (Donovan et al, 2019b). To investigate the contribu-

tion of motif sequence to Abf1 binding stability in more detail, the

consensus motifs of the different mean residence time groups were

compared to each other (Fig 5C). Although the consensus motifs of

all four groups are similar, showing good correspondence to

published motifs (MacIsaac et al, 2006; Kasinathan et al, 2014;

Zentner et al, 2015; Rossi et al, 2018a), the longest mean residence

time group has a significant enrichment (P = 0.0046) for a thymine

in the variable part of the motif, at position �1 bp (Fig 5C, arrow).

This suggests that having a thymine at this position is not needed

for binding per se, but that it contributes to the binding stability of

Abf1. In agreement with this, mutation of a thymine residue at this

position reduces the binding levels of Abf1 in vitro (Gailus-Durner

et al, 1996).

DNA shape can also influence Abf1 binding levels (Zentner

et al, 2015; Rossi et al, 2018a). Strongly and weakly bound Abf1

sites differ in their predicted minor groove width as estimated

across naked DNA motifs (Rossi et al, 2018a). The Abf1 sites
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Figure 4. Sites with long mean residence times function as a roadblock for pervasive transcription.

A Average RNA polymerase II binding for the different mean residence time quartiles. Binding profiles are centred on the Abf1 motif. The dotted line marks the midpoint
of the Abf1 motif. All RNA polymerase II binding data were reoriented such that each motif is oriented in the same direction. RNA polymerase II binding is PAR-CLIP
(photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation) data from (Schaughency et al, 2014).

B Quantification, by mean residence time quartile, of normalized Pol II binding levels at the roadblock peak. These levels are defined as the amount of roadblocked Pol
II (located at �37 � 5 bp) divided by the amount of upstream Pol II (from �300 to �100 bp). Asterisks denote a significant difference between the quartiles,
calculated using a one-way ANOVA followed by Tukey’s HSD test (**P < 0.01).

C Difference in off-rates between sites that are a roadblock (normalized Pol II signal > 2) and those that are not. The P-value was calculated using a two-tailed t-test
(****P < 0.0001).
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found here closely resemble the strongly bound sites in their

minor groove width pattern (Fig 5D). Strikingly, the same analysis

performed across the four groups of sites with different mean resi-

dence times reveals that in terms of minor groove width at posi-

tion +3 bp (Fig 5D, arrow), the group with shortest mean Abf1

residence times most closely resembles the sites with low Abf1

binding levels (Rossi et al, 2018a), in having a smaller minor

groove (Fig 5E). This suggests that the lower binding levels

observed on sites with a reduced minor groove width at the +3

position is caused by a higher off-rate. The extended genome-wide

survey of Abf1 binding stabilities demonstrates that factors influ-

encing TF binding stability in vivo can also be advantageously

studied by DIVORSEQ.

Discussion

The dynamics of proteins interacting with DNA are thought to play

an important role in the regulation of chromatin-associated

processes such as transcription (Hager et al, 2009). To fully under-

stand these processes at a molecular level requires an understand-

ing of the underlying binding dynamics. DIVORSEQ quantifies

protein–DNA binding dynamics in vivo by directly measuring off-

rates and mean residence times at multiple binding sites across an

entire genome. Applying DIVORSEQ to the TF Abf1 shows that the

method can measure meaningful differences in off-rates spanning a

wide range of values. Our results show how motif number,

sequence and structure of the binding motif contribute to off-rates
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Figure 5. Factors that contribute to Abf1 binding stability.

A Difference in mean residence times between sites with one motif and sites with two or more motifs. The P-value was calculated using a Wilcoxon rank-sum test
(**P = 0.0066), rather than a t-test (P = 0.022) as used in Fig 4C, since the group with 1 binding motif is not normally distributed.

B Difference in maximum motif score between the different mean residence time quartiles. When a site has more than one motif, the highest score was used.
C Sequence logos showing the representative binding motif of each mean residence time quartile. Motifs from the longest mean residence time quartile are enriched

(P = 0.0046) for having a thymine at position �1 bp (arrow).
D Predicted minor groove width centred at the Abf1 binding motif of all 191 Abf1 sites found here (black, dashed line) and Abf1 binding motifs defined as strongly

bound (dark grey line) and weakly bound (light grey line) by (Rossi et al, 2018a).
E Difference in predicted minor groove width between the mean residence time quartiles at position +3 bp from the motif midpoint (D, arrow). In addition, the minor

groove width at this position of the Abf1 motifs defined as strongly and weakly bound by (Rossi et al, 2018a) are shown (n = 400 for each group). Asterisks in (B) and
(E) denote adjusted P-values calculated using a one-way ANOVA followed by Tukey’s HSD test between the mean residence time quartiles (*P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001).
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and how this aspect of binding dynamics influences the roles of

Abf1 as a chromatin organizing factor, a transcriptional regulator

and a termination roadblock for RNA polymerase II at different sites

across the genome.

Abf1 is a general regulatory factor, known to organize chromatin

(Venditti et al, 1994; Lascaris et al, 2000; Yarragudi et al, 2004;

Hartley & Madhani, 2009; Ganapathi et al, 2011; Krietenstein et al,

2016; Kubik et al, 2018). Our results show good correspondence

between NFR size and binding stability (Fig 2). Sites with shorter

mean Abf1 residence times have smaller NFRs. This could either be

explained by stronger nucleosome exclusion through more stably

bound Abf1, or conversely, by more stable binding of Abf1 in larger

NFRs. Abf1 shapes the local chromatin architecture by competing

with nucleosomes (Venditti et al, 1994; Yarragudi et al, 2004) and

by acting as a barrier that chromatin remodellers use to position

flanking nucleosomes (Krietenstein et al, 2016). It seems reasonable

that Abf1 forms a more efficient barrier when it is more stably

bound, thus repelling nucleosomes more efficiently, which would

support the hypothesis that stable binding creates bigger NFRs. On

the other hand, being a barrier means that chromatin remodellers

actively position nucleosomes towards Abf1. Therefore, nucleo-

somes that are being positioned by remodellers may exert a force on

Abf1 and destabilize its binding. In this hypothesis, competition

with nucleosomes could reduce the residence time of Abf1, as has

been shown for Rap1 (Lickwar et al, 2012; Mivelaz et al, 2020).

Upon depletion of Abf1, nucleosomes become repositioned in all

mean Abf1 residence time quartiles, but sites with the shortest mean

residence time show the biggest reduction in NFR size (Fig 2). This

fits with nucleosome positioning leading to shorter mean Abf1 resi-

dence times at these sites. Neither hypothesis can, nor need be

excluded as yet. The observed correspondence between NFR size

and Abf1 off-rates at different sites highlights the advantage of such

measurements as a starting point for detailed characterization of

molecular mechanisms.

Besides organizing chromatin, Abf1 also functions as a tran-

scriptional regulator (Buchman & Kornberg, 1990; Gailus-Durner

et al, 1996; Miyake et al, 2002, 2004; Yarragudi et al, 2007). Abf1

is known to be only a weak activator of transcription (Buchman &

Kornberg, 1990; Levo et al, 2017), and the results presented here

indicate that it mainly regulates transcription through repositioning

nucleosomes, which is consistent with previous reports (Paul et al,

2015; Kubik et al, 2018). Our results fit with Abf1 stimulating tran-

scription by creating an NFR that allows other regulatory factors to

bind and whose activities may more directly dictate steady-state

expression levels. This offers an explanation for why there is little

correlation between steady-state mRNA synthesis rates and Abf1

binding levels or off-rates (Fig 3C and 3D), but nevertheless good

correlation between off-rates and changes in mRNA synthesis rates

upon depletion (Fig 3F). Removal of Abf1 causes NFR collapse for

those promoters that have no redundant mechanisms of NFR

upkeep (Fig 3B), resulting in cessation of promoter activity. This is

in contrast to Rap1, which is known to directly contact TFIID

(Garbett et al, 2007) and may directly recruit the transcription pre-

initiation complex itself. Such direct recruitment suggests that

Rap1 is the main regulator of transcription of its targets, explaining

correlation between Rap1 binding dynamics and steady-state

mRNA synthesis levels (Lickwar et al, 2012). As with the analysis

of roadblock function for Abf1, different modes of regulator

activity or function may therefore be revealed by detailed analyses

of binding dynamics.

A limitation of DIVORSEQ is that analysis is in bulk, rather than

at the single cell resolution available through microscopy (Hager

et al, 2009; Larson, 2011; Mueller et al, 2013; Voss & Hager, 2014;

Coleman et al, 2015; Brignall et al, 2019; Elf & Barkefors, 2019).

This is offset by the advantage of determining off-rates for many loci

across the genome in parallel. Other methods that measure site-

specific in vivo binding dynamics include competition ChIP, which

determines turnover and is limited by a slow induction of the

competitor protein, as well as by the substantial carbon source

perturbation required for induction (Schermer et al, 2005).

DIVORSEQ directly measures off-rates and has been designed for

application alongside on-rate measurement by cross-linking kinetic

analyses (Poorey et al, 2013), that has yet to be applied at the

genomic scale (Zaidi et al, 2017). In theory, on-rates can also be

inferred from a combination of binding levels and off-rates. Such

inference will lead to large estimation errors and therefore direct

measurement of on-rates, for example by an approach like cross-

linking kinetic analysis is preferable.

Considerations that need to be made when applying DIVORSEQ

include having sufficiently rapid removal of unbound proteins from

the nucleus. Using anchor-away (Haruki et al, 2008), an estimated

2,000 molecules can be depleted from the nucleus per minute

(Warner, 1999). This implies that for highly abundant proteins such

as Abf1, with an estimated 6,000 molecules (Ho et al, 2018), mean

residence times will be determined at minute-scale resolution. In

other words the lower limit of detecting residence times is mainly

determined by the number of TF molecules and the 4 min shortest

residence time for Abf1 is the limit for applying DIVORSEQ in its

current form to Abf1. The lower limit of residence times determined

will be lower for less abundant proteins.

The timescale of minutes found here for Abf1 by DIVORSEQ

may seem in contrast to the timescale of seconds that have

frequently been reported for other TFs using microscopy based

methods (McNally et al, 2000; Bosisio et al, 2006; Karpova et al,

2008; Loffreda et al, 2017; Donovan et al, 2019a). The microscopy

based methods certainly also have their limitations such as sensitiv-

ity to the model used for fitting, bleaching and out-of-focus move-

ment, making it challenging to accurately measure minute time

scale residence times. Nevertheless, it is important to point out that

minute-scale residence times have been reported for several TFs

previously (Yao et al, 2006; Hammar et al, 2014; Agarwal et al,

2017; Hansen et al, 2017; Donovan et al, 2019a; Mivelaz et al,

2020). It is possible that different approaches are suitable for dif-

ferent TFs with different ranges of residence times. This issue can

best be addressed by comparing measurements of many different

TFs by several different methods. Until such a comparison is carried

out it is possible that some methods, including DIVORSEQ, should

only be interpreted on a relative scale. Such relative measurements

are of course still valuable for investigating biological meaningful

differences in residence times.

That anchor-away is sufficiently rapid for Abf1, is indicated by

the excellent fit to first-order kinetics observed and the wide range

of different off-rates obtained. Besides anchor-away, other tech-

niques that facilitate nuclear depletion could also be used (Klemm

et al, 1997; Bayle et al, 2006; Busch et al, 2009), contingent on

rapidity. A second consideration is that the ChIP or genomic
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location protocol requires results that are comparable between time

points. Here we first extensively optimized almost all ChIP protocol

steps to achieve this (preprint: de Jonge et al, 2019). Some limita-

tions still remain. Abf1 can only be cross-linked to sites with a

guanine or cytosine at �8 bp from the binding motif centre (Rossi

et al, 2018a). Sites without a guanidine or cytosine at this position

were therefore excluded here although some nevertheless yielded

low signals. These signals at sites without a G/C at position �8 bp

from the motif did not deplete over time and are likely caused by

small amounts of cytosolic Abf1 rebinding during the ChIP proce-

dure. Therefore no reliable fits can be obtained for these sites and

they were therefore excluded from all analyses. Combined with

peak filtering for robust binding, this reduced the number of Abf1

sites for which off-rate could be determined. Improvements to

DIVORSEQ could therefore be aimed at preventing rebinding and/or

applying assays that do not depend on cross-linking (Zentner et al,

2015; Skene & Henikoff, 2017). These considerations aside, that the

determined off-rates are accurate is corroborated by the MNase

protection levels at Abf1 sites with different off-rates, as well as by

the diverse aspects of previously established Abf1 function

presented here for the first time in the context of a large number of

genomic binding sites and their binding dynamics.

Materials and Methods

Strains

The strains used in this study are Saccharomyces cerevisiae anchor-

away strains (Haruki et al, 2008) that were recreated in the BY4742

background (de Jonge et al, 2017). Besides the FRB domain from

mammalian target of rapamycin (mTOR), the anchor-away tag

consists of yeast enhanced green fluorescent protein (yEFGP) and a

triple V5 tag. The parental BY4742 anchor-away strain, which has

an FPR1 deletion and a tor1-1 mutation to desensitize the strain to

rapamycin, was used as a wildtype control.

Growth conditions

Strains were streaked from �80°C stocks on appropriate selection

plates (for the parental anchor-away strain: YPD + Nourseothricin

and for the Abf1-aa strains: YPD + Nourseothricin + Hygromycin),

and incubated at 30°C for 3 days. In the morning, liquid pre-

cultures were inoculated in 1.5 ml of synthetic complete (SC)

medium: 2 g/l dropout mix complete and 6.71 g/l yeast nitrogen

base without amino acids, carbohydrate & w/AS (YNB) from US

Biologicals (Swampscott, USA) with 2% D-glucose. In the after-

noon, several pre-cultures were combined, diluted to final volume

of 20 ml and grown overnight. The growth conditions were identi-

cal for all experiments and pre-cultures: in SC medium at 30°C,

with shaking (230 rpm).

Anchor-away depletion

At t = 0, Abf1 was depleted from the nucleus by addition of rapamycin

(LC Laboratories #R-5000; dissolved to 2mM in DMSO), to a final

concentration of 7.5 lM. For the t = 0 time point, the same volume of

DMSO instead of rapamycin was added and incubated for 90 min.

Chromatin immunoprecipitation

ChIP was performed as described in detail in (de Jonge et al, 2020)

using biological triplicates. To summarize: cells were diluted in the

morning to an optical density (OD) of 0.11–0.15 (WPA Biowave

CO8000 Cell Density Meter) in 100 ml of SC medium, and grown for

at least 2 doublings to an OD600 = 0.8, which corresponds to about

2 × 107 cells per ml. Additions of rapamycin and DMSO were stag-

gered such that all time points were ready at the same OD (0.8).

When this OD was reached, the cells were cross-linked for 5 min by

addition of 37% formaldehyde (Sigma-Aldrich #252549) to a final

concentration of 2%. The formaldehyde was quenched using a final

concentration of 1.5M of Tris (tris(hydroxymethyl)aminomethane)

for 1 min. Subsequently, the cells were pelleted by centrifugation at

3,220 g at 4°C for 3 min. The pellet was washed in 10 ml TBS

(150 mM NaCl, 10 mM Tris pH 7.5) and pelleted again at 3,220 g

for 3 min at 4°C. After resuspension in 1 ml MQ, cells were centri-

fuged at 3,381 g for 20 s at room temperature and the pellet was

snap-frozen in liquid nitrogen and stored at �80°C.

To lyse cells, the cells were resuspended in FA lysis buffer (50

mM HEPES-KOH pH 7.5, 150 mM NaCl, 1 mM EDTA pH 8.0, 1%

Triton X-100, 0.1% Na-deoxycholate, 0.1% SDS) containing the

protease inhibitors aprotinin, pepstatin A, leupeptin and PMSF to a

final volume of 2ml, transferred to 2-ml screw-cap tubes and

disrupted using zirconium/silica beads 0.5 mm (BioSpec Products,

#11079105z) by bead beating 7 times 3 min in a Genie Disruptor

(Scientific Industries). The lysate was recovered and centrifuged at

1,503 g for 2 min at 4°C to remove cell debris. The supernatant was

subsequently fragmented by sonicating the samples for 10 cycles of

15 s on, 30 s off using a Bioruptor Pico sonicator (Diagenode

#B01060010).

For the immunoprecipitation, 450 ll of the fragmented chro-

matin was incubated with 1 ll of anti-V5 antibody (Life Technolo-

gies #R96025) for 2 h at 4°C. A 20 ll aliquot was kept separate as

an input control. The chromatin + antibody were subsequently

bound for 20 min at room temperature to magnetic beads (Dyn-

abeads protein G, Life Technologies #10004D) that were pre-incu-

bated with BSA. The beads were washed twice with PBS and twice

using PBS-T. During the last wash, the beads were transferred to

fresh LoBind tubes (Eppendorf #0030108051). Cross-links were

reversed by incubating in TE/1% SDS (10 mM Tris pH 8.0, 1 mM

EDTA pH 8.0, 1% SDS (w/v)) overnight at 65°C. The next morning,

RNA was degraded by addition of RNAse A/T1 (Thermo Scientific

#EN0551) at 37°C, and subsequently proteins were digested by addi-

tion of proteinase K (Roche #03115852001) at 37°C. After protein

digestion, DNA was recovered using a Qiagen PCR purification

cleanup kit (Qiagen #28106) by eluting in 30 ll buffer EB.

RNA labelling and extraction

For the 4tU-seq time–course, 20 ml cultures were used, with biologi-

cal triplicates for each time point. Rapamycin and DMSO additions

were staggered such that all cultures were ready at the same OD

(0.8). WT samples incubated with rapamycin or DMSO for 90 min

were taken along as a controls. Three minutes before the cultures

were ready, 4-thiouracil (4tU; Sigma-Aldrich #440736) was added to

the cell cultures to a final concentration of 5 mM. Cells were incu-

bated with 4tU for 6 min in total, such that the centre of the
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labelling period matched the time point of the ChIP time–course.

Subsequently, cells were harvested by centrifugation at 3,220 g for

3 min, cell pellets were snap-frozen immediately in liquid nitrogen

and stored at �80°C.

To isolate total RNA, cells were resuspended in Acid Phenol

Chloroform (Sigma #P1944) and immediately mixed with the same

volume of TES buffer (10 mM Tris pH 7.5, 10 mM EDTA, 0.5%

SDS). The samples were vortexed hard for 20 s, the tubes were

covered in aluminium foil to keep the samples dark, and incubated

in a 65°C water bath for 10 min. Next, the samples were transferred

to 1.5 ml tubes and incubated in a thermomixer for 50 min at 65°C

and 1,400 rpm, while covered with aluminium foil. After incuba-

tion, samples were centrifuged at 18,407 g for 20 min at 4°C. The

water phase was recovered and phenol extraction was repeated

once, followed by extraction using chloroform–isoamyl alcohol

(25:1). The RNA was precipitated using sodium acetate (NaAc 3M,

pH 5.2) and 100% ethanol (�20°C) by incubating at �20°C for at

least 30 min. DTT was also added to a final concentration of 1 mM

to prevent oxidation of the 4tU. The pellet was washed once with

80% ethanol and resuspended to a final concentration of 1 lg/ll in
sterile MQ.

To recover nascent transcripts the protocol from (Dölken et al,

2008) was used with minor adaptations. In brief, 100 lg of cleaned

RNA was heated to 60°C for 10 min and immediately put on ice for

2 min. The RNA was biotinylated by adding 200 ll Biotin-HPDP

(Thermo Fisher Scientific #21341) dissolved to 1 mg/ml in 30%

DMF. Unbound biotin was removed using chloroform extraction.

Biotinylated RNA was separated from total RNA using streptavidin-

conjugated magnetic beads and lMACs columns (Miltenyi Biotec

#130-074-101). The beads were washed 6x using 65°C washing

buffer (100 mM Tris pH 7.5, 10 mM EDTA, 1 M NaCl, 0.1% Tween-

20) and bound RNA was eluted using 200 ll of 100 mM DTT. The

nascent RNA was purified using an RNeasy MinElute Cleanup Kit

(Qiagen #74204).

Library preparation and sequencing

ChIP-seq libraries were created using a combination of a NEXTflex

Rapid DNA-Seq Kit (Bioo Scientific #NOVA-5144) and a NEXTflex

Rapid Directional qRNA-Seq Kit (Bioo Scientific #NOVA-5130) to

allow for incorporation of unique molecular identifiers (UMIs) (Kiv-

ioja et al, 2012) on both sides of each fragment. To improve speed

and accuracy, a maximum of 8 libraries were prepared at the same

time. To make the amount of starting material of the input samples

similar to that of the IP samples, the input samples were diluted

1:300 prior to library prep. End-repair and adenylation were carried

using the NEXTflex Rapid DNA-Seq Kit with half of the recom-

mended volumes. The subsequent steps were carried out using the

NEXTflex Rapid Directional qRNA-Seq Kit with a quarter of the

recommended volumes for the adapter ligation and half volumes for

the PCR amplification. The initial volume used for each of the bead

clean-ups was adjusted to 50 ll by addition of MQ and bead ratios

were kept as recommended. The number of PCR cycles used was

the same for all ChIP and input samples (13 cycles) except for the

WT IPs where 15 PCR cycles were used. Library yields were

assessed using a High Sensitivity DNA bioanalyzer chip (Agilent)

and equimolar amounts of library were pooled and sequenced

paired-end 2 × 75 bp on a NextSeq 500 system (Illumina).

4tU-seq libraries were created using the NEXTflex Rapid Direc-

tional qRNA-Seq Kit (Bioo Scientific #NOVA-5130) with a slightly

modified protocol. During step D of the protocol (i.e. bead cleanup

after second strand synthesis) the beads were resuspended in 10 ll
of resuspension buffer, and 8 ll was used for the next step. From

this step onwards, half of all recommended volumes were used. The

initial volume used for each of the bead clean-ups was adjusted to

50 ll by addition of MQ and bead ratios were kept as recommended.

Since the concentrations of labelled RNA differed after the purifica-

tion, a qPCR was performed to estimate the number of PCR cycles

needed for each sample after adapter ligation. The number of cycles

that were used varied between 8 and 12 cycles. Library yields were

assessed using a High Sensitivity DNA bioanalyzer chip (Agilent)

and equimolar amounts of library were pooled and sequenced

paired-end 2 × 75 bp in two sequence runs on a NextSeq 500 system

(Illumina).

Mapping

Reads from both the ChIP-seq and 4tU-seq experiments were aligned

to the sacCer3 genome assembly (February 2011) using HISAT2

v2.0.5 (Kim et al, 2015). The settings for the ChIP-seq samples were

“--add-chrname -X 1000 --score-min L,0,
-0.2 -k 1 --no-spliced-alignment -5 12 -3 6”
and for the 4tU-seq samples the settings “--add-chrname -X
1000 --score-min L,0,-0.175 -5 10 -3 10
--dta -max-intronlen 1500 --rna-strand-
ness RF” were used. Subsequently, the bam files were filtered to

keep only transcripts with a unique combination of UMIs using the

custom scripts “addumis2bam.sh” and “uniqify-umis.pl” available

from https://github.com/wdejonge/DIVORSEQ.

Peak calling and filtering

The ChIP-seq data were filtered to keep only uniquely mapping

reads and subsequently peaks were called using MACS2

v2.1.1.20160309 (Zhang et al, 2008) with the settings “-f BAMPE
-g 1.25e7 --keep-dup all --mfold 5 2000
--call-summits -q 0.001 --fe-cutoff 2” using

all three replicate t = 0 time points (no depletion) versus their

corresponding inputs, yielding 948 Abf1 peaks.

To monitor the depletion, the initial binding levels need to be

sufficiently strong to accurately measure a reduction in binding

levels. Therefore, only binding peaks with a fold enrichment of at

least 4 were considered (421 peaks). This also filters out apparent

weak binding across open reading frames and tRNAs, which is a

known artefact of ChIP (Park et al, 2013; Teytelman et al, 2013). In

addition, it has been recently shown that Abf1 is only efficiently

cross-linked to sites with either a guanine or a cytosine at �8 bp

from the centre of the Abf1 binding motif (Rossi et al, 2018a). For

each binding peak, we searched for motifs (�100 bp from peak

summit) that closely match the Abf1 consensus (at least 85% of the

consensus motif score from (MacIsaac et al, 2006)) and determined

whether there was a G/C or an A/T at �8 bp from each motif. Only

peaks where all motifs found had a G/C at �8 bp from the motif

midpoint were kept for further analysis (195 peaks). Four of these

peaks were located in telomeric regions. Although the mean resi-

dence time estimates of these four peaks are probably accurate, we
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noticed that other characteristics were very distinct from other

peaks (e.g. nucleosome organization, motif composition, RNA poly-

merase II binding). Therefore, these peaks were excluded, yielding a

total of 191 Abf1-binding sites that were analysed in greater detail.

Exponential decay fitting

To fit the exponential decay model, first the bam files were centred

and smoothed with a 101 bp window, as described in (de Jonge

et al, 2017). Subsequently, all samples were scaled to 1 million

reads using genomecov from the bedtools2 suite v2.27 (Quinlan &

Hall, 2010), which makes sure that total coverage across the

genome is the same for all samples (1.01 × 108 bases). For each

binding site (n = 191), the total coverage was calculated for each

sample in a window � 50 bp from the peak summit. Subsequently,

the binding at all peaks was normalized to the background levels.

This was achieved by first calculating the fraction of background

reads of each sample, by dividing the number of reads not present

in any of the 948 peaks by the total number of reads. The binding

levels at each peak were then divided by this fraction of background

reads, essentially equalizing the background level of each sample.

These values were used to fit a first-order exponential decay func-

tion using the nls function in R:

y tð Þ ¼ yf þ y0 � yf
� �

e�koff t (1)

with y0 the binding levels a t = 0 (i.e. before depletion), t the time

since depletion, yf the final binding level and koff the decay rate of

the binding levels. The use of a site-specific yf is needed since dif-

ferent sites decay to a different background levels. The mean resi-

dence time is given by 1/koff and represents the average time Abf1

stays bound to a specific site. The fits were done in R with the nls
function using the formula: “nls(ChIP ~SSasymp(time,
yf, y0, log_koff), data = data)”, using all three

replicates together to obtain a single fit per peak. The goodness of fit

for each fit was assessed by calculating a pseudo-R2, calculated as:

R2 ¼ 1�
P

residuals2
P ðy� �yÞ2 (2)

This yielded regressions with excellent R2, with the lowest

R2 = 0.65 and the median R2 = 0.94 (Fig EV2D). One of the 10 min

depletion ChIP samples had much higher binding levels compared

to the other 10 min samples, with a median absolute deviation more

than six times as high. Upon removal of this sample all fits

improved. This sample was therefore removed from all analyses.

The 191 binding sites were divided into four mean residence time

groups defined by the quartiles of their mean residence times (48 or

47 sites per quartile). An exponential decay model with the absolute

binding levels was used rather than an exponential decay fit with

log-transformed data since such a linear model cannot estimate a

baseline yf, yielding poor fits and inaccurate estimates for the off-

rates. Dataset EV1 contains for the 191 Abf1-binding sites the coor-

dinates of the 101 bp windows, the binding levels before and after

90 min of depletion, the estimates for y0, yf, koff and the mean resi-

dence time as well as the number of motifs, motif scores and to

which residence time quartile a binding site belongs to.

4tU-seq expression analysis

The 4tU-seq reads were assigned to genomic features using feature-

Counts from the subread package v1.6.5 (Liao et al, 2014). As an

annotation file, transcription start site annotations from (van Bakel

et al, 2013) were merged with the genome annotation from the

Saccharomyces genome database (SGD; Cherry et al, 2012) contain-

ing ORFs, tRNAs, rRNAs and snRNAs. The counts from the two

independent sequence runs were combined and differential expres-

sion of the genomic features (genes) was calculated using the

DESeq2 package v1.10.1 (Love et al, 2014) in R. Only genes with a

fold change of more than 1.5 with an adjusted P-value < 0.01 after

20 min as well as 30 min of depletion were considered differentially

expressed. The fold change in mRNA synthesis was calculated rela-

tive to t = 0.

To model the decrease rate of mRNA synthesis, absolute tran-

script counts were used at each time point. They were normalized

to the median number of transcripts of all samples after filtering out

rRNAs. Only genes that were significantly downregulated with Abf1

binding to the promoter were used (n = 88). Binding peaks were

assigned to genes when the summit of that peak was found within

the promoter (500 bp upstream of the transcription start site). As

described for the ChIP-seq data, a first-order exponential decay func-

tion (Equation 1) was used to model the changes in mRNA synthe-

sis. In this case, y0 is the expression level before depletion and koff
is the rate with which the expression decreases to the final expres-

sion level yf. For six of the genes with robust changes in mRNA

synthesis, no reliable fit could be obtained and these were therefore

excluded from Fig 3G (n = 82).

External datasets

To assess what percentage of Abf1 binding peaks overlap with

previously detected Abf1 binding sites, the peaks (peak

summits � 50 bp) detected here (n = 948) were compared to

published datasets. Data from three different techniques were used:

ORGANIC, ChEC-seq and ChIP-exo (Kasinathan et al, 2014; Zentner

et al, 2015; Rossi et al, 2018b). For the ORGANIC data, the

published bound Abf1 sites (n = 1,068) from the “10’ MNase

80mM” samples were used (Kasinathan et al, 2014). For the ChEC-

seq data, the Abf1 sites that were both classified as “fast” and “high

scoring motif” (n = 1,583) were taken (Zentner et al, 2015). For the

ChIP-exo peaks, all sites detected using the ChIP-exo protocol v5

(n = 3,177) were used (Rossi et al, 2018b).

To assess in vivo protection from MNase cleavage, the bigwig

files “Abf1aa_V_freeMNase_ChEC” and “Abf1aa_R_freeMNase_-

ChEC” were downloaded from the gene expression omnibus (GEO)

dataset GSE98259 (Kubik et al, 2018) and smoothed with a 3 bp

window. The data were centred on the Abf1 binding motif, and the

average number of cleavage sites per mean residence time quartile

was calculated. Subsequently, the average number of cut sites was

calculated in the area of the motif (�8 bp to +8 bp from the motif

midpoint) both in the presence and absence of Abf1. The cleavage

ratio was calculated by taking the number of cuts in the absence of

Abf1 divided by the number of cuts in the presence of Abf1. Sites

without cuts in either conditions (with or without rapamycin) were

excluded from the quantification (Fig 1J).
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To compare synthesis rates with off-rates and binding levels,

genome-wide synthesis rates were taken from (Sun et al, 2012), by

downloading them from the researchers’ website: https://www.

mpibpc.mpg.de/13760807/Sc_turnover.zip.

To visualize nucleosome positioning before and after depletion

of Abf1, the bigwig files “Abf1veh15” and “Abf1rapa15” were

downloaded from GEO dataset GSE73337 (Kubik et al, 2015). The

data were either centred on the Abf1 binding motif (Fig 2) or

aligned on the +1 nucleosome (Figs 3B and EV3A), with +1 nucleo-

some positions taken from (Kubik et al, 2015). The average nucleo-

some occupancy was calculated for genes with Abf1 binding, an

annotated +1 nucleosome and that were strongly downregulated

(fold change > 2 at t = 20, n = 44), weakly downregulated (1.5 <

fold change < 2 at t = 20, n = 42) or did not change (fold change

< 1.5 at t = 20, n = 112) upon depletion of Abf1 (Fig 3B). In Fig 2,

the average nucleosome occupancy was calculated per mean resi-

dence time quartile. The confidence intervals in Figs 2 and 3B are

indicated by the shaded area which is calculated as the

mean � 2 × the standard error of the mean (SEM).

To visualize polymerase binding, the PAR-CLIP (photoactivat-

able ribonucleoside-enhanced cross-linking and immunoprecipita-

tion) data for both the plus and minus strand from sample “Rpb2-

HTB Control With Rapamycin” were downloaded from GEO

dataset GSE56435 (Schaughency et al, 2014). As the Abf1 motif is

strand-specific, the data were reoriented accordingly, meaning that

when the data had to be reoriented to match the orientation of the

motif (as shown in Figs EV2B and 5C), the plus and minus strand

were also swapped. To calculate the roadblock efficiency, the aver-

age binding in the roadblocked peak, located at �37 bp � 5 bp

from the Abf1 binding motif centre, was normalized by the

amount of incoming transcription (defined as the average Pol II

binding in the region from �300 bp until �100 bp upstream of the

Abf1 binding motif). For the quantification shown in Fig 4C, a

peak was considered to be a roadblock peak when it had upstream

normalized Pol II binding > 2. With this cut-off, approximately

25% of the peaks (49/191) were considered to be a roadblock for

Pol II.

Motif scoring and DNA shape analysis

The position frequency matrix from (MacIsaac et al, 2006) was

obtained from the YeTFaSCo database (de Boer & Hughes, 2011),

multiplied by a factor 1,000 and converted to a position weight

matrix (PWM). The region � 100 bp of the summit of each binding

peak was searched for a match of this PWM using the matchPWM

function from the Biostrings v2.38.4 package in R, using a mini-

mum motif score of 85%. Whenever a binding peak had more than

one motif match, the highest score was assigned to this binding

peak. For all aggregate plots, the data were aligned to the motif

with the highest motif score with all motifs in the same orientation

as shown in Figs EV2B and 5C. DNA shape analysis was done on

the aligned motifs � 40 bp from the motif midpoint using

DNAshapeR v1.10.0 (Chiu et al, 2016). The DNA shape of the

bound and unbound sites from (Rossi et al, 2018a) was calculated

as described in (Rossi et al, 2018a), by taking for each of the 8

motifs the top 50 and bottom 50 bound peaks and showing the

average of the top 400 and bottom 400 bound peaks. For further

details, see (Rossi et al, 2018a).

Statistical analysis and data visualization

All statistical analyses were done using the statistical language R

v3.2.2 except for the DNA shape and Venn diagram analyses which

were done using R v3.5.1. The area-proportional Venn diagrams

were created using the eulerr package v6.0.0 in R v3.5.1.

To visualize the binding to different genomic loci in Fig 1B, the

Sushi package v1.24.0 was used (Phanstiel et al, 2014). All boxplots

were created using R’s built-in boxplot function, with default

settings; here, the solid horizontal line represents the median, the

box shows the interquartile range, and the whiskers are at the most

extreme data point no further away from the closest quartile than

1.5 times the interquartile range. Differences between the four mean

residence time quartiles were assessed using a one-way ANOVA

followed by Tukey’s honest significant difference test (Figs 1J, 4B,

5B and D). The difference between the two groups in Fig 4C was

tested using a two-tailed t-test and between the groups in Fig 5A

using a Wilcoxon rank-sum test, since one of the groups was

deemed to deviate too much from normality.

Data availability

The datasets and computer code produced in this study are available

in the following databases:

• ChIP-Seq data: Gene Expression Omnibus GSE151692 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE151692).

• RNA-Seq data: Gene Expression Omnibus GSE151468 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE151468).

• Modeling computer scripts: GitHub (https://github.com/wdejonge/

DIVORSEQ).

Expanded View for this article is available online.
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