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The current trend in clinical data analysis is to understand how individuals respond

to therapies and drug interactions based on their genetic makeup. This has led to

a paradigm shift in healthcare; caring for patients is now 99% information and 1%

intervention. Reducing costs of next generation sequencing (NGS) technologies has

made it possible to take genetic profiling to the clinical setting. This requires not just

fast and accurate algorithms for variant detection, but also a knowledge-base for variant

annotation and prioritization to facilitate tailored therapeutics based on an individual’s

genetic profile. Here we show that it is possible to provide a fast and easy access

to all possible information about a variant and its impact on the gene, its protein

product, associated pathways and drug-variant interactions by integrating previously

reported knowledge from various databases. With this objective, we have developed

a pipeline, Sequence Variants Identification and Annotation (SeqVItA) that provides

end-to-end solution for small sequence variants detection, annotation and prioritization

on a single platform. Parallelization of the variant detection step and with numerous

resources incorporated to infer functional impact, clinical relevance and drug-variant

associations, SeqVItA will benefit the clinical and research communities alike. Its

open-source platform and modular framework allows for easy customization of the

workflow depending on the data type (single, paired, or pooled samples), variant

type (germline and somatic), and variant annotation and prioritization. Performance

comparison of SeqVItA on simulated data and detection, interpretation and analysis of

somatic variants on real data (24 liver cancer patients) is carried out. We demonstrate

the efficacy of annotation module in facilitating personalized medicine based on patient’s

mutational landscape. SeqVItA is freely available at https://bioinf.iiit.ac.in/seqvita.
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BACKGROUND

Precision medicine is an emerging approach for risk assessment to diagnosis, disease prognosis,
and treatment that considers individual genetic variability into account. It requires analyzing
multiple genes quickly and sensitively from small quantities of sample, which is now possible
with the advent of next generation sequencing (NGS) techniques. Diagnostic testing of Mendelian
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and heredity disorders and risk screening of heredity cancers are
a few well-established clinical applications of NGS techniques.
Targeted sequencing (TS) is widely used in the form of gene
panels, e.g., hotspot panels (either clinically actionable or
with diagnostic/prognostic significance), actionable gene panels
(includes all exons of targeted genes), and disease-focused gene
panels. With the decrease in the cost of sequencing, whole
genome (WGS), and whole exome sequencing (WES) are slowly
emerging in biomedical studies and medical practices. The major
advantage with WGS/WES approaches is that one can identify
mutations not previously reported and in non-coding regions
(with WGS), which may be specific to the individual. Thus,
the revolution of high-throughput sequencing technologies has
made it possible to carry out genome-wide analysis of somatic
mutations in population-scale cancer cohorts.

Major steps involved in the prediction of sequence variants
in clinical NGS data are (1) Data pre-processing, (2) Read
alignment, (3) Variant calling, and (4) Variant annotation and
prioritization. Data pre-processing involves removing low quality
reads, adapter sequences and contamination. It is a key step in
any NGS data analysis and has a direct effect on the downstream
analysis if not performed properly. A number of data quality
check, filtering and trimming tools are available (both standalone
and web-based) (Del Fabbro et al., 2013; Bao et al., 2014). Amajor
limitation with some of these tools is that they are unable to
handle very large datasets. For example, PRINSEQ (Schmieder
and Edwards, 2011) works efficiently for a single sample, while
NGS QC Toolkit (Patel and Jain, 2012) and FastQC (Andrews,
2010) can handle small number of samples simultaneously;
however, the performance is very poor in terms of runtime and
memory usage for large datasets. Raspberry (Katta et al., 2015)
is able to efficiently perform batch processing on large number
of samples in parallel and FaQCs (Lo and Chain, 2014) enables
quality check, trimming and filtering of low-quality reads in large
samples quickly through multi-threading.

Alignment of pre-processed short sequence reads to a
reference genome is the next step which requires large
computation space and is highly time-consuming. BWA (Li and
Durbin, 2009) and Bowtie2 (Langmead and Salzberg, 2012) are
some of the fastest aligners available that use “indexing” strategies
(compression heuristics), resulting in optimal alignment of
reads. Most of the existing aligners have a provision to map
the reads using multiple cores/CPUs (parallel processing).
Standalone tools such as NGS-QCbox (Katta et al., 2015),
cloud-based aligners such as CloudBurst (Schatz, 2009), Galaxy
CloudMan (Afgan et al., 2010), and Crossbow (Gurtowski et al.,
2012) carry out read mapping much efficiently using big data
infrastructure.

Because of large space-time resources required for the above
two steps in NGS data analysis, most variant callers take either
the alignment file in BAM format or the VCF format as input.
Variants are predicted by comparing each position with the
standard reference sequence and applying certain statistical
models/heuristics to improve the reliability of predictions. Some
popular tools for detection of SNVs and small INDELs in
large NGS datasets are summarized in Table 1, namely, GATK
(based on Hadoop-MapReduce framework) (McKenna et al.,

2010; Cibulskis et al., 2013), MAFsnp (Hu et al., 2015), and
SNVSniffer (Liu et al., 2016). Sequence variants are classified as
germline, somatic, or loss-of-heterozygosity (LOH) by the variant
callers. Germline variants are usually identified from a single,
paired, family-pedigree sequences or population cohorts, while
a matched normal is required for the prediction of somatic and
LOH variants. Each of these tools have their inherent strengths
and limitations and none of these can reliably detect all types and
sizes of sequence variants (Yi et al., 2014; Xu, 2018).

Variant calling in WGS (WES) data result in millions
(hundreds) of variants, most of which may not contribute to any
phenotypic condition. Identifying a small subset of functional
variants that are directly involved in a pathway/disease is
desirable. The first step in variant prioritization is annotation.
This includes identifying the functional impact of the variant
on the gene/protein product, its frequency in the population,
disease association and variant-drug association. Some popular
variant annotation tools are listed in Table 1. The most common
annotation feature across these tools is gene-locus annotation,
i.e., position of variant on the gene locus (exon/intron/5′/3′

UTR/promoter). Features such as phylogenetic conservation
scores [e.g., SIFT (Ng and Henikoff, 2003) and PolyPhen2
(Adzhubei et al., 2013)], help in distinguishing the impact of
the variants—from damaging to tolerated missense variants,
while population allele frequencies [dbSNP (Pagès, 2017), 1000
Genome Project (1000 Genomes Project Consortium et al., 2015)
and gnomAD (Lek et al., 2016)] help in filtering common
variations. Known variant-disease associations can be obtained
from databases such as OMIM (Hamosh et al., 2002), ClinVar
(Landrum et al., 2014), and COSMIC (Bamford et al., 2004)
and can help in understanding the role of variants in disease
prevalence and mode of inheritance. Another important class
of annotation is variant-drug association that enables us to
interpret efficacy of the drug in the presence of a particular
variant, e.g., PharmGKB (Gong et al., 2008). Since not all
variants in the genic region are deleterious, it is necessary to
prioritize the predicted variants. Methods proposed vary from
computing simple cumulative scores to statistical measures based
on available information for the variant in various resources.
Thus, annotation and prioritization of variants is prerequisite in
personalized therapy.

It may be noted from Table 1 that majority of the existing
tools are either only variant callers or annotation provider,
with a limited few providing both the features. Further, variant
callers may be limited by data types (single, paired, or pooled
samples), aligner outputs, and computational efficiency. One
of the most widely used annotation tool, ANNOVAR, requires
input in a specific format that is not supported by most variant
callers, making it difficult to use. There are numerous papers
that propose pipeline for disease-specific variant detection and
annotation (Alexander et al., 2016; Krupp et al., 2017; Mathur
et al., 2018). These are useful in guiding the experimentalist
but require the user to download and install all the tools and
dependencies. To address some of these issues we have developed
an open-source, command-line driven pipeline, SeqVItA. On
a single platform all the data types and output formats are
supported and parallelization of the variant calling step makes it
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easy to handle large datasets. A detailed annotation is provided
for both coding and non-coding variants and based on their
functional impact a score is given which is used for prioritizing
the variant. Here we show how the annotation module of
SeqVItA can assist in making a suitable treatment plan based on
an individual’s mutational profile. The efficacy of both the variant
calling and annotation modules are discussed.

METHODS

Overview of SeqVItA
Sequence Variants Identification and Annotation (SeqVItA) is
an open-source platform for the prediction and annotation of
SNVs and small INDELs in whole genome (WGS), whole exome
(WES), and targeted (TS) next generation sequencing (NGS)
data. It can handle single or multiple input files simultaneously
in either BAM or mpileup format. In SeqVItA, one can detect
germline mutations in single samples and population datasets
(wherein the frequency of a minor allele is also computed). For
the detection of somatic variations in cancer data, it uses paired
tumor-control samples. It is built on a modular framework and
the workflow of SeqVItA is shown in Figure 1. It consists of
three major modules, viz., (i) pre-processing, (ii) variant calling,
and (iii) variant annotation and prioritization. The variant calling
module consists of three sub-modules: germline, somatic, and
population to handle different type of data analyses. SeqVItA is
freely available at https://bioinf.iiit.ac.in/seqvita.

Implementation
SeqVItA follows a heuristic/statistic approach similar to
VarScan2 (Koboldt et al., 2012) for variant detection. It is
implemented in a combination of programming languages
(C++, R, and Bash). The input to SeqVItA is aligned file in
either BAMormpileup format and the computationally intensive
variant calling step is parallelized using OpenMP. It involves
filtering the variants based on predefined criteria for read depth,
base quality, variant allele frequency and statistical significance.
Additionally, SeqVItA provides annotation and prioritization to
the predicted variants for assessing the biological significance
of the variants called. This module can also be independently
accessed by the researchers for variants predicted from any
other tool. Various steps, parameters and their default values
considered in the prediction of SNVs and INDELs in SeqVItA
are summarized in Table 2.

Pre-processing
This step is used only when the input is alignment file in
BAM format. Variant calling is very sensitive to the quality
of alignment, as a wrong alignment of reads may lead to
false positives. Hence, it is extremely important to ensure that
the reads are uniquely mapped. To handle the mappability
issue, mpileup function in Samtools has been incorporated for
recalibrating and filtering of lowmapping quality reads. Mapping
quality of the reads is recalibrated using the expression:

Mq′ =

√

Int −Mq

Int
× Int (1)

where Int is a user defined integer and Mq is the phred-scaled
probability of a read being misaligned. Default Mqcorr = 0
implies nomappability correction (Mqcorr= 50 is recommended
for the alignment files generated using BWA or Bowtie2). The
recalibrated file is generated in an mpileup format for further
analysis. If the alignment has been obtained using only uniquely
mapped reads by an aligner, one may skip this step. This is
followed by filtering of low mapping quality reads (≤ mapping
quality), which is user-defined depending on the aligner used.
If the input to SeqVItA is in mpileup format, this step is not
required.

Variant Calling
In this step, depending on the type of data, the user
may choose one of the three modules for small sequence
variant detection: germline module (single sample), somatic

module (paired tumor-control samples) and population module
(multiple samples). Using germline module one may identify
SNVs, INDELs or both simultaneously in a single sample, while
identification of somatic, LOH and germline sequence variants
(SNVs and/or INDELs) is carried out in somatic module for
paired tumor-control samples. SeqVItA also handles genotyping
in population data using population module that takes multiple
sample files simultaneously as input and computes frequency of
minor allele in the dataset. The input is alignment file in mpileup
format and the output is in variant call format (VCF, v4.1). The
details of each of these modules are discussed below.

Variant Calling in Single Sample
The input to this module is mpileup format file, shown in
Supplementary Figure S1. It is a tab-separated text file that
contains information about the reads aligned to reference
genome. First four columns give the chromosome number,
position in reference genome, nucleotide present at the location
in reference genome and number of reads aligned at that position,
respectively. In the 5th column, base aligned at the position in
the sample: “,” or “.” if the base at the location is the same as that
in reference, characters (“A”, “G”, “T”, or “C”) for substitution
(SNV) and “+” or “−” followed by an integer representing
insertion/deletion of integer length at the position. The 6th
column gives ASCII encoded base qualities of the base in the
reads.

For variant calling, each line in the mpileup file is parsed and
the coverage at each location is computed by considering only
those reads that have base quality ≥ Qbase (=15, default). For N
samples, coverage and quality of the bases is be obtained from
4+3(m−1) and 6+3(m−1) columns respectively, for sample
m= 1, 2, . . . , N. If the number of high quality reads ≥minimum
coverage threshold, RD_th (=10, default) at a location, then the
site is considered for further analysis. To make a variant call
at a position, SeqVItA checks whether minimum number of
reads supporting the variant, VAR_th (=2, default) is satisfied.
Variant allele frequency (VAF) is then computed by taking the
ratio of the number of non-reference alleles to the total number
of reads at the locus. Further, if VAF ≥ VAF_th, it is checked
for strandedness. The strand bias is identified if majority of
reads supporting the variant (>90%) belong to the same strand
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FIGURE 1 | Workflow of SeqVItA for identification, annotation and prioritization of sequence variants in WGS, WES, or TS data. Het, Heterozygous; Homo,

Homozygous; LOH, Loss of heterozygosity; MAF, Minor allele frequency.

TABLE 2 | Various steps and corresponding parameters in the detection of SNVs and INDELs in SeqVItA are summarized.

Steps Description Key Parameter Value

Pre-processing (aligned file in BAM format) Mapping quality correction using Equation (1) –Mqcorr 0

Filter reads based on mapping quality cut-off –Mqread 20

Variant Calling Base quality Cut-off (Phred score) –Qbase 15

Read depth at a site ≥ cut-off, site is considered for variant calling –RD_th 10

If no. of reads supporting alternate allele ≥ cut-off, site is considered for variant calling –VAR_th 2

Compute variant allele frequency (VAF) for variant calling –VAF_th 0.20

Check for strand bias (Discard if ≥ 90% and ≤ 10% support from same strand) –Strand_Bias 1

p-value cut-off (FET*) for calling variants –p-value 0.01

For germline SVs, if VAF > cut-off, variant is homozygous, else heterozygous –VAF_homo 0.75

p-value cut-off (FET*) for calling somatic, LOH variants –somatic-p-value 0.05

Variant annotation Drug association based on gene/variant in PharmGKB -d –

*FET: Fisher Exact test.

(forward or reverse). The strand bias may occur due to erroneous
PCR duplication and the variants called at such locations are
discarded.

Variants passing the above filtering criteria are considered
for Genotype call, Genotype Quality, and p-value calculation
to assess the significance of the variant called. This is done
by using one-tailed Fisher exact test under the null hypothesis

that the variation observed is due to sequencing error. For this,
number of reads supporting the variant is compared to the
expected distribution of reads for a non-variant position based
on sequencing error alone. Suppose, N(obs, ref) and N(obs, var)
denote number of reads supporting the reference and variant
respectively, with the total coverage at a location defined as
N(obs) = N(obs, ref) + N(obs, var). Considering sequencing
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TABLE 3 | The 2 × 2 contingency table for computing the p-value using Fisher

exact test.

Reads supporting Observed Expected Row Total

Variant N(obs, var) N(exp, var) N(var)

Reference N(obs, ref) N(exp, ref) N(ref)

Column total N(obs) N(exp) N

error to be 0.001, expected number of reads supporting the
variant allele due to sequencing error is N(exp, var) = N(obs) ×
0.001. The expected number of reads supporting the reference in
this case is N(exp, ref) = N(obs) − N(exp, var). If the observed
number of reads supporting the variant, N(obs, var) > N(exp,
var), the site is assumed to be a true variant, else a sequencing
error. Representing these four quantities in a 2 × 2 contingency
table (Table 3), the probability of obtaining the observed data is
given by

p =

C
N(var)

N(obs, var)
× C

N(ref )

N(obs, ref )

CN
N(Obs)

(2)

where, N(var) and N(ref) represent row total for variant and
reference alleles, respectively. The probability for all values
of N(obs,var) is computed by considering all possible tables
obtained by reducing the least value in the table (N(exp, var))
to zero while keeping the row total and column total constant.
The p-value is then defined as the sum of all the hypergeometric
probabilities of these contingency tables. If p-value is less than
the cutoff (=0.05, default), the site is said to be a true variant. The
Genotype Quality is then given by:

Genotype Quality = −10log (p-value) (3)

Once the variants are identified, a final filter is applied to
categorize variants as heterozygous or homozygous. If the variant
allele frequency at a location is greater than the user-defined
homozygous frequency cutoff, VAF_homo (=0.75, default), the
site is said to be Homozygous (HOM = 1), else Heterozygous
(HET= 1).

Variant Calling in Case-Control Samples
For identifying somatic, germline and LOH sequence variants,
tumor samples along with a matched control sample paired
samples (either as two separate alignment files in BAM format,
or a single mpileup file for both normal and tumor alignment
files) is given to the somatic module. In this case, the first three
columns contain information on chromosome number, position
and nucleotide present at the location, columns 4th, 5th, and
6th contain information regarding read depth, reference/variant
base, and base quality for sample 1 and corresponding
information for sample 2 is given in columns 7th, 8th, and 9th
in the mpileup file. As in germline module, in this case also
each location is assessed based on the coverage requirement.
The p-value calculation is then carried out to determine the
genotype in the two samples independently if the filtering criteria

TABLE 4 | The 2 × 2 contingency table for computing p-value using Fisher exact

test to predict somatic, germline and LOH mutations.

Reference Variant Row total

Tumor N(tum, ref) N(tum, var) N(tum)

Normal N(nor, ref) N(nor, var) N(nor)

Column total N(ref) N(var) N

Total number of reads, N= Nref+ Nvar= Ntum+ Nnor, where Nref and Nvar correspond

to the number of reads supporting the reference and variant, respectively and Ntum and

Nnor correspond to the number of reads in tumor and normal samples, respectively.

are satisfied. If the filtering criteria are not met for any one
of the case/control samples, the site is said to be homozygous
(reference). If the number of reads supporting a variant allele
is >75% (VAF_homo), the variant is called homozygous, else
heterozygous (as in germlinemodule). In case of multiple variant
alleles observed at a location, the variant alleles with higher
read count, followed by base quality are reported. Positions at
which one or both the samples have a variant and the genotypes
do not match, a comparison between the tumor and control
samples is carried out using one-tailed Fisher exact test in 2 ×

2 contingency tables (Table 4) to compute an additional p-value
called somatic p-value (Supplementary Figure S2). This helps
in distinguishing the somatic and LOH variants from germline
mutations, as shown below.

Here, number of reads supporting the reference allele N(tum,
ref) and a variant allele N(tum, var) in the tumor sample are
compared to that observed in the control sample, N(nor, ref)
and N(nor, var). Under the null hypothesis that reference alleles
and variants alleles are independently distributed in tumor and
normal samples, the probability of observing x reference alleles
in the tumor sample is given by

p =

C
N(tum)
x × C

N(nor)

N(ref )−x

CN
N(var)

(4)

The probability of x reference alleles in the tumor sample is
computed by considering all possible tables obtained by reducing
the least value in the table to zero while keeping the row totals
and column totals constant. The somatic p-value is then defined
as the sum of all the hypergeometric probabilities of these
contingency tables. If this p-value ≤ somatic-p-value threshold
(=0.05, default) and the normal matches the reference allele, the
base is classified as “Somatic” and if the normal is heterozygous,
the base is classified as “LOH.” If the somatic p-value for a base is
smaller than the threshold cut-off (0.05) and the normal base do
not meet the above criteria, the base is classified as “Unknown.”
Sequence variants where the allele is homozygous in normal,
and homozygous-reference or heterozygous in the tumor are
grouped under “Unknown” category. In case somatic p-value is
greater than the threshold cut-off or the genotypes in the case-
control samples match, the variant p-value (VPV) is computed by
combining tumor and normal read counts for each allele under
the null hypothesis that the site is non-variant (i.e., variation
observed is due to sequencing error) and the base is reported
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as “Germline.” Based on the variant allele frequency (VAF) and
somatic p-values (one-tailed Fisher Exact test), a somatic variant
is reported as “High” priority if VAF ≥ 10% in tumor, <5% in
normal and p < 0.07, and LOH is reported as “High” priority
if VAF ≥ 10% in normal and p < 0.07. Germline variants
are described as “High” priority if VAF ≥ 10% in both tumor
and normal samples (Supplementary Figure S2). Any sequence
variant not meeting these criteria is assigned “Low” priority.
Thus, the user may filter out high confidence sequence variants.
For this module, SeqVItA generates four VCF files using the
function splitVCF corresponding to Somatic, Germline, LOH
and Unknown sequence variants.

Variant Calling in Large Population Samples
Apart from detecting variants in single and paired samples,
SeqVItA also handles population data for genotyping in disease
cohort studies. In this case, the input is multiple alignment files
(BAM format) or a single mpileup file containing information
of multiple samples. The sequence variant detection and p-value
computation are carried out individually for each sample using
one-tailed Fisher Exact Test (similar to germline module). A
variant site may have more than one allele identified in multiple
samples and these alleles are reported under “ALT” column, as
shown in Supplementary Figure S3. Samples with no sequence
variant are represented by 0/0 and 0/1 if the sample contains
one variant allele. This is reported in the respective sample
information columns. In case more than one alternate allele is
identified in any sample, then it is represented as 0/2 under that
sample and both the alleles are reported in the “ALT” column
(comma separated) in VCF file. Minor allele frequency (MAF),
defined as the frequency of secondmost common allele identified
in the given population dataset, is also computed for each variant.
Based onMAF value, user may categorize the predicted sequence
variant as “rare” (MAF < 0.01) or “common” (MAF > 0.01).
MAF is reported as percentage frequency of the allele in the
“INFO” column,MAF=NA implies nominor allele is identified.

Parallelization of the Variant Calling Step
Screening for variants at every position of the 3 billion bases
in human genome sequentially is very time-consuming. To
improve computational efficiency, we have parallelized the
variant calling step in SeqVItA using OpenMP that supports
shared memory multi-processing. In this parallel computing
platform, variant calling is carried out simultaneously for “n”
positions by using “n” threads in which each thread shares the
same memory address space resulting in a faster communication.
Compared to other existing frameworks such as OpenMPI or
MapReduce, OpenMP is chosen for its efficiency in carrying out
computationally-intensive tasks (Kang et al., 2015).

Annotation
Typically, small sequence variants (SNVs and INDELs) range
from thousands to millions in number in a genome. However,
not all variants are likely to be associated to a phenotype.
Identifying a small subset of functional variants that are directly
involved in a pathway/disease is a major challenge in research.
Though there exists a number of variant callers, in our knowledge

very few provide any annotation/prioritization to the called
variants. To address this problem, we have developed the
annotation module that extracts information from numerous
resources to assess the significance of the predicted variants.
Thus, using this module, the user may filter out non-significant
variants for further analysis. This module can also be used
independently by the user to annotate variants obtained from
any other sequence variant detection tool in VCF format. Most
trivial way to prioritize the sequence variants is by statistical
significance given by p-value (Fisher’s exact test). In SeqVItA,
the p-value is provided in the INFO column of the VCF file
and the user may sort and filter the variants based on this
column. Though p-value gives the statistical significance, it does
not tell us anything about the biological significance of the
variant. For evaluating the biological significance, we provide
four levels of information. First level of screening is based
on the location of the variant: whether it is intergenic or
intragenic. R package “VariantAnnotation” (Obenchain et al.,
2014) integrated in SeqVItA provides gene-centric annotation
to the variant, e.g., whether the variant lies in the coding
region (synonymous, non-synonymous, frameshift, amino acid
change), intron, 5′/3′ UTR, splice site, promoter, or intergenic
region. For intergenic variants, gene preceding or following the
variant is provided. Known variants from dbSNP are reported
using R package “SNPlocs.Hsapiens.dbSNP144.GRCh37” (Pagès,
2017). In SeqVItA, functional annotation of the predicted
variant is provided at three levels: (i) functional impact of the
mutation, (ii) clinical association, and (iii) variant/gene-drug
association. For functional impact of the variant, R package
“rfPred” (Jabot-Hanin et al., 2016) is used to extract SIFT
(Ng and Henikoff, 2003), Polyphen2 (Adzhubei et al., 2013)
MutationTaster (Schwarz et al., 2010), PhyloP (Pollard et al.,
2010) and likelihood ratio test (LRT) (Chun and Fay, 2009)
scores from the database of Non-synonymous SNPs Functional
Predictions (dbNSFP) (Liu et al., 2011). These methods are based
on either protein sequence conservation (SIFT and Polyphen2)
or DNA sequence conservation models (MutationTaster, PhyloP,
and LRT) for non-synonymous variants. These scores range
from 0 to 1, with 0 indicating variants being tolerant and
1 indicating highly deleterious. The information regarding
clinical-association is extracted from ClinVar (Landrum et al.,
2014), COSMIC (Bamford et al., 2004), DECIPHER (Firth
et al., 2009), and OMIM (Hamosh et al., 2002) databases. The
extracted information is in the form of clinical significance
(clinSign) and phenotype from ClinVar, COSMIC ID, OMIM
ID, and DECIPHER score (predicted probability and percentage)
for the gene spanning the variant. A gene is categorized as
haploinsufficient if DECIPHER_percentage score lies between 0
and 10%. Fourth level of information provided is variant/gene-
drug association extracted from PharmGKB (Gong et al., 2008).
In SeqVItA, the user may choose from two levels of drug
assignment information for the variants: one is based onmapping
with dbSNP ID (Stringent) and another based on mapping with
the gene (flexible). The information provided include the name
of the associated drug, type, and confidence level of action for
a given variant/gene. These three categories of annotations has
been used to obtain disease-associated variant prioritization from
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sequence data. A snapshot of the annotated file generated by
SeqVItA is shown in Supplementary Figure S4.

In the analysis of multiple samples, if the user is interested
in identifying genes carrying mutations across the samples
(the variants may or may not be the same across samples),
the function findRecurrentGenes is used to facilitate
identification of variant-gene correspondence which can
be outputted in a singular tabular format file, as shown in
Supplementary Figure S5.

Prioritization
All the sequence variants detected in a patient’s sample may not
contribute to the disease and it would be helpful in identifying
the important set of variants for therapeutics. In SeqVItA, the
prioritization of sequence variants is based on the three categories
of annotations discussed above. A variant is assigned “High”
priority if the functional impact of the variant score is high
(>0.65) from any one of the five resources (SIFT, Polyphen2,
MutationTaster, LRT, and PhyloP), clinical association identified
in at least one of the three resources (ClinVar, COSMIC, and
OMIM), and variant-drug association identified in PharmGKB.
A variant is assigned “Medium” priority if annotation is reported
from any of the three categories. Any variant not meeting the
above criteria is assigned “low” priority.

RESULTS AND DISCUSSION

We discuss below the performance of SeqVItA on simulated
data and real (cancer) data from 24 samples. In the simulated
experiment, the effect of various parameters, viz., sequencing
coverage, read length, minimum coverage threshold, base quality,
type of SNVs and INDELs (homozygous or heterozygous), and
size of INDELs (1–10) on the prediction accuracy is assessed.
The performance of SeqVItA on real data is carried out by
detecting somatic variants (both SNVs and INDELs) in paired
exome sequence data (tumor and matched normal) from 24
liver cancer patients (SRP123031). Finally, we discuss ability of
the “annotate” module in SeqVItA in analyzing the mutational
landscape across 24 liver cancer patients, and prioritize the
somatic variants to understand the probable role of novel variants
in tumorigenesis.

Analysis of Simulated Data
Genomic DNA sequence of size 16,569 bp (hg18 assembly) is
considered for simulating the reads and is called “reference”
sequence. In the simulated experiment, detection of both
homozygous and heterozygous SNVs and INDELs is considered.
To simulate homozygous condition we insert variations at
random locations in a copy of the reference sequence and
concatenate this “mutated reference” sequence to itself (to
obtain the diploid genome), while the “mutated reference”
sequence is concatenated to the “reference” sequence to simulate
heterozygous condition. That is, four independent diploid
genome sequences are constructed containing (i) 12 homozygous
SNVs, (ii) 12 heterozygous SNVs, (iii) 4 different sizes (e.g.,
1, 2, 5, and 10) of homozygous insertions and deletions, and
(iv) 4 different sizes of heterozygous insertions and deletions.

Reads are simulated (for Illumina sequencing in this case) using
ART simulator (Huang et al., 2012) at three different sequencing
coverages (20×, 40×, and 60×) for two different read lengths (50
and 100 bp), that is, a total of 6 experiments are conducted for
the four diploid genomes constructed. ART is the most widely
used simulator to generate synthetic NGS reads by emulating
the sequencing process with built-in, technology-specific read
error models and base quality value profiles parameterized
empirically in large sequencing datasets. The reads are aligned to
the “reference” sequence using Bowtie2 (Langmead and Salzberg,
2012). For each sequencing depth and read length, this exercise
is repeated 50 times and the predictions are averaged over these
repetitions. Variants detected using SeqVItA are then compared
with three popular resources, BCFtools (Li, 2011), VarScan2
(Koboldt et al., 2012) and GATK HaplotypeCaller (McKenna
et al., 2010).

In the simulated experiments, performance of SeqVItA
is evaluated on two important parameters, viz., sequencing
coverage and base quality. Base quality is given by Phred score
of the base and only those reads that have a Phred score
above a certain minimum quality score, Qbase is considered.
We considered two base quality thresholds, 15 and 30 for the
analysis. Minimum number of reads (with base quality > Qbase)
required to make a call at a location is called minimum coverage
threshold, RD_th (=10, default). Another important parameter
is the variant allele frequency (VAF), defined as the ratio of the
number of reads supporting the variant allele to the total depth
at that location. For the analysis, the threshold for variant allele
frequency, VAF_th considered is 0.2. It is a useful parameter for
filtering false positives resulting from sequencing errors.

The prediction accuracy of SeqVItA is evaluated by computing
the Sensitivity (recall), Precision and F-score:

Sensitivity =
TP

TP + FN
(5)

Precision =
TP

TP + FP
(6)

F− score =
2 × Sensitivity × Precision

Sensitivity + Precision
(7)

where True Positive (TP) is defined as the number of sequence
variants correctly predicted, False Positive (FP) is the number
of incorrect variants calls made, and False Negative (FN) is
the number of variants missed, compared to the annotated list
(Supplementary Tables S1, S2).

Performance Evaluation of SeqVItA

Detection of SNVs and small INDELs
We first discuss the performance of SeqVItA in detecting SNVs.
In Figure 2, the prediction accuracies in detecting homozygous
(“triangle”) and heterozygous (“square”) SNVs is depicted for
two different read lengths, 50 bp (“empty symbols”) and 100
bp (“filled symbols”) and base quality score (≥15). As expected,
the prediction accuracies are better with longer reads (100 bp)
compared to smaller read lengths (50 bp), especially at lower
sequencing coverage < 40×. This may probably be due to
reliable alignment in the case of longer reads and suggests the
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FIGURE 2 | Performance of SeqVItA in detecting SNVs in simulated data

shown. F-score values for detecting homozygous “triangle” and heterozygous

“square” SNVs with read length 50 bp (empty symbols) and 100 bp (filled

symbols). Minimum coverage threshold = 10 and Base quality ≥15.

need for higher sequencing coverage when the read lengths are
small. It is easier to detect homozygous SNVs at low sequencing
depth (20×), compared to the detection of heterozygous SNVs,
irrespective of read length. It is observed that precision∼1 in the
detection of both homozygous and heterozygous SNVs even at
low sequencing coverage (20×) and small read lengths (50 bp),
indicating the reliability of results. However, the recall values are
seen to approach 1 only for high coverage data (≥ 40×) (see
Supplementary Tables S3, S4).

In Figure 3, performance of SeqVItA in detecting
homozygous and heterozygous INDELs of varying sizes (1,
2, 5, and 10 bp) is depicted, for two read lengths (50 and 100
bp), three sequencing depths (20×, 40×, and 60×) and base
quality score (≥15). The performance of SeqVItA in detecting
homozygous INDELs is summarized in Figure 3A. In this case
also the prediction accuracy is observed to be good for high
coverage data (≥40×) irrespective of the reads length. Poor
performance at lower sequencing depth (20×) is likely to be
due to the minimum coverage threshold of 10 reads not being
met due to various biases in NGS data, viz., mappability bias (in
low complexity regions) and GC bias. A clear dependence of the
detection of longer INDELs on the read length is observed. It
may be noted in Figure 3 that INDELs of 10 bp are missed with
smaller read length (∼50 bp), but are detected by increasing
the read length to 100 bp. On further increasing the read
length (200 bp) we were able to detect INDELs of larger sizes
as well, viz., 15, 20, and 25 bp (results not shown). This is
because the number of reads aligning in the vicinity of a large
INDEL (≥10 bp) is considerably reduced and longer read
lengths can tolerate larger gaps in the alignment, thus improving
the performance. The performance of detecting heterozygous
INDELs in Figure 3B is observed to be poor compared to
that of homozygous INDELs, especially at 20× sequencing
coverage. We also observe dependence of prediction accuracy
on the base quality threshold. Contrary to the expectation, on
increasing the base quality cutoff value from 15 to 30, a dip
in the performance is observed, especially at lower sequencing
coverage (Supplementary Tables S5–S8). This is because a

higher threshold for base quality may result in fewer reads
supporting variant. These results suggest considering a higher
base quality score if the sequencing coverage is ≥ 40×.

Minimum coverage threshold
Accurate detection of SNVs and small INDELs is affected by
various parameters and briefly discussed below. The distribution
of reads is not uniform along the genome due to various reasons,
viz., PCR artifacts leading to GC content bias, mappability bias,
base quality, sequencing error, etc. As a consequence, read depth
is not uniform across all the positions in the genome. Hence one
needs to appropriately set the minimum coverage threshold, too
high values may miss out true positive calls while too low values
may increase the number of false positives. For data samples with
sequencing depth≥ 40×, a default minimum coverage threshold
of 10 is observed to result in high accuracy (Figures 2, 3), both
in the detection of SNVs and INDELs, irrespective of the size of
reads or INDELs. However, the performance is relatively poor
in the case of samples with sequencing depth 20×. In this case,
on decreasing the minimum coverage threshold to 5 (1/4th of
average sequencing depth), the performance is seen to improve,
especially for homozygous SNVs and short deletions (results not
shown).

Read length
It may be noted from Figures 2, 3 that the performance is
improved on using longer reads (100 bp) compared to 50 bp
reads for sequencing depth <60×, especially in the detection
of heterozygous SNVs and longer INDELs (≥5 bp). Large
heterozygous indels (≥10 bp) are not detected even at 60×
sequencing depth with 50 bp read lengths.

Base quality
Base quality score is defined by the Phred score is inversely
proportional to the probability of error in calling a base.
Intuitively we expect higher base score to result in reliable
predictions. However, we observe lower recall values on
increasing the base quality score (Supplementary Tables S3–S8).
This is because the number of reads available at a location are
reduced, and if the sequencing coverage is low, this may not pass
the minimum coverage threshold criteria required for variant
calling.

Because of this inter-dependency between base quality
score and minimum thresholds coverages one needs to set
these parameters judiciously based on the available sequencing
coverage of the data.

Comparison of SeqVItA With Other Tools
The performance of SeqVItA is compared with three popular
sequence variant detection tools, viz., BCFtools (Li, 2011),
VarScan2 (Koboldt et al., 2012), and GATK HaplotypeCaller
(McKenna et al., 2010) on simulated data. The default parameters
used in each of these four tools is summarized in Table 5.
Performance is evaluated in the detection of both homozygous
and heterozygous SNVs and INDELs (size ≤ 10 bp), at three
sequencing depths (20×, 40×, and 60×). Read length is 100 bp in
simulated experiments and base quality score is set to 15. Results
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FIGURE 3 | Performance of SeqVItA in detecting INDELs in simulated data shown. F-score values for predicting (A) homozygous (Homo) and (B) heterozygous (Het)

INDELs of various sizes: 1 bp (“diamond”), 2 bp (“square”), 5 bp (“triangle”) and 10 bp (“circle”) for two read lengths 50 bp (empty symbols) and 100 bp (filled

symbols). Minimum coverage threshold = 10 and Base quality ≥ 15.

are summarized in Figure 4 and in Supplementary Tables S9–
S14.

In Figures 4A–E, we observe that the overall performance
of SeqVItA is comparable to the other state-of-the-art tools in
the detection of homozygous SNVs. BCFtool performs best in
detecting heterozygous SNVs (at low coverage, 20×), while the
performance of SeqVItA is better in detection of INDELs. It may
be noted in Figures 4B–E that all the three tools failed to detect
large INDELs (homozygous and heterozygous), even at 60×
coverage. The reason SeqVItA is able to detect larger INDELs
is due to the recalibration of the mapping quality (equation 1)
that handle mappability bias in the pre-processing step. Without
pre-processing step, SeqVItA also fails to identify large INDELs.
In general, performance of all the tools is better in detecting
homozygous INDELs compared to heterozygous INDELs.

Computation Time
SeqVItA is computationally very efficient compared to VarScan2
and GATK due to parallel implementation of the variant calling

step using OpenMP. For a WES alignment file of size 14 GB
(coverage: ∼100×), SeqVItA took ∼40min to detect both SNVs
and INDELs and is about 3× faster than GATK (∼2 hrs), ∼2×
faster thanVarScan2 (∼ 1 h 15min) and is comparable to the time
taken by BCFtools (∼35min). For comparing the computational
efficiency, all the three tools are installed on a 64-bit Ubuntu
machine with an Intel i7-4700MQ @2.4GHz processor. The
minimum computational requirement for running SeqVItA is a
desktop with 4 GB RAM running at 1.6 GHz and 500 GB disk
space.

Cancer Data
A total of 26 Liver cancer patient samples and their matched
control samples (average age: 52 years, range: 27–86 years) are
downloaded from Sequence Read Archive database (Project ID:
SRP123031). It is paired-end data of read length 76 bp obtained
from targeted sequencing of 372 gene panel for Hepatocellular
carcinoma (HCC), a primary type (70% cases) of liver cancer.
The pre-processing of data is carried out using NGC QC
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TABLE 5 | Various parameters considered for performance evaluation of SeqVItA

on simulated data with three other tools.

SeqVItA BCFtools VarScan2 GATK

Mapping quality

bias correction

Recalibration

of mapping

quality:

Mq′ =
√

Int−Mq
Int

× Int

Mann–

Whitney

U-test

– Wilcoxon rank

sum test

Mapping quality

cut-off

20 20 20 –

Minimum

coverage cut-off

10 – 8 –

Base quality

cut-off

15 15 15 15

Germline p-value

cut-off

0.01 – 0.01 –

Strand bias Discard sites

with < 10%

or > 90%

strandedness

Mann–

Whitney

U-test

Discard sites

with < 10%

or > 90%

strandedness

Fisher exact

test

Toolkit and reads with quality scores <30 are removed. Due
to an error in the pre-processing step, two samples (patients
3 and 25) are discarded, leaving 24 HCC patient samples
for subsequent analysis. The pre-processed reads are then
aligned with the human reference genome (hg19 assembly)
using Bowtie2. Post-alignment processing is carried out using
Picard tools (http://broadinstitute.github.io/picard/) to identify
and mark PCR duplicates (which are then ignored in the variant
calling step). For each processed file, sequence variants are
identified using “somatic” module of the pipeline and analyzed
using the “annotate” module. Reads with mapping quality,
Mqread < 20 are discarded, mapping quality correction was
applied (using Mqcorr = 50 in eqn 1), and sites with minimum
coverage, RD_th (≥50) in both tumor and normal samples are
considered for variant calls.

Mutation Landscape of Sequent Variants in
Liver Cancer Patients
The variants detected by the Somatic module are labeled
germline, somatic, LOH and “Unknown” for the 24 paired
tumor-control samples. As expected, majority of the predicted
SNVs in the 24 patients are germline variants (∼90%), followed
by LOH (∼4.9%) and somatic (∼4.1%) variants, with an average
of 2007 high confident SNVs per tumor sample. Small INDELs
of size ranging from 2 to 27 bp are also identified in these tumor
samples with the number of insertions (97 per sample, 50.5%)
and deletions (95 per sample, 49.5%) nearly equal. On average,
182 high confident small INDELs are predicted per sample and
of these, like SNVs, majority of the INDELs are of germline
origin (∼85.5%), followed by LOH (∼8%) and somatic (∼5.5%)
(Supplementary Table S15).

Analysis of Somatic Sequence Variants
Since somatic sequence variants are most likely to be responsible
for tumorigenesis, these are filtered for further functional analysis

FIGURE 4 | Performance comparison of SeqVItA with BCFtools, VarScan2

and GATK on simulated data at three sequencing depths 20×, 40×, and 60×

in detecting homozygous (Homo) and heterozygous (Het) (A) SNVs, (B,C)

insertions (Ins), and (D–E) deletions (Del). Read length = 100 bp, and base

quality threshold ≥ 15.
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using the “splitVCF” function and their distribution in the genic
regions is identified (Supplementary Figure S6). It is observed
that a large fraction of the variants lie in the intronic regions
(59%) followed by promoter (18%), 3′ UTR (6%) and 5′ UTR
(2%) regions. Among the variants in the coding regions, most
common are missense variants (10%), followed by synonymous
(4%), nonsense (0.7%), frameshift (0.5%), and splice site (0.2%)
variants.

The waterfall plot in Figure 5 exhibits the mutational
landscape of genes associated with recurrent sequence variants
(identified in at least 15% of the patients). It is observed that the
tumor suppressor gene TP53 carries mutations in 13 out of 24
samples (54%) though the location and/or type of mutation vary
from patient-to-patient. For example, patient number 9, 18, and
22 exhibit nonsense mutation C>A, at locations chr17:7577046,
chr17:7579521, and chr17:7578188, respectively; patient number
1 and 2 exhibit frameshift mutations (G[AA/-], chr17:7578212
and C[A/-], chr17:7578231, respectively), while patients 5 and
26 have mutations in the promoter regions of TP53 gene (A>C,
chr17:7577407, G>A, chr17:7577427 in patient 5 and G>T,
chr17:7579619, A>G, chr17:7579825, in patient 26). In the
remaining patients, the variants are observed in the intronic
regions of TP53 gene.

We also observe other well-known HCC associated genes,
e.g., NCOR1 (38%), AXIN1 (21%), MDM2 (21%), CTNNB1
(21%),MTOR (17%),mutated in a significant number of patients.
Gene NCOR1 is known to exhibit strong tumor suppressor
activity, preventing tumor cell invasion, growth, and metastasis.
Genes TP53 and MDM2 participate in G2/M DNA damage
checkpoint of the cell cycle, while genes AXIN1 and CTNNB1
are involved in Wnt/β-catenin signaling pathway, and MTOR

mediates cell proliferation and differentiation through MAPK
signaling pathway. The potential role played by these pathways
in cancer is well-studied and aberrations in these candidate genes
are known to initiate liver tumorigenesis (Guichard et al., 2012;
Meng et al., 2014, p. 2; Satoh et al., 2000; Ou-Yang et al., 2018,
p. 1). Out of nine genes reported to be involved in HCC in
the peer-reviewed database, Atlas of Genetics and Cytogenetics
in Oncology and Hematology (Huret et al., 2013), seven have
been identified in few of these 24 HCC patients. These include
tumor suppressors TP53 (54%), AXIN1 (21%), SMAD2 (13%),
CDKN2A (13%), RB1 (8%), and oncogenes CTNNB1 (21%) and
CCND1 (8%).

Principal Component Analysis Based on
Mutated Genes
To explore if the 24 HCC patients share the same set of mutated
genes or they exhibit different mutational profile, we carried
out principal component analysis on these genes. The objective
is to identify groups of patients sharing common variants and
disease-causing pathways.

In the PCA plot in Figure 6, we observe that majority of
patients form a single group, while patient 19, 14, and 22 show
deviation from this group and patient 26 is a clear outlier.
Analysis of Patient 26 data resulted in a completely different
profile with a much larger set of variants compared to the rest
of the 23 patients. It had 787 sequence variants across 156 genes,
while the average number of variations observed in other patients
ranges from 29 to 126 variations. Accumulation of mutations is
a known somatic mutational signature in liver cancer (Letouzé
et al., 2017) and noting the age of patient 26 (86 yrs), it is not

FIGURE 5 | Mutational landscape of somatic sequence variants identified in 24 HCC patient samples (intronic and intergenic variants excluded). Each column

corresponds to each patient sample and each row represents a gene.
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surprising. Analysis of the remaining 23 patient samples clearly
also revealed the dependence of number of somatic mutations
as a function of age. On average, patients with age ≥ 55 years
exhibited ∼160 somatic mutations, while patients < 55 years
showed ∼57 mutations per patient. Patient 19 and patient 22
also showed relatively higher number of mutations, 124 and 126,
respectively (Patient 19: 56 yrs and Patient 22: 60 yrs). However,
the set of mutated genes is very different in the two cases. Patient
14 exhibited slightly larger number of variants (74) and had a
good overlap with that of Patient 22. This analysis indicates that
though all the patients are diagnosed with HCC, they exhibit
different genetic profiles, suggesting that same drug/dosage may
not be suitable to all the 24 patients. Thus, there clearly exists
a need for personalized screening of the genetic variants and
associated functional impact for accurate treatment. Based on
PCA, the 24 patients are clustered in four groups (G1: Patient
26, G2: Patient 19, G3: Patients 22 and 14, and G4: remaining 20
patients). We first discuss below the analysis of the larger group
of 20 patients to understand the role of common mutations in
HCC.

Recurrent Somatic Variants and Their Role
in Liver Cancer
To identify common somatic variants and associated genes
in group G4 patients, genes carrying mutations in at least
25% of the patient samples are considered. These common
set of mutated genes, summarized in Table 6, are probable
diagnostic and prognostic markers for HCC patients of
this group (complete listing of sequence variant hotspots is
given in Supplementary Table S16). These span exons, introns,
promoters, or 5′ and 3′ untranslated regions, and may directly
or indirectly contribute to liver tumorigenesis. It is observed that
not all patients carry the same mutation in a gene. For e.g., the
characteristic TP53 mutation in 7th exon (C>A, chr17:7577534,
R249S) is observed only in two patients, 7 and 12 (i.e., 20%
prevalence). Deletions, leading to frameshift (patients 1 and
2), and diverse substitutions in coding regions are observed
in remaining patients, while patient 5 is observed to carry
two intronic variations. The direct role played by these TP53
variants in HCC is still unknown. Similarly, location and
type of variations in FGFR1, FANCD2, and MIR1278 (35%),
JAK1 (30%), and NCOR1, NUP93, XPO1, SDHC, and TSC2
(25%) genes are observed to vary from patient-to-patient (see
Supplementary Table S16).

Based on the interactions extracted from STRING database
(Szklarczyk et al., 2017) between these mutated genes and
pathway enrichment, we observe that cell cycle (FDR: 0.007) and
PI3K-AKT (FDR: 0.002) pathways are overrepresented in this
group, as shown in Figure 7. Genes TP53, FGFR1, JAK1, and
TSC2 participate in PI3K/AKT pathway, an important pathway
involved in cell growth and proliferation, and activated in many
tumor types including HCC. It may be noted that the tumor
suppressor TP53 affects both the pathways. Dysregulation of cell
cycle plays a key role in promoting liver carcinogenesis through
evasion of growth suppressors (TP53 and NCOR1), sustaining
proliferative signaling (FGFR1, XPO1, and TSC2), chromosomal

FIGURE 6 | Clustering of HCC patients based on somatically mutated genes.

instability (FANCD2 and NUP93), invasiveness, survival and
metastasis (Bisteau et al., 2014). Out of 20 patients, 14 show
diverse mutations (coding or intronic) in genes that directly
participate in PI3K/AKT pathway.

Thus, we see that though the 20 patients of group G4 carry
different SVs, these affect mainly cell cycle and PI3K/AKT
pathways. Our analysis also revealed some novel variants, not
yet associated with HCC; G>A, chr1:193104827 (5′ UTR) in
MIR1278 (7 patients), G[GAAAATC/-], chr2:61713209 (intron)
in XPO1 (5 patients); C>G, chr1:161332346 (3′ UTR) in
SDHC (4 patients), C>T, chr8:38282294 (intron), and C>G,
chr8:38272542 (intron) in FGFR1 (4 patients each). These may
be probable prognostic markers and their role in HCC may be
further investigated on larger sample data.

Comparative Analysis of Patient-Specific
Sequence Variants
We next show functional analysis of sequence variants identified
using SeqVItA in patient 9 (a representative of large cluster)
and patients 19 and 22 (exhibiting variants differing from that
of large cluster) i.e., a comparative analysis of the member of
the three groups G2, G3, and G4. In Table 7, the variant genes
and their functional impact on pathways and drug response
are summarized for patients 9, 19, and 22. The first striking
difference observed is the number of genes carrying variants.
It is much lower in patient 9 (39 yrs) compared to patients 19
(56 yrs) and 22 (60 yrs), probably because of the difference in
their age. Further, they share very few common mutants. Below
we discuss the analysis of “High” and “Medium” priority genes
to understand pathways and processes affected that may lead
to tumorigenesis in the three groups (complete annotations in
Supplementary Table 2.XLSX).

Patient-Specific Sequence Variants
We observe different set of oncogenes and tumor suppressor
genes mutated in the three patients. Different signatures of
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TABLE 6 | Summary of recurrent genes exhibiting somatic mutations in at least 25% of liver cancer patients.

Gene No. of patients with SVs Patient IDs Total No. of SV hotspots Total SNVs Total INDELs

TP53 10 1,2,5,6,7,9,10,12,18,24 10 8 2

FGFR1 7 1,7,11,13,21,23,24 5 5 0

FANCD2 7 2,7,8,9,15,20,21 5 4 1

MIR1278 7 1,6,7,9,10,17,21 7 7 0

JAK1 6 2,5,8,9,11,23 5 5 0

NCOR1 5 1,2,16,23,24 9 9 0

NUP93 5 2,6,16,23,24 4 2 2

XPO1 5 2,5,9,11,17 3 2 1

SDHC 5 7,9,12,18,20 3 3 0

TSC2 5 7,11,13,18,23 4 4 0

somatic mutations indicate probable differences in the processes
underlying the initiation, growth and survival of tumorigenesis
in these patients.

From Table 7, we observe that in patient 9, mutations in
oncogene mTOR (nonsense mutation) and tumor suppressors
TP53 (nonsense mutation) and DNMT1 (2 bp intronic deletion)
are likely candidates for tumorigenesis. Genes TP53 and mTOR
participate in PI3K/AKT pathway involved in cell growth and
proliferation, and are known to be activated in many tumor types
including HCC. Mechanistic target of rapamycin (MTOR) is a
highly conserved serine/threonine protein kinase that plays a
crucial role in cell proliferation, differentiation, metabolism, and
aging via two structurally and functionally distinct multi-protein
complexes: mTORC1 and mTORC2. In earlier studies mTOR
pathway has been shown to be upregulated in ∼50% liver cancer
patients and associated with deregulation of PTEN, IGF, and
EGF pathways, key players in HCC (Matter et al., 2014). Tumor
suppressor TP53 participates in G2/M DNA damage checkpoint
and its activity is arrested due to a nonsense mutation in patient
9. This affects the p53 signaling pathway which responds to DNA
damage by arresting the cell cycle and facilitates DNA repair by
transactivating DNA repair genes. DNAmethylation is known to
play an important role in epigenetic gene regulation and aberrant
DNA methylation patterns are commonly found in tumors.
The other tumor suppressor gene, DNA methyltransferase 1
(DNMT1) is shown to hypermethylate promoter region of tumor
suppressor, PTEN, resulting in decreased activity of the gene
in a study on rat model (Bian et al., 2012). Decreased activity
of PTEN leads to triggering of PI3K/AKT/mTOR pathway and
uncontrolled growth and proliferation of tumor cells in the liver
(Golob-Schwarzl et al., 2017). The 2 bp deletion observed in
the intronic region of DNMT1 gene in patient 9, is reported
in COSMIC to be participating in adenocarcinoma, though
indicated to be benign in ClinVar. Our results suggest that
the effect of this variant in HCC may be further investigated.
Thus, we observe that the major pathway affected in patient 9 is
PI3K/AKT/mTOR signaling pathway.

The mutational profile of Patient 19 includes
four oncogenes CTNNB1 (missense/intronic), BCR
(missense/synonymous/intronic), CARD11 (missense), ERG
(missense) and four tumor suppressor genes NCOR1 (2
missense), BRCA2 (intronic), KMT2C (intronic), ARID2

(nonsense). The missense mutation in CTNNB1 observed in
Patient 19 is well-characterized in several cancers, includingHCC
and affects phosphorylation of β-catenin protein, preventing
its degradation. Accumulation of excessive β-catenin in cells
pushes the protein into the nucleus initiating uncontrolled
growth and differentiation of tumor cells via Wnt signaling
pathway. Oncogene BCR is involved in activating ERK pathway,
a key kinase pathway that maintains cell cycle, and aberrations
in the gene are associated with proliferation, differentiation,
and inflammation. Protein encoded by CARD11 interacts
with BCL10, acts as a positive regulator of cell apoptosis and
activates the NF-κB pathway. The NF-κB protein complex acts as
tumor promoter in inflammation-associated cancers, including
HCC. Oncogene ERG and tumor suppressor gene NCOR1 are
important transcriptional regulators. While ERG participates in
embryonic development, cell proliferation, differentiation and
apoptosis, NCOR1 interacts with nuclear receptors and other
transcriptional factors. NCOR1 is shown to exhibit strong tumor
suppressor activity, preventing tumor cell invasion, growth, and
metastasis in mouse models (Fozzatti et al., 2013). The mRNA
expression levels of NCOR1 are identified to be decreased in
human liver cancer, either due to mutations or deletion of
the gene (Martínez-Iglesias et al., 2016). Tumor suppressor
BRCA2 is involved in DNA damage repair, while KMT2C and
ARID2 (frequently mutated in HCC) participate in chromatin
modifications. Gene KMT2C encodes for an enzyme histone
methyltransferase that methylate lysine 4 of histone H3 and is
involved in epigenetic transcriptional activation. Gene ARID2
is also involved in transcriptional activation and repression and
is required for the stability of SWI/SNF chromatin remodeling
complex SWI/SNF-B. Mutations in ARID2 have been directly
associated with hepatocellular carcinogenesis. Recently, histone
deacetylase inhibitors that affect the epigenetic pathway are used
for therapeutics in HCC. Thus, our analysis of mutational profile
reveals disruption of NF-κB, Wnt, and ERK signaling pathways,
cell cycle, epigenetic and chromatin modifications, responsible
for HCC initiation and progression in patient 19.

Patient 22 exhibits mutations in two oncogenes, CDKN2A
and BCR, and eight tumor suppressor genes, viz., SDHC, ATR,
ESR1, ATM, TP53, NCOR1, NF1, KEAP1. A detailed analysis of
the variants in these genes reveals that c-MET signaling pathway
is affected via a synonymous SNV in Hepatocyte growth factor
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FIGURE 7 | Interaction between recurrently mutated genes from STRING

database. Pathway enrichment analysis of these mutated genes indicate that

cell cycle (shown in red) and PI3K/AKT (shown in blue) pathways are affected.

(HGF), leading to initiation, proliferation, and survival of hepatic
tumor cells. HGF on binding with c-MET results in a number
of molecular events leading to the activation of MAPK (cell
proliferation), PI3K/AKT/mTOR (cell survival) and Rac1-Cdc42
(cell mobility and cytoskeletal changes) signaling pathways
(Goyal et al., 2013). A missense mutation in tumor suppressor,
Kelch-like ECH associated protein 1 (KEAP1) is also identified in
patient 22, which affects KEAP1-NRF2 pathway, a key regulator
to cytoprotective responses, oxidative, and electrophilic stress.
Mutations in KEAP1 are identified to disrupt the KEAP1-
NRF2 regulatory system by increasing NRF2 levels and thereby
affecting cancer cell proliferation and survival (Kansanen et al.,
2013). In addition to oncogene CDKN2A (missense), tumor
suppressors TP53 (nonsense), ATM (splice-site variant) and
ATR (missense) participate in disruption of the cell cycle.
While TP53 participates in G2/M DNA damage checkpoint,
CDKN2A participates in G1/S DNA damage checkpoint of the
cell cycle. Aberration in these genes leads to uncontrolled cell
proliferation, increased survival, and genomic stability. Genes
ATR and ATM are involved in DNA damage response through
phosphorylation of cell cycle checkpoint kinases, CHK1, and
CHK2 genes, respectively, in p53 signaling pathway. These
mutations clearly indicate the disruption of cell cycle pathway
in patient 22 and numerous signaling pathways, c-MET, MAPK,
PI3K/AKT/mTOR, and p53.

The annotations for predicted variants using SeqVItA in
patient 19 (114 somatic SNVs and 10 somatic INDELs) are
compared with two annotation tools, ANNOVAR and CADD
(which also prioritizes the variants). The output from variant
calling step in SeqVItA was given as input to ANNOVAR (after

modifying it in desired format). Since a number of resources
integrated in ANNOVAR and SeqVItA are common, DNA
conservation scores obtained from MutationTaster, LRT, and
PhyloP, protein conservation scores from SIFT and PolyPhen2,
disease-association relationships from ClinVar, OMIM, and
COSMIC, and identification of known variants from dbSNP,
identified by the two tools were the same. In Patient 19, 25
variants reported to span promoter regions in SeqVItA were
not annotated in ANNOVAR, while allelic frequencies across
various ethnic groups (1000 Genome Project and ExAc) were
not provided by SeqVItA. All other gene-specific variants had
same annotations from the two tools. Major difference between
the annotations from SeqVItA and ANNOVAR is the variant-
gene-drug associations from PharmGKB in SeqVItA. This is a
very important feature and would assist the clinician in designing
individulized therapy based on the effect of variant on the drug
(efficacy, toxicity, and metabolism). Also, ANNOVAR does not
prioritize the variants. For this we compared the prioritized
variant list of patient 19 from SeqVItA with that provided by
CADD. We observe that 9 out of 10 top-CADD scored variants
were identified as High or Medium priority variants by SeqVItA.
These results clearly indicate the reliability of SeqVItA with other
state-of-the-art tools.

Mutation Drug-Response Associations
Thiopurine S-methyltransferase (TPMT) enzyme catalyzes
S-methylation of aromatic and heterocyclic sulfhydryl
compounds present in immunosuppressants (e.g., azathioprine)
and antineoplastic drugs (e.g., 6-mercaptopurine and 6-
thiogauanine). It is known to exhibit reduced enzymatic activity
in patients with specific genetic variations in 5th, 7th, and
10th exons, and is an important pharmacogenetics biomarker
(Asadov et al., 2017). Patient 9 carries a synonymous mutation
(G>A, chr6:18139214) in 6th exon for which no effect on TPMT
enzyme activity is reported, suggesting the suitability of these
drugs in this case. Glutathione S-transferase A1 (GSTA1) is
involved in detoxification of toxic molecules such as oxidative
stress products, prostaglandins, chemical carcinogens, and
therapeutic drugs, and mutation in this gene is associated with
accumulation of toxic molecules with high risk of liver cancer
(Akhdar et al., 2016). In PharmGKB four sets of drugs (or
combination of drugs) associated with this SNV are reported,
viz., (i) doxorubicin, (ii) cyclophosphamide, doxorubicin,
prednisone, rituximab, vincristine, (iii) busulfan, and (iv)
cisplatin and cyclophosphamide. For the first two categories,
efficacy of the drug(s) is reported to be affected due to the
variant in GSTA1 (Rossi et al., 2009). Additionally, elimination
(metabolism) of drug busulfan, and toxicity or adverse drug
response (as anemia) of cisplatin and cyclophosphamide are
lower in the variant compared to wildtype GSTA1 (Khrunin et al.,
2012; ten Brink et al., 2013). Of these, doxorubicin and cisplatin
are commonly used therapeutics for HCC (Li et al., 2016), and
may be given to patient 9 with appropriate dosage. Cytochrome
P45 2B6 (CYP2B6) is a monooxygenase that catalyzes many
reactions involved in drug metabolism and specifically known
to metabolize a number of xenobiotics including antineoplastic
drugs such as cyclophosphamide and ifosfamide, antidepressant
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TABLE 7 | Summary of sequence variants and their functional role identified in HCC patient 9 (39 yr old, male), patient 19 (56 yr old, male), and patient 22 (60 yr old, male).

Patient Number 9 19 22

Number of mutated genes 44 77 69

High/Medium priority genes TP53, FANCD2, SDHC, MTOR,

TPMT, DNMT1, GSTA1, CYP2B6 (8)

CTNNB1, MSH1, FBXO11, MSH6,

MAP3K1, KMT2C, BRCA2, NCOR1, BCR,

ARID2, CARD11, ERG, GRM3 (13)

SDHC, ATR, FCGR2B, ESR1, HGF,

CDKN2A, ATM, TSHR, TP53, NCOR1,

NF1, KEAP1, BCR, MSH2 (14)

Known oncogenes MTOR CTNNB1, BCR, CARD11, ERG CDKN2A, BCR

Known tumor suppressors TP53, DNMT1 NCOR1, BRCA2, KMT2C, ARID2 SDHC, ATR, ESR1, ATM, TP53, NCOR1,

NF1, KEAP1

Key pathways affected TP53: cell cycle

MTOR: Upregulation frequently

observed in HCC, MTOR –| PTEN,

IGF and EGF pathways

DNMT1: Methylates PTEN promoter

–| PTEN activation of

PI3K/AKT/mTOR pathway

CTNNB1: Wnt pathway → proliferation

and survival

FBXO11: Tumor initiation & progression

MSH1 & MSH6: DNA mismatch repair

MAP3K1: JNK & Erk pathway →

proliferation

KMT2C, ARID2: Chromatin modifications

MAP3K1, MSH6, BRCA2, NCOR1,

CTNNB1, BCR: Cell cycle

GRM3: GPCR signaling pathway →

proliferation

KEAP1: Oxidative stress → proliferation

and survival in HCC

HGF: Overexpressed HGF binds with

c-Met proliferation & survival in HCC

through c-MET signaling pathway

CDKN2A: G1/S cell cycle

ESR1: Estrogen signaling pathway →

proliferation

TP53, CDKN2A, ATR, ATM: p53 signaling

pathway, replicative senescence, cell cycle

Variant-Drug associations

(PharmGKB)

Mutations in GSTA1 & CYP2B6 affect

enzymatic activity of drugs → lower

efficacy

CTNNB1(A>G): Ethnic-specific, wild-type

(AA) associated with better response to

CTD therapy, not significant in

heterozygous condition

ESR1: Increased risk of azoospermia in

childhood cancer survivors when treated

with alkylating agents and cisplatin

drugs such as bupropion and sertraline. A missense SNV
observed in exonic region of CYP2B6 gene (rs2279343) in
patient 9 has a high log-ratio test (LRT) score (∼0.99) indicating
it is highly deleterious. In ClinVar and OMIM, the mutation is
associated with efavirenz drug response and lower doses of the
drug are advised in Japanese HIV patients with homozygous
SNV to reduce drug toxicity (Tsuchiya et al., 2004). Thus, we
show that a detailed analysis of the mutation profile of a patient
can help in providing personalized therapy.

In patient 19, an intronic variant in CTNNB1 (rs4135385)
is associated with drugs lenalidomide, cyclophosphamide,
thalidomide, and dexamethasone (CTD) (efficacy,
toxicity/ADR), with an inhibitory effect on tumor cell
proliferation and inducing apoptosis in multiple myeloma
(level 3 confidence). The distribution of the genotype frequency
is population-specific, e.g., homozygous-reference (AA) is
widely observed in healthy individuals of Poland and Saudi
Arabia, while homozygous-variant (GG) is dominant in Chinese
population. Efficacy of these drugs is high when the genotype
is wild-type (AA) and no statistically significant response is
observed for heterozygous condition (AG). However, patients
with wild-type allele develop neutropenia as a side effect of the
lenalidomide therapy (Butrym et al., 2015).

Also, intronic variant (rs2207396) in ESR1 observed in patient
22 is known to have an association with alkylating agents
and cisplatin. In a study (Romerius et al., 2011), the effect of
this variant in ESR1 analyzed in cancer survivors showed an
increased risk of azoospermia in childhood cancer survivors
when treated with alkylating agents and cisplatin, specifically
with heterozygous (GA) genotype compared to homozygous
(GG/AA) condition.

Though the mutations and corresponding drug responses in
patient 9 (TPMT, GSTA1, and CPY2B6), patient 19 (CTNNB1)

and patient 22 (ESR1) are not directly shown in HCC, these
associations indicate that along with factors such as age, organ
functions and tumor biology, genetic constitution of the patients
may also affect the efficacy of the drugs used in treatment
(20 to 95% variability). This clearly indicates the need for
screening the patient genotype prior to devising the treatment
regime.

Comparison With VarScan2 and Mutect2
To compare the performance of SeqVItA on real data, the aligned
BAM files of patient 19 was considered as input to Mutect2 and
the corresponding mpileup format file as input to SeqVItA and
VarScan2.

From Figure 8A, we observe a clear variation in the total
number of somatic variants predicted and their overlap between
the three tools: VarScan2 (52, 15), SeqVItA (114, 10), and
Mutect2 (111, 12), for SNVs and INDELs respectively. A similar
observation was made by Krøigård et al. (2016) in performance
evaluation of nine variant callers for the detection of SNVs and
small INDELs. From Figure 8B we observe higher agreement
between VarScan2 and SeqVItA results, probably because of the
same heuristic approach with hard cut-off thresholds used in
both the cases. The difference between their prediction outputs
is probably because of strandedness bias considered in SeqVItA
(but not in VarScan2). The mappability correction was not
applied in Mutect2 which may probably be one of the reasons
for its poor overlap with the other two tools, apart from the
difference in the approach. The variants detected by a single tool
are likely to contain many false positives and hence should be
cross-validated either by predictions form other tools or based
on annotations.

Variants predicted by the three tools spanning protein-coding
genes are identified: SeqVItA (85 genes), Mutect2 (83 genes),
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FIGURE 8 | (A) Total number of somatic variants called and (B) Pair-wise agreement (0–1 scores) between SNVs and INDELs predicted by SeqVItA, Mutect2, and

VarScan2.

and VarScan2 (51 genes). These genic-variants are further filtered
based on the functional relevance of the variants/genes in
liver cancer. We observe 10 genes commonly identified by the
three tools. These include missense mutations in CTNNB1,
CARD11, and GRM3 genes and nonsense mutation in ARID2
gene at the same loci, significance of which has been discussed
in the previous section in Table 7. Additionally, SeqVItA
and VarScan2 share common mutations in KMT2C (intron),
NCOR1 (missense), and BCR (missense and synonymous)
genes, but these are missed by Mutect2. VarScan2 did not
predict any variant that has a known direct effect on the drug,
while, Mutect2 identified a missense mutation (rs1801394) in
gene MTRR that is associated with drug methotrexate. The
heterozygous condition (identified in Patient 19) of this mutation
is associated with higher levels of drug toxicity in childhood
acute lymphoblastic leukemia and lymphoma (Huang et al.,
2008). All the above discussed variants had scaled-score > 20
in the CADD annotation and prioritization tool, indicating their
deleteriousness.

CONCLUSION

Precision medicine is an emerging approach that considers
individual genetic variability to explain differences in disease
susceptibility, progression, and reaction to drugs at the
population level. For disease prognosis, analysis of multiple
genes quickly, and sensitively from small sample quantities
is desirable, which is now possible with the advent of Next
Generation Sequencing (NGS) techniques. However, to achieve
this, there is a need to decode large genetic data more rapidly
and accurately. Single nucleotide variants (SNVs) and small
insertions and deletions (INDELs) are the most prevalent
form of genetic variants and have been shown to play a
potential role in the predisposition of disease and contribute
to variable drug response in individual patients. In this study
we show the efficacy of our tool SeqVItA in detection and
functional analysis of SNVs and small INDELs in NGS data.
Performance evaluations of SeqVItA on simulated data suggest

high sequencing depth (≥40×) and larger read length (≥100
bp) for reliable prediction of variants. Compared to other
popular methods for variant detection, SeqVItA is able to
accurately detect larger INDELs (5 bp) because of mapping
quality recalibration of reads in the pre-processing step. In the
analysis of 24 liver cancer patients, importance of annotations
extracted from various resources to prioritize the variants is
discussed. These are confirmed by screening the literature for
their role in liver cancer. Detailed comparative analysis of
three patient samples is carried out to show the applicability
of the proposed tool in personalized therapeutics. In the
analysis of cancer data, one needs to take care of purity,
ploidy, and heterogeneity of tumor samples which may affect
the prediction accuracy of sequence variants. Further, presence
of larger structural variants such as copy number variations,
inversions and translocations should be taken into account as
these may affect the detection of small sequence variants. One
major limitation in SeqVItA’s pipeline is non-availability of
population-specific allele frequencies (e.g., 1000 Genome project)
which can help in screening for rare variants. Currently in
SeqVItA prioritization of predicted variants is based on a simple
cumulative scoring scheme. There is scope for improving variant
filtering using statistical or network-based approaches. SeqVItA
is actively developing and we hope to expand the features of the
annotation module to even include annotations for variants from
non-genic regions.
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