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Abstract

Coronavirus disease 2019 (COVID-19) pandemic is an unprecedented global public
health challenge. In the United States (US), state governments have implemented
various non-pharmaceutical interventions (NPIs), such as physical distance closure
(lockdown), stay-at-home order, mandatory facial mask in public in response to the
rapid spread of COVID-19. To evaluate the effectiveness of these NPIs, we propose a
nested case-control design with propensity score weighting under the quasi-experiment
framework to estimate the average intervention effect on disease transmission across
states. We further develop a method to test for factors that moderate intervention
effect to assist precision public health intervention. Our method takes account of the
underlying dynamics of disease transmission and balance state-level pre-intervention
characteristics. We prove that our estimator provides causal intervention effect under
assumptions. We apply this method to analyze US COVID-19 incidence cases to esti-
mate the effects of six interventions. We show that lockdown has the largest effect on
reducing transmission and reopening bars significantly increase transmission. States
with a higher percentage of non-white population are at greater risk of increased R
associated with reopening bars.

Keywords: COVID-19, Difference-in-difference, Heterogeneity of treatment effect (HTE),
Infectious disease modeling, Non-pharmaceutical interventions, Quasi-experiments

1 Introduction

Coronavirus disease 2019 (COVID-19) pandemic is an unprecedented global health crisis that

has brought tremendous challenges to humanity. Countries around the world have introduced
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mitigation measures and non-pharmaceutical interventions (NPIs) to respond to the crisis
before vaccines are widely available. Within the United States (US), there is tremendous
heterogeneity in terms of when mitigation strategies were implemented and lifted across
states and a varying-degree of combinations of containment, social distancing, and lockdown
(i.e., physical distance closures including closure of schools and businesses). Decisions for
implementing these strategies partially rely on essential statistics and epidemiological models
that characterize the course of COVID-19 outbreak. However, despite numerous disease
forecast models proposed in literature (Ray et al. 2020)), there is a lack of methods to
evaluate intervention effects that are robust and generalizable to accurately account for the
heterogeneity between populations. There is no study on precision NPIs that are tailored to
states and high risk populations susceptible to COVID-19 infection. Thus, it is imminent to
study average treatment effect and heterogeneity of treatment effect (HTE) to inform health
policy on COVID-19 responses.

One essential component of evaluating an NPI is to identify a proper outcome measure.
During COVID-19 pandemic, daily cases and deaths are reported in each state in the US.
However, it is well known that there are a large number of pre-symptomatic cases accounting
for about 40% of transmissions (CDC; Oran and Topol, |2020)) and there has been a shortage
of accurate polymerase chain reaction (PCR) tests especially during the early phase of the
pandemic. In addition to lagged reports, the observed cases do not fully reflect how the
epidemic evolves in real time, so simply using reported cases or deaths as outcomes may
lead to suboptimal decisions. In contrast, mechanistic-based epidemiological models can es-
timate the true underlying dynamics of COVID-19 epidemic and provide the time-varying
effective reproduction number (R;) as a outcome measure. In particular, our earlier work
(Wang et al 2020) proposed to combine nonparametric statistical curve fitting with infec-
tious disease epidemiological models of the transmission dynamics. This model accounts for
pre-symptomatic transmission of COVID-19 and provides estimates of infection rates and

reproduction numbers. These quantities, when modeled as time-varying, can effectively cap-



ture the underlying dynamics that govern the disease transmission, and are the appropriate
measures that should be targeted by an intervention. For example, a reproduction number
below one indicates that the disease epidemic is under control. Thus, we use time-varying
reproduction number, denoted by R;, as the outcome measure of the intervention effect.

To estimate intervention effects on COVID-19, we consider methods that use natural ex-
periment designs to allow drawing causal inference under assumptions. Since different states
implemented interventions at different time points, the effects of mitigation strategies can
be treated as quasi-experiments where subjects receive distinct interventions before or after
the initiation of the intervention. The longitudinal pre-post intervention designs including
regression-discontinuity design (Hahn et al., [2001)) and difference in difference (DID) regres-
sions are frequently used in practice to analyze quasi-experiments data (Wing et al., 2018}
Leatherdale) 2019). Regression-discontinuity design estimates intervention effects at the lo-
cal point at which the probability of implementing the intervention changes discontinuously.
DID estimates the intervention effect by examining the interaction term between time and
group in a regression model. It allows valid inference assuming that outcome trends are par-
allel in treated and untreated group and local randomization holds (i.e., whether a subject
falls immediately before or after the initiation date of an intervention may be considered
random, and thus the “intervention assignment” may be considered to be random). When
the first assumption does not hold, synthetic control (Abadie et all 2010) is proposed to
weight observations so that pre-intervention average effects are similar between groups.

Several recent works have investigated the intervention effects of COVID-19 mitigation
strategies. Process-based infectious disease models are used to simulate counterfactual out-
comes under different manipulations of model parameters and assumptions on the interven-
tion effects (Ferguson et al 2020; [Pei et al.; 2020). These models may be useful to simulate
disease outcomes under hypothetical scenarios of interventions, but do not estimate inter-
vention effects based on observed data. |Auger et al.| (2020)) and Rader et al. (2021) evaluated

the associations between the interventions and outcomes (i.e., cases, deaths, and R;) by re-



gression models. Davies et al. (2020) and |Flaxman et al. (2020) assessed the intervention
effects by modelling the basic reproduction number Ry or R; as intervention dependent.
These approaches included state-level characteristics as covariates in the model, but did not
investigate the causal effects. |Cho| (2020) considered synthetic control and DID approach
by fitting linear regression with reported cases and deaths as outcomes, but did not take
account of the dynamic feature of the disease transmission.

In this paper, we propose a novel method to assess the effect of NPIs using the reported
daily cases from each state in US. Compared to existing literature, our work has several new
aspects as follows. First, since COVID-19 outbreak may occur at different times in each state,
calendar time may not be a good measure of the stage of epidemic. To create a meaningful
time horizon that reflects each state’s epidemic course when comparing intervention effects,
we align states by transforming calendar time to time since the first reported case. Second,
we use a nested case-control design (e.g., treating the implementation of an intervention
as an event) (Ernster] 1994)) and propensity score weighting to estimate intervention effect.
Specifically, for each state that has implemented an intervention at a given time point,
we define a set of control states as those which have not yet implemented the intervention.
Therefore, a state that implements a policy at a later time can serve as control for other states
that have acted earlier. This design would allow observations from different time periods in
the same state to serve in both treated and untreated groups, so that the longitudinal data
from 50 states can be efficiently used. Third, to balance treated and untreated groups, we
construct propensity scores using pre-intervention characteristics including state-level social
demographic variables (e.g., social vulnerability index (SVI), state’s average age and race
distribution) as well as time-varying characteristics of the epidemic (e.g., pre-intervention
case rate, hospitalization, R;). We prove that our estimator yields the causal effect of an
intervention under assumptions. Lastly, we further estimate heterogeneity of treatment
effect (HTE) using estimation equations that include important hypothesized moderators.

The developed method is applied to analyze US COVID-19 data to estimate the effects of six



NPIs. We show that the lockdown during spring of 2020 had the largest effect on reducing

R, and reopening bars led to significant increase of disease transmission.

2 Method for Evaluating Intervention Strategies

2.1 Outcome measure for estimating NPI effects

To estimate the time-sensitive infection rate or reproduction number as an outcome for as-
sessing NPIs, we adopt a previously developed method, survival-convolution model (Wang
et al., 2020)), over days since the reported first case. This model is inspired by the epidemi-
ological Susceptible-Exposed-Infective-Recovered (SEIR) model, but has fewer assumptions
and model parameters, and demonstrate adequate prediction performance among an ensem-
ble of models in the CDC forecast task (https://www.cdc.gov/coronavirus/2019-ncov/
covid-data/forecasting-us.html).

To be specific, let N;(t) be the number of individuals in the ith state who are newly
infected by COVID-19 at time t. Since we are interested in the overall population-level
disease transmission epidemiology, we assume that the virus transmits from one individual
to another at the same rate at a given time ¢. In this population, the duration of an individual
remaining infectious in the epidemic is from a homogeneous distribution at any calendar time
t (in days). Let t; denote the time when individual j in this population is infected (t; = oo
if never infected), and let G; be the duration of this individual remaining infectious to any
other person and staying in the transmission chain. Since the total number of individuals
who are newly infected at time (t —m) is N;(t — m), the number of individuals who remain
infectious m days later (i.e., at time t) is N;(t —m)S(m), where S(m) denotes the proportion
of persons remaining infectious after m days of being infected, or equivalently, the survival

probability at day m for GG;. Thus, at time ¢, the total number of individuals who can infect
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others is

Mi(t) =) Ni(t —m)S(m).

m=0
On the other hand, right after day ¢, some individuals will no longer be in the transmission
chain due to testing positive and quarantine or out of infectious period (i.e., duration G; =

(t —t;)), and the total number of these individuals denoted by W;(t) is

Wit)= > I(t; <t.Gi=t—t;)=>_ > I(G; =m),
j:7 in state i m=0 j: j is infected at (¢t —m)
or equivalently
Wi(t) =Y Ni(t —m)[S(m) = S(m + 1)]. (1)

m=0
Therefore, M;(t) — W;(t) is the number of individuals who can still infect others after day ¢.
Assuming the infection rate at ¢ to be a;(t), then at day (¢+ 1) the number of newly infected
patients is

az‘(t)[Mi(t) - W/i(t)]’

which yields
Ni(t+1) = a;(t) > Ni(t — m)S(m + 1). (2)

m=0

Equation (2) gives a convolution update for the new daily cases using the past days’
number of cases. This equation considers three important quantities to characterize COVID-
19 transmission: the initial date, tq, of the first (likely undetected) case in the epidemic, the
survival function of time to out of transmission, S(m), and the infection rate over calendar
time, a;(t). Wang et al. (2020) estimated a;(t) as a piece-wise linear function with knots
placed at intervention dates and every 2-3 weeks, and approximated the survival function
S(m) based on previous literature (Li et al., 2020)). Similarly, we computed a;(t) as piece-
wise linear function, placing knots at the state-specific intervention dates and every 2 weeks

between interventions and modelled S(m) as an exponential distribution. To estimate both



to and a;(t), Wang et al.| (2020) proposed to minimize a squared loss between the square-root
transformed reported daily new cases and predicted new cases from models (1) and (2).
Note that a;(t) is time-varying because the infection rate depends on how many close
contacts one infected individual may have at day ¢, which is affected by NPIs (e.g., stay-at-
home order, lockdown) and saturation level of the infection in the whole population. With
the number of new infections N;(t) estimated from survival-convolution model in (2), the

effective reproduction number (Cori et al., [2013) is defined as

Ni(t)

Ri - %) )
' Zk:[) wi Ni(t — k)

(3)

which is the number of secondary infections caused by a primary infected individual in a
population at time ¢ while accounting for the entire incubation period of the primary case.
Thus, R; measures temporal changes of the disease transmission. Here, wy, is the probability
mass function of the distribution of serial intervals for SARS-CoV-2 (a Gamma distribution),

which is obtained from |Nishiura et al.| (2020) and Scire et al.| (2020).

2.2 Average intervention effect (ATE) and assumptions

For the ease of presentation, we focus on a particular intervention (lockdown, for instance)
in this section. Our goal is to estimate the overall average effect of the intervention across
states. To define the causal estimand, we introduce the following notations to define a time-
specific intervention effect. For any time period A > 0 such that the probability of two
states implementing the intervention within A days is zero, we let Yi(l)(t + A;t) denote the
potential change of the reproduction number between ¢ and (¢t + A), had the intervention
been applied at time ¢ and had there been no other interventions between time ¢ and ¢t + A.

Let Yi(o) (t + A;t) be the same potential outcome when there was no intervention at time ¢.



Correspondingly, the time-specific intervention effect is defined as
Y(A 1) = BVt + Ast) — VOt + Ase)).

In other words, we consider a hypothetical scenario where at time ¢, each state imposes the
intervention and the other scenario where there is no such intervention at ¢ and before. Then
(A, t) is the difference between the change of the reproduction number A days after time ¢.
A negative value of y(A, t) implies that the intervention at time ¢ can slow down the spread
of the virus. However, since very few states impose the intervention on the same day since
disease outbreak, estimating v(A,t) for each ¢ is not feasible. Instead, we define an average

intervention effect (ATE) as the average of (A, t) over all possible intervention times, i.e.,

A(A) = / (A, )dFr (2),

where Fr(-) is the distribution of the intervention time 7. Hence, v(A) can be viewed as
an overall evaluation of the intervention effect over all states. We are interested to estimate
~v(A) using empirical data.

For each state i, we set time zero to be its first reported case and let Y;(t + A;t) be the
change of reproduction number between (¢ + A) and t (i.e., Riy+a — Rit), where the repro-
duction numbers are estimated as Section 2.1} Let X; be the state-specific characteristics
including a constant of one. Let T; denote the intervention time and let T; = oo if the state
has never implemented this intervention. Let Fp(t) denote the distribution of 7, assumed
to have a support on 7. To estimate y(A) from observed data, we require the following
assumptions:

(a) Suppose no other intervention occurs between ¢ and ¢t + A. We assume when T; =t (i.e.,
there is an intervention at t), Y;(l)(t + At) =Yi(t+ Ast).
(b) Suppose no other intervention occurs between ¢ and ¢+ A and the intervention of interest

has not been imposed before ¢, we assume Y;(o) (t+ At) =Y(t + Ajt).



(c) Assume no unobserved confounders: conditional on 7; > ¢, T; = t is independent of
Y;(a)(t + A;jt),a = 0,1 given X; and H,(t), where H;(t) denotes the observed epidemic his-
tory by time t.

Assumptions (a) and (b) are equivalent to the consistency assumption in causal inference.
Both (a) and (b) also imply that there are no delayed effects from any other previous inter-
ventions prior to time ¢. This is plausible since the interventions do not occur frequently and
the effects can decline rapidly, as seen by multiple re-surges in this pandemic. Furthermore,
even though the previous intervention may affect the infection rate at time t, since the po-
tential outcome of interest is the change of the infection rate or reproduction number since
time ¢, the effect on this change can be much smaller. Assumption (c) is the no-unobserved
confounder assumption in causal inference literature. If all relevant epidemic history and
other information associated with implementing an intervention at time ¢ are collected as
H;(t) and Xj, this assumption holds. In our application, we will explore a list of candidate
variables as (X;, H;(t)) and identify a subset data-adaptively.

Next, we justify why the assumptions enable us to estimate y(A). First, under assump-

tion (c), we have

100 = it s i 07 0]

I(T; > t+ A) -
£ Y Ou+anY
{P<E>t+A’7}2t,Hi(t),Xi){’ (t+80))

Second, since P(T; > t|T; > t, H;(t),X;) = P(T; > t + A|T; > t, H;(t), X;) for any t in the
support of Fr(t), according to assumptions (a) and (b), the right-hand side is further equal

to
[T, =1)
P(T; =T, > t, Hi(t), X;)

=5 i+ 2:n)

B { (T, >t+A)

P(T; > t|T; > t, Hi(t), X;) it + A?t)}} - (4)

Therefore, if we posit a model for the intervention time T; given H;(t) and X;, an inverse

probability weighted estimator based on (4) can be used to estimate (A, t). Equation (4)



further provides a way to consistently estimate v(A) by simply averaging the estimated

(A, t) over all empirical intervention times from all states.

2.3 Inference procedure for the average intervention effect

The main idea for estimation is to create a separate set of control states for “case states”
that implemented an intervention at a given time point and then aggregate over case states.
To balance pre-intervention differences between states, we will construct propensity scores
for case states that intervened at different time points, since eligible control states may differ.
Specifically, in the first step, we estimate the propensity scores, P(T; = t|H;(t), X;) in (4),

by fitting a logistic regression model,

logit {P(T; = t|T; > t, Hy(t), X;)} = (Hi(t), X;)" B,

where X; contains all prognostic variables for the intervention at the baseline such as demo-
graphic distributions and SVI index, and H;(t) can be the average cases and deaths in the

past week(s) before time t. To estimate (3, we solve the following estimating equation

en{(H (), X)75)
1+ exp{(H;(t), X;)T5}

i/(Hi(t)»Xi)Tf(Ti > 1) [I(Ti =1) } dFyp(t) = 0,

where ﬁT(t) denotes the empirical distribution of the intervention times. In detail, if we use

Xi; to denote (H;(T}), X;) and d;; = I(T; = T}) , we can estimate [ by solving

- exp{X8} | _
35 - e

i=1 jeS(i)

where S(7) is a set of state ¢ and all other eligible control states (for example, states that
have not implemented an intervention by 7T;; similar to a nested case-control design when

treating implementation of an intervention as the event). Once we obtain the estimate for

10



[, denoted by B , the propensity score for state ¢ at its intervention time ¢ is given by

exp{(H,(t), X,)" B}

P = o (), X5}

In the second step, using the estimated propensity scores, according to (4) for t € T and

by the definition of the average intervention effect y(A), we estimate v(A) explicitly as

() Si 1T = O/B Y+ APl
Yy [ (T = 0/pi(0dPr(1)

S [T > ¢+ A) /(1= Bi()Yilt + A)dFr(t)
S JIT >t +A)/(1 - ﬁi(t))dﬁT(t)

where for the convenience of notation, we use Y (¢t + A) to denote Y (¢ + A;t) in subsequent

I

exposition. Removing the denominators in the above expression does not necessarily invali-
date the consistency of the estimator, but can lead to substantial efficiency gain as shown in
survey sampling literature (e.g., using standardized weights may improve efficiency). Specif-

ically, let ¢;;) be the intervention day for state i, let X, ;) = (Hi(tj)), X;)T, and define

~ EXp{le(l)B}

D= e (3T, 3T Then in the second step, we estimate v(A) by

2imt 2ojes) Y% /By it Djes Gl — ) /(1 — @)
D i1 2jes) i/ Ty D1 2jes (L —0i) /(L —qy)

3(8) =

where d;; is the change in reproduction number (i.e., Y;(j(i) + A), or R;juy+a — Rij))s 0ij
is the change in intervention status at time j for state ¢, and
_ exp{ X753}

Qij = =1,..,n,7 € S(1).
T 1+ exp{X75} )

Note ]/9\1 = Z]\z,](z)
The following theorem gives the asymptotic distribution for 7(A).

Theorem 1. Under assumptions (a)-(c) and assuming that (H;(¢), X) is linearly indepen-

11



dent with positive probability for some ¢ in 7 and that H(¢) has a bounded total variation
in T, /n((A) —v(A)) converges to a mean-zero normal distribution.

The asymptotic variance in Theorem 1 is given in the proof in the Appendix. A consis-
tent estimator for the variance can be given by a plug-in estimator. Specifically, the proof
of Theorem 1 implies that \/E(B — f) is asymptotically normal, where § is the true param-
eter value in the propensity score model, and the asymptotic variance can be consistently

estimated by (3°7, V;V.')/n, where

-1

Z Z Xi XTqU ZJ\ZJ) Z XU ij q”

i=1 jeS(4) JES(7)

Finally, through the linear expansion given in the proof of Theorem 1, If we let
Z dij0ij/Gij, Bi = Z 0ij / Gis
JES(7) JES(7)

and

= > dy(1=65)/(1=Gy), Di= Y (1—=06,)/(1—y)

JES(1) JES(1)

and A, B, C and D be their respective average values, then the asymptotic variance for (A)

12



can be estimated as 02 =n=2>""  (U; — U)?, where

A; _ Ci o e A B+ n' > e Gk D.
nTY B T Y Dy (Yo Br)? T (nt il D)t
B [ZZ:1 > iest) Bgong (L — i) X35/ Ty

U =

Zzzl By,

Z Ak Zn 3
k=1 Br) k=1 jeS(k)

2k e D (1= 0) s Xy /(1 — Gig)
Ek:l Dy,

Zk 1Ck ~
S E : § : — 00 X/ (1= Tij) | | Vi
( k= 1ch k=1 jes(k 7

1 d” Yoo Ar 1

Zk 1 Br i - (> k1 Br)? E
_ZkZI( _Z(Z;Z)l/l()lk_ ka)dkl -+ (ZZZk:llDC;f)Q (Z(l — (5k1>/<1 - ka))

Therefore, the 95%-confidence interval for the average intervention effect is [J(A)—1.96v/52, 7(A)+
1.96v/52).

Remark 1. Since we may have a small number of states with an NPI when fitting the
propensity score, the model can be either saturated or overfitted when the dimension of

X, and H;(t) increases. We perform a screening step to obtain a parsimonious model for
estimating the propensity scores.

Remark 2. The estimand v(A) depends on the window size, A, between the intervention

time ¢ and effect time (¢t + A). We can vary different window sizes so as to obtain the
estimated intervention effects over days since the intervention. This can be useful to study

how long it might take for an intervention to become effective.
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2.4 Estimation of HTE by regression

A similar procedure can be applied to study the effect in a subgroup of states which share
similar characteristics of Z; and moderation effects of Z; (here Z; is a subset of X;). To
estimate which factors in Z; may moderate the intervention effect, we use a regression model
by assuming

EYPt+ a0 - YO+ A7) =677,

Thus, testing the significance of 6 identifies significant factors that moderate intervention
effect, a.k.a, HTE, which may lead to precision public health policy that targets states with
certain characteristics.

Specifically, the estimator for 6 can be obtained by solving

izi [/ {Yi(HA) (I(Ti =) ITi> ”A)) —HTZi}I(TZ- > t)dfT(t)] _0

pi(t) 1= pil?)

or equivalently,

- 0ij 1 — 04

S Zi| Y {dij (A— - —J) —eTZZ-} = 0.

1 — qij - qij

= Jjes()
When Z; = 1, the derived estimator is asymptotically equivalent to 7(A) studied before. Let
f denote the estimator. Our next theorem states the asymptotic covariance of )
Theorem 2. Under the assumptions in Theorem 1, if we further assume F[Z;Z!] is non-

singular, it holds

Vi(® —6)

_ B {zzT / I(TZt)dFT(t)}_l
y {Z (/ {Y(t+A) (I(T:t) B [(T>t+A)) —QTZ}I(TZt)dFT(t)>

OB
LN (= RN U

X (H(t), X)"I(T = O)dFr()]Ss] + 0,(1),
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where E [-] denotes the expectation with respect to Y and T, and S is the influence function
for B given in the proof of Theorem 1. Consequently, \/ﬁ(@\— 0) converges weakly to a
mean-zero normal distribution.

The proof for Theorem 2 uses the same linear expansion argument as in the proof for
Theorem 1 so is omitted. As a result of Theorem 2, the variance for 0 can be consistently

estimated by the following sandwich estimator, U= Y1t where
- Y
i=1 jeS(q)
and 22 = Z:-L:l WZVVZT with

05  1—=0i5\ or
oo a[g ol )+

jeS(i ij

RS L — Gy iy
—|nD> "2 > dg X <5kj 4 (1 045 1 S ) V.
k=1  jeS(k) ki ki
Therefore, to test whether the [th component of  is zero at a significance level of «, we reject
the null if \@| / Uy, is larger than the (1—a/2)-quantile of the standard normal distribution,

where §l is the {th component of 0 and \TJ” is the [th diagonal element of 0.

3 Analysis of US COVID-19 Data

Since the first reported case in Washington on January 22, 2020, COVID-19 spread rapidly
across US, especially in the northeast. During mid-March to early April, states issued
lockdown orders (physical distance closures) after the national emergency was declared on
March 13, 2020. Large declines in the number of daily new reported cases and deaths were
seen in April and May after lockdown orders. However, a second surge of COVID-19 arrived
in June after reopening, primarily in the southern and western states. From November 2020

to early 2021, US has experienced a third surge of COVID-19 while the mass vaccination
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started to take place.

We consider six state-wide NPIs: lockdown (date defined as the first physical distance
closure), stay-at-home order, mandatory facial masks, reopening business, reopening restau-
rants, and reopening bars. In our analysis, 48 states that have implemented an intervention
after their first reported case were included. States issued lockdown orders between March
09 and April 3, 2020; 39 states placed stay-at-home order between March 19 and April 7; and
37 states mandated facial masks in public between April 8 and November 20. Between April
20 and June 8, 49 states issued reopening business order; 46 states issued reopen restaurant
order between April 24 and July 3; and 44 states issued reopen bar order between May
1 and July 3. We aligned states by transforming calendar time to time since the first re-
ported case. Figure [1] aligns states in two different ways: aligning by calendar dates (Figure
, and aligning by days since the first reported case (Figure [1b)). Two alignments differ,
for example, many states implemented lockdown on March 16th but they were at different
days since their first reported case. The latter alignment provides more variability between
states and more meaningful measure as the stage in the pandemic. Figure shows that
stay-at-home order followed quickly after lockdown, and intervention times for other NPIs
vary considerably across states. The intervention time of lockdown was between (0, 54) days
since the first reported case, stay-at-home was between (6, 65) days, and mandatory facial
masks was between (34, 263) days. Reopening economy policies had a wider range of times
between states. The gap time between implementing two different interventions also vary
across states. We leverage these heterogeneity to match a “case state” with “control states”
without interventions.

We fitted survival-convolution models for each state, using the daily incidence cases
reported at Johns Hopkins University Center for Systems Science and Engineering (JHU
CSSE (Dong et al 2020)) from the date of the first observed case as early as January 22,
2020 to February 16, 2021. This model successfully captured the epidemic trends of COVID-

19 incidence cases in 50 states (Figure . The fitted curves captured surges in large states
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such as New York, California, Florida, Texas, as well as smaller states including Maine,
Wyoming, and the Dakotas. From the estimated new infections, we derive R, using equation
(3). We show the estimated R; over the epidemic course in the Web Appendix Figure S1.

To visualize observed changes in R; after each NPI, we present R, differences between
seven days post intervention and one day before intervention in Figure A darker cool
color indicates a larger decrease in R; and a darker warm color indicates a larger increase.
The states that did not implement certain NPIs are colored in gray. We see that R; in many
states in the northeast and west decreased sharply 7 days after lockdown. For most states
that had placed stay-at-home orders, R; also decreased after the orders. As a comparison,
not all states showed a reduction in R; after facial mask mandates. Reopening business
presents some degree of heterogeneity. Among the three reopening interventions, reopening
bars had the largest increase in R;. These results show the observed changes in the states
that had initiated NPIs, but lacks a control group. We will use the methods developed in
Section 2 to formally estimated intervention effects by a DID estimator under the nested
case-control design.

Our goal is to formally quantify the impacts of NPIs and separate intervention effect
from a natural decrease or increase trend in the absence of intervention using the inversely
weighted DID estimator developed in Section 2. We estimated the ATE v(A), change in
R; after A days of implementing the intervention. In our analysis, we evaluated lockdown’s
effect up to 6 days, stay-at-home orders up to 11 days, and other interventions up to 14 days.
Lockdown and stay-at-home orders had shorter evaluation period because they were enacted
at relatively short time interval. A greater A would not satisfy assumption (a) or have enough
eligible control states. We regarded the states that had intervention time within A days as
implementing the intervention at the same time. State-specific characteristics were included
as covariates to construct propensity scores to account for differences between states. Given
the associations between state-level characteristics and COVID-19 transmission and NPIs

(Rader et al., [2020b} [Sy et al., 2020; Auger et al., 2020)), the candidate covariates were the
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Figure 2: Observed (7-day moving average; red curve) and fitted (black curve) incidence
COVID-19 cases from February 2020 to March 2021 in US States.

demographic characteristics including the percentage of White, the percentage of Latino,
the percentage of male, the percentage of age 65 and over, the percentage of male at age
65 and over, CDC SVI variables including the percentage of below poverty,
the percentage of unemployed, the percentage of no high school diploma, the percentage
of speaking English “less than well”, the percentage of housing in structures with 10 or
more units, the percentage of mobile homes, the percentage of more people than rooms at
household level, the percentage of no vehicle, the percentage of in institutionalized group
quarters, the percentage of civilian non-institutionalized population with a disability, the
percentage of single parent households with children under 18, and per capita income. The
time-varying covariates including average R;, average daily new reported cases, average daily

new reported deaths, average rate of positive tests, and average percentage of total inpatient

beds utilized by patients who have probable or confirmed COVID-19 (HealthDataj, 2020)

during one week prior to the intervention. We standardized the unemployment variable
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Figure 3: Difference in R; between seven days post intervention and one day before interven-
tion for each NPI in US States. Dark grey color indicates that a state had not implemented

an NPI.

by the state’s population of aged 17-65, and standardized the other SVI variables except
for per capita income by state’s total population. The time-varying covariates were also

standardized by state’s population and multiplied by 100,000. A different set of propensity
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scores was constructed for each A because eligible control states could change. We selected
the top 10 covariates based on Spearman rank correlation for each intervention separately
and the covariates with a large proportion of missing were excluded.

Web Appendix Tables S1-S6 show the propensity score estimates of each intervention.
The states with higher average pre-intervention R;, larger average daily new cases, and larger
average daily new deaths, fewer persons who speak English ”less than well”, higher Latino
population, higher institutionalized population, and higher percentage of crowded household
were more likely to enact the lockdown order. For stay-at-home order, states with larger
average daily new cases and smaller population of no high school diploma were more likely
to implement this NPI. The states with larger average daily new cases were more likely to
require wearing facial masks, and the states with larger average daily new cases and deaths
and fewer mobile homes were less likely to reopen bars.

The ATEs of the six NPIs are shown in Table [I] and Figure [d Enacting lockdown signif-
icantly decreased R; immediately after its implementation, with an average effect of —0.759
(95% CI, —1.075 to —0.443) six days after. The effect of stay-at-home order reached —0.133
(95% CI, —0.233 to —0.033) seven days post-intervention. Reopening bars significantly in-
creased R;. The average effect of reopening bars was an increase of 0.095 (95% CI, 0.056 to
0.134) after 7 days and reached 0.17 (95% CI, 0.103 to 0.237) after 14 days. The ATE of
reopening business was positive but not significant. The ATE of reopening restaurants and
mask mandates was not significant.

We further assessed HTE to identify whether any factor moderates the intervention effects
of lockdown, stay-at-home, and reopening policies. Our candidate moderators included
the percentage of age 65 and over, the percentage of White, the percentage of male, and
the percentage below poverty. We did not find any significant moderator. The estimated
HTE for race (percentage of White race) was marginally significant for reopening bars (Web
Appendix Figure S2 shows the estimated HTE and confidence interval of race on reopening

bars).
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Table 1: Average Intervention Effects of the Six NPIs

Mask Reopen Reopen Reopen

Day Lockdown  Stay-at-home Mandate Businesses Restaurants Bars

Estimate (se)  Estimate (se)  Estimate (se) Estimate (se) Estimate (se) Estimate (se)
A=1 -0.176 (0.022) -0.006 (0.036) -0.005 (0.004) 0.022 (0.005) 0.018 (0.004) 0.020 (0.005)
A =2 -0.334 (0.043) 0.027 (0.033)  -0.008 (0.007) 0.033 (0.012) 0.018 (0.007) 0.032 (0.006)
A=3 -0.489(0.092) 0.027 (0.035) -0.010 (0.010) 0.036 (0.017) 0.018 (0.012) 0.044 (0.009)
A =4 -0.562 (0.056) 0.010 (0.042)  -0.011 (0.014) 0.041 (0.024) 0.019 (0.018) 0.058 (0.011)
A=5 -0.603 (0.057) -0.015 (0.048) -0.014 (0.020) 0.055 (0.027) 0.013 (0.026) 0.071 (0.014)
A=6 -0.759 (0.161) -0.064 (0.048)  0.001 (0.024) 0.058 (0.036) 0.011 (0.033) 0.082 (0.017)
A=T7 - -0.133 (0.051)  -0.016 (0.030) 0.060 (0.046) 0.006 (0.042) 0.095 (0.020)
A=38 - -0.113 (0.079)  -0.017 (0.032) 0.035 (0.062)  0.004 (0.049) 0.105 (0.022)
A=9 - -0.150 (0.080)  0.006 (0.022) 0.023 (0.077) -0.005 (0.065) 0.120 (0.024)
A =10 - -0.198 (0.236)  0.009 (0.023) 0.028 (0.084) -0.027 (0.086) 0.132 (0.026)
A=11 - -0.233 (0.159)  0.017 (0.026)  0.034 (0.092) -0.033 (0.096) 0.144 (0.029)
A=12 - - 0.020 (0.028) 0.049 (0.102) -0.045 (0.108) 0.154 (0.031)
A=13 - - 0.022 (0.024)  0.064 (0.110) -0.047 (0.118) 0.160 (0.032)
A=14 - - 0.023 (0.026) 0.067 (0.119) -0.073 (0.140) 0.170 (0.034)

— indicates the effect was not applicable at A day.

4 Discussion

In this work, we propose a nested case-control design and propensity score weighting ap-
proach to evaluate impact of NPIs on mitigating COVID-19 transmission. Our method
aligns states by transforming calendar time to time since the first reported case and al-
lows each state to serve in both treated and control group during different time periods.
Our estimator provides causal intervention effect under assumptions and we further identify
the factors that moderate intervention effect. Our analysis shows that mobility restricting
policies (lockdown and stay-at-home orders) have a large effect on reducing transmission.
The effect of mask mandate was not significant. However, this result should be interpreted
with care because mask mandate may not directly increase the adoption of mask wearing
behavior in the public (Rader et al., |2021). Using self reported mask wearing data may be
more effective in evaluating the effect of masking. Reopening bars had a significant effect on
increasing transmission.

We investigated each intervention separately in this work and did not consider inter-

action between interventions given the sample size (50 states). To evaluate more detailed
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Figure 4: Average intervention effects with 95% confidence intervals.
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intervention packages and interaction between NPIs, county-level data can be useful to in-
crease sample size. Assuming intervention effects to be additive, we can use the estimated
treatment effect to determine the the optimal sequence of the treatment effects and timing
for controlling disease outbreak. Our assumptions might be violated if there are interference
effects between neighboring states and there might be other potential confounders that are
not adjusted for in the propensity score model. When NPIs have delayed effect, methods
developed for dynamic treatment regimes may be more appropriate. As an extension, for
county-level analysis we can borrow spatial information from counties that are similar and
adjacent to each other to account for the transmission from region to region. Other exten-
sions to our method include using survival analysis to estimate the propensity scores for T;

or adopting a doubly robust method to improve the IPW DID estimator.
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Appendix A Proof of Theorem 1

We use P, to denote the empirical measure associated with n states’ observations and use
P to denote its expectation. First, using the estimating equation for 5, we can easily show
that

B 8= (P, —P)Ss+o,(n"), (A1)

where
1

3= [P [ (0.0 (O, X)1T = 0p(0)(1 = p(0)dFs(0)

x /(H(t),X)TI(T > ) {I(T =1t) = p(t))} dFx(t),

and we note that the matrix inverse exists due to the linear independence assumption. Thus,
\/H(E — [3) converges to a mean-zero normal distribution with covariance matrix E[SgS}].

Next, we rewrite 7(A) as

P, [I(T —t/p )Y(t+A)dfT(t)_Pan(T>t+A)/(1—ﬁ(t))Y(tJrA)dﬁT(t)
P, [ (T = t)/B(t)dFr(t) P, [I(T>t+A)/(1—-pt)dFr(t)

V(A) =
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Using linear expansion and microscopic arguments, we obtain

7(A) =~(A)
(P, = P) [ I(T =t)/p(t)Y (t + A)dFr(t)
P, [ (T =1t)/p(t (t)dFr(t)
P [ I(T = 0)/p)Y (t + A)dFr (1)
P, [ I(T = t)/p(t)dF(t)P [ I(T = t)/(t)dFr(t) (Pr - P)/ (T = 0)/pe)aFr (2
(P, —P) [ I(T >t +A)/(1—p(t)Y (t + A)dFr(t)
R P, [ I(T > t+A)/(1—p(t))dFr (1)
P [ (T >t+A)/(1—p(t)Y(t+ A)dFr(t)
P, [ I(T >t +A)/(L—p(t))dFr(t)P [ (T >t + A)/(1 - 5(t))dFr()

(P, — P) /I(T St AY/(1— Pt)dFr(®)

P JIT =t)/p)Y (t+ A)dFr(t) P [I(T >t+A)/(1—pt)Y(t+ A)dFr(t)
P [ (T = t)/p(t)dFr(t) P [I(T >t+A)/(1—p(t)dFr(t)

—(A).

On the other hand, based on assumptions (a)-(c), using the same argument in Section 2, we
know

P [IT=t)/p)Y(t+A)dFr(t) P [I(T>t+A)/(1—p(t)Y(t+ A)dFr(t)

Y(A) = P [I(T = {)/p(t)dFr (D) B P [I(T >t+A)/(1—p(t)dFp(t)

Thus, the last term in the expansion of ¥(A) — v(A) can be further expanded as a linear
functional of (B — f) and (ﬁ — '), where we further plug in the expansion in (A.1) and note
that (F — Fr)(t) = (P, — P)I(T < t).

Finally, since (T > t),p(t), Fr(t) and Y (t) have bounded total variations so they are

P-Donsker, we conclude

(D) = 7(A) = (P, = P)T +0,(n'72),
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where if we define

and

A C  EIA [I(T=t) E[C] [I(T>t+A)
YT omE ED ~ g | O+ g [ T 4
EMDYV(T+A)] BlA] < I(F=T)
R 7 R 7 e e
BRIV (T + ) J IO p 1T >T + &)
E[D) EDP " 1= p(T)
P [I(T = t)=BL(H(t), X)TY (t + A)dPr(t)

P [S0dP(t)
Y(t+ A)dFr (0P [ I(T = t) =B (H(t), X)TdFr(t)
(P [ (T =1)/p(t)dFr(t))?
P [I(T >t + A) {205 (H(t), X)TY (¢ + A)dFr(t)
P [ =N dF(t)
P [ {28y (t+ A)AFr ()P [ I(T > t+ A) 2% (H (1), X)TdPr(1)
(P [ A=t dFn(t))?

1(T=t)
_ P f p(t)

Here, E[] denotes the expectation with T and Y. Therefore, v/n(J(A) — v(A)) converges

to a mean-zero normal distribution with variance E[I'TT].
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Supporting information

Web Appendix A: R; and Propensity Score Estimation

This section shows the results of estimated effective reproduction number R; in the US

(Figure , and the propensity score models for each intervention (Tables , , ,
51 59 and [59).
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Figure S1: Estimated Effective Reproduction Number R; From February 2020 to February
2021 in the US

Web Appendix B: HTE Results

This section shows the estimated HTE of race (percentage of White) for reopening bars

(Figure . The effects are estimated with moderator fixed at a given quantile (e.g., 25th
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Table S1: Propensity Score Estimates of Lockdown

New New Limit Multi-Unit Crowded
Day Case Ry Death English Latino House Institutionalized  Household
B (p-value) B (p-value) B (p-value) B (p-value) B (p-value) B (p-value) B (p-value) B (p-value)
A=1 8.144 (0) 3.982 (0)  -64.394 (0.023) -1.172 (0.001) 0.183 (0.001) -0.068 (0.706)  1.189 (0.002) 0.953 (0.242)
A=2 11.901 (0) 5.085 (0) -83.003 (0)  -1.493 (0.001)  0.220 (0)  -0.114 (0.599)  1.612 (0.003) 1.824 (0.120)
A=3 15.526 (0) 6.863 (0) -116.992 (0)  -1.739 (0.007)  0.247 (0.003) -0.095 (0.794)  2.242 (0.001)  2.320 (0.063)
A=4 28.865 (0) 8230 (0) 31493 (0.676)  -2.276 (0.002) 0.207 (0.003) 0.140 (0.632)  2.615 (0.018) 1.968 (0.203)
A=5 39.656 (0) 12747 (0)  -56.959 (0.407)  -2.846 (0.005) 0.365 (0.015) 0.201 (0.279)  3.300 (0.003) 2.412 (0.015)
A=6 219911 (0.107) 68.378 (0.09) -558.381 (0.003) -31.124 (0.104) 4.393 (0.102) 5.518 (0.062)  21.468 (0.153)  24.418 (0.226)
A=T ; - : . - - ; ;
A=8 ; . . . . . ; ;
A=9 - - - - - - - -
A=10 - : - - - : - -
A=11 - B . . . B . -
A=12 - i - - - - - -
A=13 - - - - - - - -
A=14 - - : - - - - -

— indicates the

variable was not applicable at A

Table S2: Propensity Score

day.

Estimates of Stay-at-home

New New Limit Multi-Unit No High School  Crowded

Day Death Case English Latino Ry House Diploma Household Unemployed Institutionalized Disabled

B (p-value) B (p-value) B (p-value) B (p-value) B (p-value) B (p-value) B (p-value) B (p-value) B (p-value) B (p-value) B (p-value)
A=1 25416 (0.007)  0.838 (0)  0.346 (0.279) 0.003 (0.941) -0.201 (0.548) -0.319 (0.169)  -0.618 (0.003)  0.473 (0.316) B B
A=2 27.021(0.013) 0993 (0) 0436 (0.221) -0.002 (0.965) -0.259 (0.464) -0.401 (0 089)  -0.739 (0.001)  0.616 (0.183) : B
A =3 31.587 (0.013) 1.168 (0) 0.609 (0.195)  0.002 (0.976) -0.477 (0.241) -0.519 (0.102) -0.899 (0.003) - 0.052 (0.934) -
A =4 40.988 (0.019) 1.398 (0) 0.621 (0.059) -0.003 (0.941) 0.055 (0.884) -0.563 (0.018) -0.989 (0.002) 0.904 (0.079) - -
A=5 48806 (0.030) 1.746 (0.001)  0.836 (0.007) -0.028 (0.513) N 0. 612 (0.011)  -1.046 (0.001)  0.794 (0.159) -0.155 (0.752)
A=6 46.312(0.102) 2070 (0)  0.891 (0.002) -0.039 (0.408) - 20.58 (0.013)  -1.112 (0.004)  0.883 (0.118) - -0.347 (0.466)
A=7 20690 (0.368)  3.021 (0)  0.743 (0.002) -0.019 (0.728) N 0. 075 (0.011)  -1.073 (0.006)  0.969 (0.073) N -0.340 (0.443)
A =8 17.192 (0.597) 3.901 (0.001)  0.049 (0.911) 0.007 (0.918) - -0.281 (0.270) - 1.996 (0.023) -2.166 (0.001) -0.194 (0.759)
A=9 39.736 (0.314) 4.366 (0) 0.264 (0.640) -0.079 (0.401) - -0.490 (0.161) 2.247 (0.003)  -1.943 (0.002) -1.098 (0.063) -
A =10 42.246 (0.381) 6.320 (0) 0.184 (0.792)  0.009 (0.905) - -0.373 (0.228) 2.082 (0.009) -2.168 (0.034) - 0.350 (0.699)
A=11 52587 (0.410) 7453 (0)  0.204 (0.706)  0.053 (0.418) - £0.225 (0.487) 2.187 (0.048)  -2.736 (0.017) - 0.700 (0.445)
A=12 63.706 (0 418)  10.495 (0.006) -0.982 (0.351) 0.179 (0.217) N 0.524 (0.400) 2.616 (0.321)  -1.929 (0.119) N 1.158 (0.145)
A=13 . . B B - ) - B ,
A=14 B N - B

— indicates the variable was not

selected or not applicable at A day.

Table S3: Propensity Score Estimates of Mandatory Facial Mask

New New No Limit Mobile Male at Age 65

Day Case Ry Death Vehicle English Latino Unemployed Home and over Male ‘White

B (p-value) B (p-value) B (p-value) B (p-value) B (p-value) B (p-value) B (p-value) B (p-value) B (p-value) 3 (p-value) B (p-value)
A=1 0.037 (0.007) -1.942 (0.037) 0.374 (0.507) -0.252 (0.422) 0.030 (0.935) -0.013 (0.874) 0.589 (0.027)  -0.291 (0.060) 0.105 (0.539) - -
A=2 0036 (0.004) -2.281 (0.008) 0.316 (0.540) -0.218 (0.459) -0.031 (0.931) 0.004 (0.964) 0.580 (0.067) -0.298 (0.048) - -0.062 (0.876) -
A =3 0.037 (0.008) -2.213 (0.008) 0.434 (0.386) -0.221 (0.433) -0.047 (0.897) 0.009 (0.912)  0.566 (0.071)  -0.277 (0.064) - -0.069 (0.872) -
A=4  0.035(0.009) -2.034(0.012) 0.663 (0.216) -0.216 (0.433) -0.057 (0.875) 0.013 (0.867)  0.521 (0.094) -0.252 (0.083) - -0.016 (0.971) -
A=5 0.073 (0) -2.365 (0.009) 0.276 (0.607) -0.257 (0.379) -0.071 (0.839) 0.015 (0.838)  0.493 (0.122) -0.346 (0.040) - 0.013 (0.977) -
A=6 0.069 (0.001) -1.269 (0.148) 0.927 (0.142) -0.381 (0.328) 0.201 (0.609) -0.017 (0.836)  0.104 (0.739) - 0.490 (0.104) -0.426 (0.464) -
A=7 0080 (0) -2087 (0.018) 0.421 (0.448) -0.359 (0.275) -0.147 (0.654) 0.025 (0.731)  0.631 (0.054) -0.419 (0.028) - -0.026 (0.955) -
A=38 0.080 (0) -2.090 (0.014) 0.410 (0.454) -0.347 (0.286) -0.141 (0.673) 0.019 (0.814)  0.715 (0.061) -0.426 (0.027) - 0.118 (0.837) -
A=9 0097 (0) -1.526 (0.076) 0.704 (0.224) -0.467 (0.135) 0.379 (0.292) -0.033 (0.692) 1.213 (0.051) - - 0.418 (0.583)  0.099 (0.036)
A =10 0.097 (0) -1.498 (0.078) 0.692 (0.232) -0.461 (0.138) 0.378 (0.298) -0.033 (0.695)  1.225 (0.048) - 0.427 (0.572)  0.099 (0.035)
A=11 0108 (0) -1.357 (0.091) 0.502 (0.376) 0.003 (0.994) 0.268 (0.468) -0.004 (0.965) 0.988 (0.137) - 0.408 (0.587)  0.088 (0.077)
A=12 0.108 (0) -1.350 (0.090) 0.478 (0.400) 0.005 (0.991)  0.269 (0.469) -0.004 (0.961)  0.983 (0.143) - - 0.395 (0.603)  0.088 (0.079)
A=13  0.111(0) -1.367 (0.088) 0.642 (0.314) -0.122 (0.765) 0.294 (0.445) -0.014 (0.878)  1.166 (0.095) - - 0.471 (0.524)  0.097 (0.064)
A=14 0.121 (0) -1.402 (0.112) 0.531 (0.421) -0.099 (0.809) 0.290 (0.454) -0.012 (0.896) 1.175 (0.098) - - 0.454 (0.550)  0.098 (0.066)

— indicates the variable was not selected

at A day.
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Table S4: Propensity Score Estimates of Reopening Business

Limit Multi-Unit Mobile Per Capita No Male at Age 65

Day Ry English House Home Latino Income Disabled Vehicle and over Unemployed

B (p-value) /? (p-value) B (p-value) 5 (p-value) E (p-value) E x10~* (p-value) B (p-value) E (p-value) B (p-value) B (p-value)
A=1 -4.428 (0.001) -0.257 (0.546) -0.094 (0.645) 0.270 (0.039) 0.038 (0.583)  -0.036 (0.942)  -0.162 (0.265) 0.043 (0.769)  0.024 (0.900) B
A =2 -4.678 (0.001) -0.290 (0.524) -0.091 (0.674) 0.301 (0.022) 0.041 (0.561) -0.044 (0.931) -0.164 (0.254)  0.039 (0.791) 0 013 (0.945) -
A=3  -5382(0) -0.322 (0.493) -0.110 (0.627) 0.344 (0.005) 0.042 (0.555)  -0.024 (0.963)  -0.191 (0.172) 0.060 (0.688) 55 (0.771) .
A=4 -5.707 (0) -0.329 (0.504) -0.116 (0.632) 0.363 (0.004) 0.041 (0.567) -0.028 (0.957) -0.192 (0.175)  0.053 (0.727) 0 059 (0.754) -
A=5 -5.635 (0) -0.342 (0.525) -0.122 (0.649) 0.381 (0.003) 0.036 (0.633) -0.010 (0.985) -0.187 (0.221)  0.060 (0.723) 0.128 (0.491) -
A=6  -6222(0)  -0.409 (0.470) -0.123 (0.663) 0.432 (0.003) 0.042 (0.577)  0.055 (0.923)  -0.206 (0.191) 0.071 (0.692)  0.146 (0.440) N
A=7  6572(0)  -0.475 (0.464) -0.126 (0.693) 0.427 (0.005) 0.054 (0.524)  -0.073 (0.899)  -0.222 (0.168) 0.070 (0.707)  0.133 (0.496) N
A=8  -8161(0) -0.362 (0.641) -0.325(0.419)  0.612 (0)  0.065 (0.492)  0.514 (0.416)  -0.198 (0.218) 0.193 (0.337)  0.167 (0.471)  -0.641 (0.111)
A=9 8768 (0) -0.443 (0.602) -0.308 (0.473)  0.645 (0)  0.073 (0.479)  0.345 (0.478)  -0.207 (0.259) 0.181 (0.384)  0.119 (0.630)  -0.624 (0.131)
A=10 -8853(0) -0.440 (0.613) -0.314 (0.468)  0.679 (0)  0.070 (0.502)  0.345 (0.600)  -0.251 (0.165) 0.177 (0.402)  0.099 (0.697)  -0.640 (0.131)
A=11 9031 (0) -0.456 (0.598) -0.290 (0.502)  0.665 (0)  0.069 (0.501)  0.224 (0.735)  -0.253 (0.161) 0.145 (0.504)  0.080 (0.753)  -0.670 (0.118)
A=12 8949 (0)  -0.485 (0.578) -0.271 (0.525)  0.676 (0)  0.071 (0.488)  0.174 (0.793)  -0.285 (0.122) 0.128 (0.552)  0.058 (0.819)  -0.656 (0.131)
A =13 -9.090 (0) -0.496 (0.570) -0.263 (0.541) 0.668 (0) 0.072 (0.484) 0.141 (0.838) -0.304 (0.133)  0.108 (0.635) 0.060 (0.822) -0.700 (0.136)
A=14 9278 (0)  -0.497 (0.560) -0.255 (0.539)  0.668 (0)  0.068 (0.504)  0.070 (0.920)  -0.323 (0.115) 0.088 (0.700)  0.044 (0.871)  -0.688 (0.146)

— indicates the variable was not selected at A day.
Table S5: Propensity Score Estimates of Reopening Restaurants
Per Capita Multi-Unit Limit Mobile Single No

Day Ry Income House English Home Latino Parent House Vehicle Disabled Poverty

B (p-value) Bx10~4 (p-value) B (p-value) B (p-value) B (p-value) B (p-value) B (p-value) B (p-value) B (p-value) B (p-value)
A=1 -2.094 (0.039) -0.362 (0.681) -0.054 (0.782) -0.140 (0.613) 0.085 (0.495)  0.004 (0.923) 0.113 (0.886)  -0.034 (0.850) -0.227 (0.272) 0.114 (0.573)
A=2 2176 (0.035)  -0.379 (0.664)  -0.053 (0.784) -0.159 (0.568) 0.071 (0.567) 0.007 (0.875)  0.108 (0.891)  -0.045 (0.805) -0.226 (0.281) 0.126 (0.528)
A=3 2190 (0.036) -0.444 (0.616)  -0.048 (0.811) -0.137 (0.620) 0.089 (0.470) 0.000 (0.998)  0.163 (0.839)  -0.053 (0.772) -0.250 (0.250) 0.126 (0.535)
A=4 -2251(0.034) -0.441 (0.621)  -0.050 (0.799) -0.119 (0.676) 0.101 (0.395) -0.004 (0.925)  0.208 (0.798)  -0.065 (0.726) -0.256 (0.251) 0.138 (0.510)
A=5 -2624(0.033) -0.451 (0.613)  -0.070 (0.716) -0.135 (0.626) 0.124 (0.298) -0.005 (0.905)  0.148 (0.864)  -0.063 (0.741) -0.315 (0.174) 0.159 (0.463)
A=6 -2740 (0.030)  -0.482 (0.597)  -0.057 (0.768) -0.145 (0.606) 0.130 (0.283) -0.005 (0.921)  0.231 (0.791)  -0.079 (0.686) -0.318 (0.175) 0.159 (0.475)
A=7 -2823(0.028) -0.539 (0.558)  -0.068 (0.727) -0.154 (0.576) 0.134 (0.285) -0.001 (0.974)  0.282 (0.753)  -0.074 (0.708) -0.320 (0.158) 0.145 (0.512)
A =8 -2.873(0.027) -0.679 (0.473) -0.066 (0.745) -0.155 (0.582) 0.138 (0.266) -0.002 (0.963)  0.331 (0.728)  -0.073 (0.714) -0.333 (0.145) 0.133 (0.555)
A=9 -3.035(0.029) -0.781 (0.431)  -0.076 (0.720) -0.163 (0.565) 0.143 (0.242) -0.005 (0.908)  0.451 (0.661)  -0.071 (0.730) -0.374 (0.097) 0.143 (0.532)
A=10 -3565(0.037)  -0.950 (0.352)  -0.083 (0.701) -0.177 (0.542) 0.153 (0.188) -0.003 (0.938)  0.504 (0.624)  -0.067 (0.742) -0.410 (0.080) 0.128 (0.593)
A=11 -3596 (0.034)  -0.965 (0.342)  -0.081 (0.711) -0.183 (0.536) 0.153 (0.203) -0.004 (0.920)  0.545 (0.600)  -0.071 (0.732) -0.407 (0.075) 0.124 (0.600)
A =12 -3786(0.029) -1.018 (0.330)  -0.077 (0.730) -0.195 (0.516) 0.140 (0.250) -0.004 (0.926)  0.602 (0.569)  -0.085 (0.687) -0.406 (0.082) 0.125 (0.595)
A=13 -3.860 (0.027)  -1.018 (0.314)  -0.086 (0.713) -0.190 (0.524) 0.131 (0.285) -0.005 (0.901)  0.537 (0.640)  -0.091 (0.677) -0.408 (0.105) 0.136 (0.572)
A =14 -4.028 (0.024) -1.180 (0.287) -0.099 (0.669) -0.177 (0.563) 0.118 (0.337) -0.010 (0.819) 0.700 (0.562) -0.097 (0.659) -0.432 (0.093) 0.140 (0.572)

Table S6: Propensity Score Estimates of Reopening Bars
New New Limit Multi-Unit Per Capita Mobile
Day Case Death English House Income Latino Home Institutionalized
B (p-value) B (p-value) B (p-value) B (p-value) B x 107* (p-value) j (p-value) B (p-value) B (p-value)

A=1 -0.060 (0.216) -0.631 (0.378) -0.320 (0.517) 0.032 (0.922) -0.330 (0.648) 0.032 (0.560) -0.066 (0.708) 0.270 (0.530)
A=2 -0.062 (0.197) -0.598 (0.398) -0.339 (0.498) 0.033 (0.920) -0.373 (0.607) 0.032 (0.549) -0.076 (0.673) 0.270 (0.523)
A =3 -0.063 (0.194) -0.602 (0.394) -0.345 (0.486) 0.038 (0.907) -0.442 (0.549) 0.033 (0.535) -0.078 (0.667) 0.258 (0.541)
A =4 -0.061 (0.209) -0.626 (0.372) -0.321 (0.528) 0.028 (0.934) -0.412 (0.582) 0.030 (0.583) -0.072 (0.692) 0.254 (0.544)
A=5 -0.062 (0.198) -0.629 (0.370) -0.319 (0.542) 0.022 (0.948) -0.423 (0.575) 0.028 (0.605) -0.070 (0.701) 0.231 (0.578)
A=6 -0.065 (0.179) -0.654 (0.346) -0.307 (0.558) 0.007 (0.984) -0.377 (0.617) 0.029 (0.601) -0.073 (0.700) 0.298 (0.482)
A=7 -0.068 (0.150) -0.632 (0.359) -0.338 (0.532) 0.005 (0.990) -0.367 (0.632) 0.033 (0.553) -0.085 (0.653) 0.283 (0.499)
A =8 -0.069 (0.148) -0.644 (0.353) -0.365 (0.500) 0.012 (0.973) -0.361 (0.640) 0.035 (0.524) -0.081 (0.674) 0.294 (0.486)
A=9 -0.071(0.149) -0.674 (0.359) -0.468 (0.403) 0.056 (0.873) -0.437 (0.589) 0.044 (0.427) -0.073 (0.715) 0.301 (0.500)
A =10 -0.072 (0.138) -0.658 (0.371) -0.475 (0.406) 0.058 (0.870) -0.475 (0.559) 0.044 (0.423) -0.075 (0.711) 0.305 (0.485)
A =11 -0.077 (0.117) -0.662 (0.365) -0.489 (0.399) 0.044 (0.901) -0.495 (0.543) 0.045 (0.420) -0.091 (0.660) 0.340 (0.455)
A =12 -0.076 (0.117) -0.711 (0.331) -0.495 (0.407) 0.037 (0.920) -0.544 (0.515) 0.044 (0.444) -0.093 (0.658) 0.313 (0.491)
A =13 -0.077 (0.113) -0.718 (0.321) -0.517 (0.379) 0.045 (0.900) -0.562 (0.500) 0.047 (0.410) -0.098 (0.641) 0.337 (0.447)
A =14 -0.079 (0.110) -0.760 (0.311) -0.567 (0.346) 0.049 (0.892) -0.645 (0.447) 0.051 (0.376) -0.119 (0.589) 0.284 (0.528)
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percentile, 50th percentile, 75th percentile) over all states and other covariates fixed at the

mean level.

Race Quantiles for HTE: Reopen Bars
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Figure S2: HTE of White for the NPI: Reopening bars. The effects are estimated with the
moderator fixed at a given quantile and other variables fixed at the mean level.
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