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Introduction
The Flint, Michigan water crisis, detected in part by an astute 
pediatrician,1 highlighted the need for enhanced surveillance of 

blood lead levels (BLLs) and public health response.2 Improved 
capacity for state and local health departments to frequently 
analyze trends in reported blood lead test results (e.g., monthly) 
can potentially decrease the time required to detect deviations 
of public health significance. Rapid analysis of surveillance 
data to detect unusual patterns in BLLs is an early indicator 
for intervention at the local level. Childhood blood lead sur-
veillance (CBLS) data provide a valuable opportunity to adapt 
time-series analytic methods for this purpose. Cumulative sum-
mary (CUSUM) and Shewhart control charts compare differ-
ences between observed and expected results using time series 
data in the context of a threshold. The CUSUM chart is the 
normalized residuals beyond a reference interval that is cumula-
tively summed sequentially. A Shewhart chart checks the resid-
ual compared to an expected value of the moving range of the 
residuals. An alert is generated when a plotted value exceeds 
a threshold value. Our approach was to use cumulative sums 

What this study adds
This manuscript describes a new, validated alerting algorithm 
to rapidly analyze child blood lead surveillance data and alert 
health department authorities to potential spikes of elevated 
blood lead levels requiring public health investigation. There 
is no such syndromic surveillance method currently applied 
to child blood lead surveillance in the United States or other 
countries. State surveillance databases are potentially underuti-
lized—mostly used to create periodic reports – while also a crit-
ical tool to identify increases in child lead exposure. Application 
of this algorithm has the potential to enhance the child lead poi-
soning prevention surveillance landscape—to potentially mirror 
infectious disease syndromic surveillance. The article describes 
the successful evaluation of the method on data from 20 US 
counties/jurisdictions.
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Background: Local, state, and national childhood blood lead surveillance is based on healthcare providers and clinical labora-
tories reporting test results to public health departments. Increased interest in detecting blood lead level (BLL) patterns and changes 
of potential public health significance in a timely manner has highlighted the need for surveillance systems to rapidly detect and 
investigate these events.
Objective: Decrease the time to detect changes in surveillance patterns by using an alerting algorithm developed and assessed 
through historical child blood lead surveillance data analysis.
Methods: We applied geographic and temporal data-aggregation strategies on childhood blood lead surveillance data and devel-
oped a novel alerting algorithm. The alerting algorithm employed a modified cumulative summary/Shewhart algorithm, initially applied 
on 113 months of data from two jurisdictions with a known increase in the proportion of children <6 years of age with BLLs ≥5 µg/dl.
Results: Alert signals retrospectively identified time periods in two jurisdictions where a known change in the proportion of children 
<6 years of age with BLLs ≥5 µg/dl occurred. Additionally, we identified alert signals among six of the 18 (33%) randomly selected 
counties assessed where no previously known or suspected pattern changes existed.
Conclusion: The modified cumulative summary/Shewhart algorithm provides a framework for enhanced blood lead surveillance by 
identifying changes in the proportion of children with BLLs ≥5 µg/dl. The algorithm has the potential to alert public health officials to 
changes requiring further important public health investigation.
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of observed values minus expected values, where the expected 
values are adjusted for covariates.3

Approximately 500,000 US children have blood lead 
test results higher than the Centers for Disease Control and 
Prevention’s (CDC) blood lead reference level (BLL ≥ 5 µg/dl). 
This reference level represents the 97.5th percentile of BLL dis-
tribution among children less than 6 years of age.4 CDC funds 
childhood lead poisoning prevention programs in state and 
local health departments through cooperative agreements to 
conduct primary and secondary prevention of child lead expo-
sure. These programs receive BLL test results continuously from 
healthcare providers and clinical laboratories as required by 
state laws or regulations. Most states require clinical laborato-
ries and healthcare providers to report all blood lead test results 
to state health departments. Since 1997, funded programs have 
submitted CBLS data to CDC based on cooperative agreement 
requirements.5 In general, BLL test results are analyzed at the 
local and state level for general trends at regular intervals (e.g., 
quarterly, annually).

Two known temporal patterns commonly occur in CBLS 
data: seasonal patterns and long-term trends. The seasonal 
pattern typically shows childhood BLLs peak in summer and 
late fall.6,7 The time trend pattern reflects a tendency in most 
jurisdictions to have a progressively decreasing proportion of 
child BLLs that exceed 5 µg/dl over time8 due to the removal of 
sources of lead in the environment.9

We describe a modified CUSUM/Shewhart alerting algorithm 
that accounts for seasonal and time trends to assess monthly 
increases in the proportion of children tested with a BLL ≥5 µg/
dl. This enhanced surveillance method may allow state and local 
programs to more efficiently recognize trends that may require 
public health action.

Methods

Algorithm method

Our algorithm applies to a specific jurisdiction, such as a 
county, and uses children’s BLLs, categorized as binary: ele-
vated (a child BLL ≥5 µg/dl) or not elevated (a child BLL <5 µg/
dl). Specifically, we aggregated all blood lead test results from 
child blood lead surveillance data for selected jurisdictions. Test 
results were aggregated by month and the percent of tests with 
BLLs ≥5 µg/dl for each month during the study period (January 
2007 to May 2016) were calculated. The method uses 60 con-
secutive months of historic child blood lead surveillance data 
to model the observed pattern and to predict the 61st month. 
The observed value for the 61st month is compared with the 
predicted value using CUSUM and Shewhart control chart 
procedures.

If a child had multiple tests (based on a unique identifier), 
we included the child in the analyses each calendar year in 
which he/she had a test result. For children with multiple test 
results in a calendar year, we conducted a sensitivity analysis by 
employing two approaches: one allowing children’s results to 
be considered annually (i.e., primary analysis) and one allowing 
children’s results to be considered monthly. The first approach 
retained one test per child per calendar year, keeping the high-
est venous test. If a child had a capillary or missing test type 
result, the lowest capillary test result was selected, because of 
potential upward bias of capillary results.10 This first approach 
was considered because it considers new BLL test (i.e., screening 
test) results ≥5 µg/dl and because on average it takes children’s 
BLLs slightly more than 1 year to decline from ≥10 µg/dl to 
<10 µg/dl.11 The second approach retained one test per child 
per month, keeping the highest venous test. If a child had a cap-
illary or missing test type result, the lowest capillary test result 
was selected. In both approaches, the monthly denominator 
was the number of unique children tested for blood lead during 

the month. The outcome of interest was the proportion of tests 
equal to or higher than 5 µg/dl for each month.

To identify whether the most recent proportion of children 
with BLLs ≥5 µg/dl differed substantially from the corresponding 
model-predicted value, we applied quality control procedures 
used in industry to child blood lead surveillance data, like other 
approaches with surgery outcomes.3,12 The residuals (observed 
minus expected values) and associated model predicted stan-
dard errors from the autoregressive model were used in CUSUM 
analyses to construct modified CUSUM and Shewhart control 
charts. We modified the approach by setting the control limit 
for only the last month (month 61). For month 61, the value is 
flagged as out of statistical control and as potentially of pub-
lic health concern if it lay outside the control limits (i.e., ≥3 
SDs) for either the Shewhart or CUSUM chart control limits. 
Further, because the observed minus predicted values may not 
be normally distributed, we recommend empiric adjustment of 
the CUSUM parameters (shift to be detected [delta], the decision 
interval [h], and the reference interval [k]). Adjustment allows 
the investigator to modify (upward or downward) the number 
of months expected to be flagged based on historical data and 
recognized events, if any.

To account for the recognized pattern of declining BLLs 
over time, we used a regression model that includes a linear 
time trend, with a join point that allows the pattern to change. 
Because patterns can change over time, we also restricted anal-
yses to the most recent 61 months, with the join point placed 
to allow a change in trend over the most recent 24 months of 
the 61-month period. To account for the seasonal BLL pattern, 
three knots were used, placed at months 3, 6, and 9 of every year, 
with a restriction in the regression model so that the model-pre-
dicted value at the end of 1 year coincided with the start of the 
next year. The splines were constrained so that the spline value 
at months 1 and 13 would coincide (over a 12-month period). 
We fitted the model using months 1–60 and then calculated the 
model-predicted value for month 61 (the most recent proportion 
of children with BLLs ≥5 µg/dl). If the observed value for month 
61 differed from the predicted value by ≥3 SDs, this month was 
flagged as potentially signaling a meaningful change in expected 
BLL patterns. To adjust for potential correlation over time, we 
fitted the model using an autoregressive-1 model.13

Method validation

To validate our approach, we used our modified CUSUM/
Shewhart alerting algorithm to detect aberrations in de-identi-
fied blood lead data transmitted from state and local programs 
(jurisdictions) to CDC’s CBLS system. We compared the jurisdic-
tion-month combinations flagged by the algorithm, with known 
issues of changes in patterns of child BLLs for two jurisdictions. 
We applied the algorithm to the two jurisdictions consisting of 
two “known positive” jurisdictions (i.e., with a known monthly 
increase in child BLLs ≥5 µg/dl during the study period) and 
18 randomly selected counties from the CBLS. We randomly 
selected 18 counties with no known or suspected change in the 
proportion of children with BLLs ≥5 µg/dl from states provid-
ing continuous childhood BLL surveillance data to CDC during 
the study period (January 2007 to May 2016). This 113-month 
study period was used for method validation and to identify his-
toric patterns of the jurisdiction under consideration. Selected 
counties required for inclusion an average of 10 children with 
BLLs ≥5 µg/dl per month during the full study period.

We considered child blood lead surveillance data in succes-
sive moving windows of 61 months/window. For example, we 
analyzed the data assuming surveillance data were available 
only up to and including January 2012. We used historical data 
from January 2007 to December 2011 (60 consecutive months) 
to establish a baseline, fit models, construct control charts and 
determine if there was a potential problem in month 61 (i.e., 
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January 2012). We then moved to the next analytic window 
(February 2007 to January 2012) and repeated the process. 
Beginning in January 2013, more months of data were avail-
able, so we used 72 consecutive months in our analytic window.

A total of 111 counties from 22 eligible states were avail-
able for random selection, and one county per state was selected 
from eligible states. We extracted CBLS data during October 
2016. At the time of selection, 1,547 counties were in the CBLS. 
Variables included in the analysis were blood lead test result, 
date of test, child birthdate, age of child at test, unique child ID, 
and sample type (i.e., capillary/venous/unknown). Additionally, 
we obtained (via a separate data sharing agreement) blood lead 
data from two jurisdictions in one state where a known increase 
in children with BLLs ≥5 µg/dl had occurred during the study 
period. The 113-month study period was used to match avail-
able data between the randomly selected 18 counties and the 
two jurisdictions obtained via data-sharing agreement.

Although we did not evaluate this potential modification 
empirically, we provide the code for a generalized auto-regres-
sive model with conditional heterogeneity (GARCH model) that 
can account for potentially changing variances over time and 
incorporate other factors, like number of tests into the variance 
calculations. We did not pursue this modification for two rea-
sons: first, it would require additional parameters, possibly add-
ing instability to the model; and second, our empiric evaluations 
(see Results) suggest that the less complicated model works well.

All analyses were conducted using the AUTOREG, CUSUM, 
and SHEWHART procedures in SAS version 9.3 (SAS Institute 
Inc., Cary, North Carolina). Starting with SAS default values, we 
chose parameters for the CUSUM and Shewhart control charts, 
modifying them based on surveillance data evaluation for an 
area (Jurisdiction 1) which had a known increase in the propor-
tion of children with BLLs ≥5 µg/dl. We chose delta = 3 (shift 

to be detected; there is no default, SAS requires input), h = 3.0 
(the decision interval; there is no default, SAS requires input), 
and k = 1.0 (the reference interval; default = SD/2).14 We chose 
parameter values so that the “event” in the two “known posi-
tive” jurisdictions would be detected. SAS codes are presented in 
Supplemental Appendix 1; http://links.lww.com/EE/A78.

Because the SAS output for the method validation is a com-
bined CUSUM and Shewhart control chart for every window 
(generating numerous graphics for each jurisdiction investi-
gated), we reconstructed the SAS-developed algorithm using 
R software (R Foundation for Statistical Computing, Vienna, 
Austria). The R method reconstructed SAS ARIMA (includ-
ing the spline calculation), CUSUM, and SHEWHART proce-
dures. R code and quantitative calculations are presented in 
Supplemental Appendices 2; http://links.lww.com/EE/A79 and 
3; http://links.lww.com/EE/A80. Differences in the ARIMA pro-
cedures between SAS and R were minimal. Comparing SAS and 
R output revealed that typically, residuals and standard errors 
were within 0.01% within the same month (results not shown).

Results were visualized in two ways. The first approach used 
SAS-generated CUSUM/Shewhart chart output; the second 
approach employed the R Shiny application to improve visual-
ization and interpretation of results. R Shiny outputted results 
from each jurisdiction to a single, color-coded, interactive 
graphic using a web browser. The R Shiny application accepted 
data in .csv, .xlsx, or .sas7bdat formats. The method constructed 
the 61st-month windows; performed the reconstructed ARIMA, 
CUSUM, and SHEWHART SAS procedures on each jurisdic-
tion; and outputted a single visualization, where each point was 
color-coded to the alert level of when that point corresponded 
to the final (61st) month of a window. This step reduced the 
time to interpret results from two visualizations (i.e., observ-
ing one CUSUM and one Shewhart chart) per window (96 

Table 1.

Characteristics of 20 selected jurisdictions, January 2007 to May 2016.

  

Among children <6 years of age

  
Blood lead tests 

per month
Blood lead levels ≥ 5 
µg/dL per month^

US region
Population of children 

<6 years (2015)a,b

Percent of housing built 
before 1950 (2015) (%)b Mean Median Mean Median %

Exceed 3σ 
threshold Month of exceedance

West 330,000 3 2,920 2,957 77 37 3 No NA
Northeast 2,000 29 413 413 36 35 9 Yes January 2014
Southeast 75,000 1 541 530 14 12 3 Yes October to December 2015
Midwest 3,000 43 80 77 17 15 22 No NA
Midwest 35,000 20 241 217 31 22 13 No September and October 

2015
Mid-Atlantic 60,000 16 1,589 1,559 66 44 4 No NA
Northeast 35,000 39 1,511 1,510 144 112 10 No NA
Midwest 60,000 9 1,188 1,156 32 29 3 No NA
Midwest 45,000 32 988 999 68 64 7 Yes December 2013
South 5,000 3 36 34 17 16 46 No NA
Midwest 55,000 25 948 922 39 35 4 No NA
Northeast 5,000 26 54 53 18 12 33 No NA
Mid-Atlantic 20,000 19 405 419 32 25 8 Yes December 2015
Northeast 35,000 24 1,162 1,155 40 35 4 No NA
Midwest 10,000 33 288 291 30 25 11 No NA
Southwest 70,000 15 571 602 29 27 5 No NA
Northeast 45,000 46 1,601 1,633 205 171 13 No NA
Midwest 15,000 30 403 396 42 38 11 Yes June 2012
Midwest 30,000 19 654 614 21 20 3 Yes July to October 2014
Midwest 55,000 23 778 709 90 76 11 Yes July and August 2015

Source: U.S. Census Bureau, 2011-2015 American Community Survey 5-Year Estimates, Year Structure Built (Table B25034) https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.
xhtml?pid=ACS_15_5YR_B25034&prodType=table Accessed July 27, 2019.
aSource: U.S. Census Bureau, 2011-2015 American Community Survey 5-Year Estimates, Population under 18 Years by Age (Tables B09001003, B09001004, and B09001005) https://factfinder.census.
gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_15_5YR_B09001&prodType=table Accessed July 27, 2019.
bRounded.
NA, not applicable.

http://links.lww.com/EE/A78
http://links.lww.com/EE/A79
http://links.lww.com/EE/A80
https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_15_5YR_B25034&prodType=table
https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_15_5YR_B25034&prodType=table
https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_15_5YR_B09001&prodType=table
https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_15_5YR_B09001&prodType=table
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visualizations for analyzing 108 months of data), to a single 
visualization with 108 color-coded data points. This approach 
combined the monthly proportion of children with BLLs ≥5 µg/
dl with exceedances of the alerting algorithm at 1-, 2-, and 3-SD 
levels. Users of the R Shiny application have an interface to 
modify the shift to be detected, decision interval, and reference 
interval.

Results
For the method validation component, in the 20 selected juris-
dictions representing 18 states, the average estimated population 
of children less than 6 years of age was 49,500 (range 2,000–
330,000) and the median was 33,400 children <6 years of age. 
On average, the proportion of pre-1950 housing, a risk factor for 
lead exposure,15,16 was 22.8% (range 1%–46%) and the median 
was 23.4%. All regions of the US were represented except for the 
northwest (Table 1). Among the 18 randomly selected jurisdic-
tions, we identified alerting signals in six (33%) jurisdictions in 
113 (1.3%) months. Among all 20 jurisdictions, 36% of children, 
on average, had more than one test over the entire study period.

During the study period (January 2007 to May 2016), all 20 
jurisdictions had both a downward trend in the monthly propor-
tion of children with BLLs ≥5 µg/dl and a seasonal (late summer 
or early fall) increase of children with BLLs ≥5 µg/dl. Figure 1 
demonstrates these two patterns among the four selected counties 
from the study. We identified alerting signals in the two “known 
positive” jurisdictions during the same months when documented 

increases in the proportion of children with BLLs ≥5 µg/dl were 
known to have occurred. CUSUM and/or Shewhart control chart 
output for Jurisdiction 1 exceeded the 3-SD threshold from July 
to October 2014 (Figure 2). In Jurisdiction 2, CUSUM and/or 
Shewhart control chart output exceeded the 3-SD threshold from 
July to August 2015 (Figure 3). Improved visualization of results 
was employed on Jurisdiction 2 (Figure 4).

In sensitivity analyses, 1.4 more children per month, on aver-
age, had BLLs ≥5 µg/dl when considering highest test per month 
compared with highest test per year definitions. Using either 
definition, alerts were raised in the same jurisdictions during the 
same time periods and via the same control charts.

Discussion
Our modified CUSUM/Shewhart algorithm, never employed, 
provides a framework for enhanced CBLS, and offers an efficient, 
rapid secondary prevention approach for identifying changes in 
the proportion of children with BLLs ≥5 µg/dl. Alert signals ret-
rospectively identified time periods in two jurisdictions where 
a known increase in the proportion of children <6 years of age 
with BLLs ≥5 µg/dl occurred. Also, our algorithm accomplished 
adjustment for seasonality and de-trending over time.

In the two jurisdictions where a known increase of children 
with BLLs ≥5 µg/dl occurred, local authorities previously provided 
follow-up and case management of children based on state and 
CDC guidance.17 Among the 18 randomly selected jurisdictions, 
13 (72%) did not have alert signals identified. Alerting signals were 

Figure 1. Proportion of children with blood lead levels ≥5 μg/dl by month from CDC CBLS system among four of 18 randomly selected Jurisdictions (Mid-
Atlantic, Midwest, South, and Northeast), selected dates: January 2007 to January 2016 
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produced for five (28%) jurisdictions with no known increase of 
children with BLLs ≥5 µg/dl. CDC staff examined reporting logs 
and contacted the respective state child lead poisoning prevention 
programs to inquire about the changes. Upon further investiga-
tion, these alerting signals appear to be related to administrative 
changes in data management, not in true increases in number of 
children with BLLs ≥5 µg/dl. In five of the six (83%) jurisdictions, 
we identified possible reasons for the alerts: alerting signals at the 
end of the study period, incomplete reporting, transitioning to new 
surveillance systems, and submission of previously unsubmitted 
data by state programs to CDC. In one jurisdiction, an effort to 
increase blood lead testing in high-risk areas resulted in a 1-month 
148% increase in children tested and a 400% increase in children 
with BLLs ≥5 µg/dl during a 3-SD alerting signal period. Alerting 
signals were not impacted by considering the highest monthly test 
compared to the highest annual test.

To summarize, among the randomly selected 18 jurisdictions, 
the algorithm identified pattern changes with child BLLs with 
most of the alerts appearing to be related to data reporting issues 
and one was a change (increase) in BLL testing. Nonetheless, the 
alert provides an easy-to-implement and efficient approach to 
identify deviations in regular patterns of BLLs that require fur-
ther investigation.

R Shiny (described in the Methods section) can provide child-
hood lead poisoning prevention program staff a user-friendly 
means to visualize and interpret complex time series character-
istics. A pilot-test for use as a desktop-accessible application is 
planned. We used this open-source tool to inspect several years of 
data representing dozens of time windows with a single interac-
tive visualization while retaining alert levels (compared with the 
original SAS output) within a 0.01% range of the 3-SD threshold.

Most counties (1,436/1,547; 93%) in the CBLS did not meet 
our stringent inclusion criterion of at least 10 children with BLLs 
≥5 µg/dl consecutively per month from January 2007 to May 
2016, so we could not evaluate this method among all programs 
that submit CBLS data to CDC. However, the 7% of eligible 
counties represented a sizeable population: 5,517,299 children 
<6 years of age from 22 states (based on 2015 census estimates). 

We expect this algorithm is best suited to geographic areas with 
larger populations (e.g., county). For jurisdictions with fewer 
than 10 children with BLLs ≥5 µg/dl per month, we suggest using 
alternate methods for investigating patterns of children with ele-
vated blood lead test results. For example, applying the algo-
rithm at a higher aggregated level (i.e., combining jurisdictions 
with a potential common lead exposure) may allow users to meet 
our inclusion criterion. Using counts or other measures of cen-
tral tendency of children with elevated blood lead test results is 
another possibility, which requires further analyses. Applying the 
algorithm to very large areas (e.g., statewide) may potentially 
mask localized changes, but alerts generated on higher-level data 
could be further investigated manually.

CUSUM control charts are commonly used in industrial and 
manufacturing process control.18 However, public health sur-
veillance, syndromic surveillance, and outbreak investigation 
methods have also applied control chart and temporal adjust-
ment methodology. Similar to our approach, Hutwagner et al.19 
applied a CUSUM algorithm (without model building and sea-
sonal adjustment) to the CDC National Salmonella Surveillance 
System and, using an expected mean of 5 weeks in the algo-
rithm, were able to detect 29 of 38 of US salmonella outbreaks. 
Hutwagner et al.20 later described a seasonally adjusted CUSUM 
method for bioterrorism syndromic surveillance aberration 
detection using CDC’s Early Aberration Reporting Systems. 
CUSUM methodology proved useful for real-time monitoring 
of hospital-acquired invasive aspergillosis infection and for 
early identification and follow-up of an outbreak.21 Gomes et 
al.22 also used the hospital setting to employ CUSUM, Shewhart, 
and Exponentially Weighted Moving Average charts to detect 
nosocomial infection outbreaks. The authors concluded that 
the three charts used in conjunction were useful for detecting 
nosocomial infection outbreaks and if results are communicated 
rapidly to hospital staff, may lead to prevention of outbreaks.

This study is subject to limitations. The complex method-
ology to adjust for the overall downward trend in childhood 
BLLs, seasonality of childhood BLLs, and autocorrelation 
requires several years of continuously collected data. Local 

Figure 2. CUSUM and Shewhart control chart output for Jurisdiction 1, June to November 2014 (3-SD threshold exceedance occurs during July [Shewhart], 
August [CUSUM], September [CUSUM], and October [CUSUM], 2014).
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lead poisoning prevention programs may not have appropri-
ate blood lead surveillance data to apply the methodology or 
the statistical support to modify the methods to meet local 
conditions. However, we have developed an R Shiny applica-
tion that incorporates the methodology and is available for 
free. Additionally, we were restricted to assessing the potential 
changes in the proportion of children with BLLs ≥5 µg/dl as the 
outcome of interest. Our analysis might be enhanced by assess-
ing certain measures of central tendency (e.g., changes in mean/
median BLLs). Because of differences in reporting limits of clini-
cal laboratories, including users of point-of-care blood lead ana-
lyzers, we did not assign values to BLL results <5 µg/dl because 
it does not accurately reflect real-world conditions. We would 
have liked to validate our algorithm method in more than two 
jurisdictions with documented community lead exposure during 
a specific time period. After we developed the algorithm, we 
contacted state partners to apply it on additional child blood 
lead surveillance data from specific jurisdictions. However, 
jurisdictional lead exposure was not possible to be confirmed 
during a specific time period by our partners, thus not allowing 
for our algorithm to be further validated. Finally, the algorithm 
has the potential for alerting notifications of nonpublic health 
importance because of its high sensitivity. We identified alerts 
resulting from data reporting issues rather than actual changes 
in children’s lead exposure, as measured by BLLs. However, the 

algorithm is designed to alert public health officials to potential 
changes requiring further investigation.

Summary
CDC and partners support primary prevention—the control 
or removal of sources of lead before children are exposed. 
However, this new secondary prevention approach provides a 
framework for enhanced surveillance of childhood blood lead 
data and an opportunity for public health officials to rapidly 
investigate important trends in exposure patterns. Further eval-
uation of the algorithm in real-world conditions by local and 
state health departments can identify and evaluate alert settings 
of public health significance. We provide the practitioner with 
SAS and R code in the appendices.
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Figure 4. CUSUM and Shewhart control chart output for Jurisdiction 2 using R-Shiny Application, January 2007 to May 2016 (3-SD threshold exceedance 
occurs during July and August 2015) 
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