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Abstract

Caveolae are cholesterol- and glycosphingolipid-rich omega-shaped invaginations of the plasma 

membrane that are very abundant in vascular endothelial cells and present in most cell types. 

Caveolins are the major coat protein components of caveolae. Multiple studies using knockout 

mouse, small interfering RNA, and cell-permeable peptide delivery approaches have significantly 

enhanced our understanding of the role of endothelial caveolae and caveolin-1 in physiology and 

disease. Several postnatal pulmonary and cardiovascular pathologies have been reported in 

caveolin-1 knockout mice, many of which have been recently rescued by selective re-expression 

of caveolin-1 in endothelium of these mice. A large body of experimental evidence mostly using 

caveolin-1 knockout mice suggests that, depending on the disease model, endothelial caveolin-1 

may play either a protective or a detrimental role. For instance, physiological or higher expression 

levels of caveolin-1 in endothelium might be beneficial in such diseases as pulmonary 

hypertension, cardiac hypertrophy, or ischemic injury. On the other hand, endothelial caveolin-1 

might contribute to acute lung injury and inflammation, atherosclerosis or pathological 

angiogenesis associated with inflammatory bowel disease. Moreover, depending on the specific 

model, endothelial caveolin-1 may either promote or suppress tumor-induced angiogenesis. In 

addition to overwhelming evidence for the role of endothelial caveolin-1, more recent studies also 

suggest that endothelial caveolin-2 could possibly play a role in pulmonary disease. The purpose 

of this review is to focus on how caveolin-1 expressed in endothelial cells regulates endothelial 

cell signaling and function. The review places particular emphasis on relevance to disease, 

including but not limited to Pulmonary and cardiovascular disorders as well as cancer. In addition 

to caveolin-1, possible importance of the less-studied endothelial caveolin-2 in pulmonary 

diseases will be also discussed.
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Introduction

Caveolae were identified as 50–100 nm omega-shaped, non-coated invaginations of the 

plasma membrane [1–3]. These organelles are found in most mammalian cell types and 

tissues, and are particularly abundant in endothelial cells (ECs), adipocytes, and type I 

pneumocytes [4–6]. The functions originally described for caveolae included cholesterol 

transport [7,8], endocytosis [9], and potocytosis [10]. However, later studies have revealed 

that this morphologically distinct subset of lipid rafts plays a pivotal role in regulating cell 

signaling. Membrane rafts and caveolae concentrate certain membrane proteins and other 

components involved in transport and signal transduction [11–14].

A significant advance in understanding the roles of caveolae was revealed by identification 

of the coat proteins of caveolae: caveolins, VIP21/caveolin-1 (Cav-1), caveolin-2 (Cav-2), 

and caveolin-3 (Cav-3) [15–19]. Cav-1 and Cav-2 are expressed in most cell types including 

all cell types of the cardiovascular system, while Cav-3 is expressed primarily in vascular 

smooth muscle, cardiac, and skeletal muscle. Cav-1 expression is essential for the formation 

of caveolae, whereas the role of Cav-2 can vary depending on cell and tissue type [20–

24].This review will first highlight the mechanistic aspects of Cav-1-mediated regulation of 

EC Signaling and function. Next, the implications of loss or upregulation of Cav-1 in ECs in 

various pathological conditions such as pulmonary hypertension, cardiac hypertrophy, acute 

lung injury, atherosclerosis, ischemia, or pathological angiogenesis associated with cancer 

and inflammation will be discussed (Figure 1). Possible importance of the understudied 

endothelial Cav-2 in diseases will also be debated.

Role of Cav-1 in EC signaling and function

All blood vessels are lined by a monolayer of ECs called the endothelium that helps supply 

nutrients and oxygen to underlying tissues and organs. In ECs, Cav-1 and Cav-1 are 

primarily found in plasma membrane caveolae. Caveolae are most numerous in the 

microvascular endothelia of the lung and are relatively infrequent in the highly restrictive 

microvascular endothelia of the brain, retina, and testes. Interestingly, caveolae are mostly 

absent in passively leaky blood vessels with sinusoidal endothelia such as the liver [25]. It is 

important to note that caveolae contain all of the components required for vesicle formation, 

fission, docking, and fusion with target membranes [26]. Extensive proteomic studies 

revealed many proteins specifically enriched in EC caveolae [27]. A large number of 

signaling molecules that regulate vascular ECs localize to lipid rafts/caveolae. These 

include, among others, receptors e.g., receptor tyrosine kinase (RTK), G-protein-coupled 

receptors (GPCRs), transforming growth factor-beta (TGF-β) type I and II receptors, certain 

steroid receptors, low molecular weight and heterotrimeric G-proteins, and “downstream” 

enzymes and components including endothelial nitric oxide synthase (eNOS) [13,14].

Endothelial permeability

Integrity of endothelial barrier function is very important and any disruption of this barrier 

often leads to excessive accumulation of fluid in the interstitium. This disruption is 

associated with pathological processes such as acute lung injury, inflammation, 

atherosclerosis, or pathological angiogenesis associated with cancer and inflammation, 
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which will be discussed later. Numerous studies have shown that caveolae, and specifically 

Cav-1, are involved in the transport of macromolecules via endothelium. The transcytosis of 

macromolecules was the first role suggested for caveolae [28]. Caveolae have been proposed 

to facilitate the transport of molecules such as albumin [29], iron-transferrin [30], insulin 

[31], low-density lipoproteins (LDL) [29], and chemokines [32]. The transcytosis pathway 

could be essential for the specific and targeted delivery of molecules to certain tissues and 

organs. For example, the transcytosis pathway is believed to be critical for the capillary ECs 

forming the blood brain barrier. The transport of albumin has been the most extensively 

studied event of transcytosis [33]. The transport of albumin is important since this protein 

can bind and carry various small molecules such as fatty acids and steroid hormones. The 

transcytosis of albumin was proposed to be mediated by gp60 receptor localizing to caveolae 

[34] and later caveolae were shown to mediate the endothelial transcytosis of albumin 

[35,36]. In mice injected with gold-labeled albumin, Cav-1 KO ECs were unable to 

transcytose albumin, in contrast to WT [36]. Remarkably, contrary to what could be 

anticipated based on the positive role of caveolae in albumin transcytosis, Cav-1 KO mice 

had increased permeability to albumin due to opening of the paracellular junctions in 

endothelia of small veins and capillaries [37], suggesting a possible interaction between 

transcellular and paracellular pathways in controlling tissue fluid equilibrium. Moreover, 

similar results were reported in mice treated with Cav-1 siRNA [38]. Although the vascular 

aberrations reported in Cav-1 KO mice could be adaptive changes in response to loss of 

Cav-1, recent data suggest the existence of signaling pathways connecting paracellular 

permeability and transcytosis. Specifically, the increase in permeability to albumin is related 

to decreased plasma albumin concentration, atypical morphology of tight junctions, and 

detachment of ECs from the basement membrane, and edema in lungs of Cav-1 KO mice 

[37]. Treatment of Cav-1 KO mice with eNOS inhibitor abolished the augmenting effect of 

Cav-1 loss on paracellular permeability [37], implying that Cav-1 might regulate 

paracellular permeability and adherens junction integrity through eNOS activity. The 

opening of adherens junctions which was observed in Cav-1 KO endothelium suggests that 

Cav-1 is essential for adherens junction assembly or maintenance. Recently, a probable 

mechanistic explanation regarding this phenomenon was provided by Siddiqui et al. [39], 

who, using Cav-1 KO ECs, observed that loss of Cav-1 lead to hyperactivation of eNOS 

further leading to generation of NO and peroxynitrite. Subsequently they determined that the 

GTPase-activating protein (GAP) p190RhoGAP-A was selectively nitrated at Tyr 1105, 

leading to impaired GAP activity and RhoA activation. Inhibition of eNOS or RhoA 

restored adherens junction integrity and reduced endothelial hyperpermeability in Cav-1 KO 

mice. In addition, thrombin also induced nitration of p120- catenin-associated 

p190RhoGAP-A. Taken together, these data suggest that loss of Cav-1 in ECs lead to 

eNOS-dependent nitration of p190RhoGAP-A, and subsequently to adherens junction 

disassembly resulting in increased endothelial permeability. Curiously, in contrast to the 

previously discussed increased basal permeability, studies of Sun et al. [40] revealed that 

Cav-1 KO mice were resistant to hydrogen peroxide-induced pulmonary vascular albumin 

hyperpermeability and edema formation. Moreover, hyperpermeability in response to 

hydrogen peroxide, also observed in Cav-1 KO mouse lung microvessels, was reduced by 

re- expression of WT, but was not reduced by the phosphorylation-deficient mutant of 

Cav-1. The increase in Cav-1 phosphorylation induced by hydrogen peroxide was associated 
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with both enhanced albumin transcytosis and reduced transendothelial electric resistance in 

lung ECs. Hydrogen peroxide-induced phosphorylation of Cav-1 lead to the dissociation of 

vascular endothelial cadherin/beta-catenin complexes and endothelial barrier disruption. 

Taken together, these data suggest that Cav-1 phosphorylation-dependent signaling is 

essential for oxidative stress-induced pulmonary vascular hyperpermeability via 

transcellular and paracellular pathways. Overall, the results of the numerous studies 

discussed previously suggest that caveolae and Cav-1 play a critical role in regulating 

microvascular permeability. Moreover, the regulatory role of caveolae and Cav-1 appear to 

be complex and context-specific, for example basal versus oxidative stress-induced 

microvascular permeability.

eNOS

eNOS plays a central role in regulating cardiovascular and pulmonary functions, and hyper-

activation as well as deficiency in eNOS signaling may be associated with endothelial 

dysfunction which is a hallmark of many pathologies such as pulmonary hypertension, acute 

lung injury, or atherosclerosis, that will be discussed later. eNOS was one of the earliest 

non-receptor proteins localized to caveolae [41]. Numerous studies have characterized the 

interaction between eNOS and Cav-1 in vitro. Specifically, using co-immunoprecipitation 

and domain-mapping approaches, several groups have shown that eNOS directly binds to 

the Cav-1 scaffolding domain (CSD; aa 81–101) of Cav-1 [42,43]. Evidence supporting the 

functional relevance of this interaction in intact cells was shown by delivery of a cell-

permeable peptide containing the CSD or by overexpression of Cav-1 in living cells or 

tissues. In all cases, NO release was reduced, consistent with an inhibitory function of Cav-1 

in regulating eNOS activity [44–46]. Moreover, we have demonstrated that Cav-1 present in 

caveolae but not lipid rafts is capable of inhibiting eNOS under basal but not stimulating 

conditions [46]. This suggests that not only lipid raft but specific caveolar localization is 

necessary for optimal tonic inhibition of eNOS by Cav-1. Subsequently, several studies 

using a Cav-1 KO approach reinforced the negative regulation of eNOS by caveolae and 

Cav-1. Specifically, the two independent studies reporting original phenotypes in Cav-1 KO 

mice, revealed that the basal NO release and cGMP production were both significantly 

higher in Cav-1 KO compared to WT mice [47,48]. These data clearly indicate that loss of 

Cav-1 and caveolae results in hyperactivation of eNOS and associated NO release. 

Moreover, in addition to eNOShyperactivation, a lack of steady contractile tone in Cav-1 

KO aortas, as well as an increased relaxation in response to acetylcholine was reported. This 

was accompanied by a lower L-NAME-sensitive steady-state maximal tension in response to 

phenylephrine. These data clearly indicate that Cav-1 and caveolae are critical for the 

negative regulation of eNOS activity in vivo. Recent data suggest that antioxidants such as 

resveratrol can enhance the generation of NO as a consequence of an increased 

phosphorylation and activity of eNOS in ECs [49]. Notably, in addition to NO that 

stimulates signaling via activation of PKG, local activation of eNOS can also lead to S-

nitrosylation of proteins [50]. In contrast to the stimulating function of free NO, protein 

nitration was later shown to play a negative role in cell signaling and function. For instance, 

recent studies of Zhao et al. [51] have shown that eNOS hyperactivation observed in Cav-1 
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KO mice results in excessive peroxynitrite production and inhibitory nitration of PKG, 

leading to pulmonary hypertension.

Intracellular calcium

Abnormal calcium-ion transport in ECs is often associated with endothelial dysfunction. 

Several proteins participating in calcium-ion transport are targeted to caveolae and are 

regulated by Cav-1. Moreover, caveolar localization and/or interaction with Cav-1 may be 

required for proper functioning of certain calcium-ion channels in various cell types 

including ECs [52]. Pertinent to ECs, studies of Isshiki et al. [53] demonstrated that calcium 

waves originate in endothelial caveolae. In addition, Cav-1 was shown to regulate store-

operated calcium-ion influx via binding via CSD to transient receptor potential channel-1 

(TRPC1) in ECs [54]. Studies by Murata et al. [55] showed that loss of Cav-1 expression in 

ECs abrogated calcium-ion entry due to calcium-ion store depletion as a consequence of 

impaired protein-protein interactions between TRPC1 and 4, and their targeting to plasma 

membrane lipid rafts. They also showed that re-expression of Cav-1 in Cav-1 KO ECs 

restored normal calcium-ion entry, TRPC1 and 4 interactions and their targeting to plasma 

membrane lipid rafts [55]. Taken together, these data suggest that Cav-1 plays the crucial 

function in maintaining proper calcium-ion entry in ECs.

Redox signaling and function

Abnormalities inredox signaling play important role in EC dysfunction and associated 

diseases, such as inflammation or acute lung injury. Experimental evidence suggests that the 

NADPH Oxidase (NOX) complex is preassembled and functional in caveolae and its 

enzymatic activity is further enhanced by recruitment of additional components to caveolae 

[56]. Numerous stimuliorganize NOX components in ceramide-enriched lipid rafts [57,58]. 

Moreover, assembly of such complexes is often initiated by pro-apoptotic signals including 

Fas ligand or TNF-α [59]. Apart from pro-apoptotic signals, lipolysis of triglyceride-rich 

lipoproteins can lead to aggregation of lipid rafts and enhancement of ROS production in 

ECs [60]. Cav-1 was shown to function as a sensor of shear stress in ECs and to regulate 

ROS-mediated signaling via NOX [61]. Proximal NO and superoxide production by eNOS 

and NOX, respectively, might possibly contribute to protein nitration on tyrosine residues. 

Disruption of lipid raft/ caveolae microdomains with cholesterol-sequestering drugs 

dissociates these enzymes from lipid Raft /caveolar domains, resulting in reduced protein 

nitration in bovine aortic ECs [56].

The Heme Oxygenase (HO) family, consists of three membrane bound members: inducible 

HO-1, constitutive HO-2, and HO-3 which is catalytically inactive [62]. Among the products 

generated by HO, carbon monoxide (CO) has been implicated in cell signaling [63]. It was 

also shown that CO can be regulated by NO and potentially mediate vascular function [64, 

65]. In addition, HO-1 was shown to interact with Cav-1 and Cav-2, localize to caveolae and 

to be negatively regulated by Cav-1 [66]. Importantly, genetic evidence suggests that loss of 

Cav-1 in mice protects these animals from hyperoxic damage in the lung due to an increased 

expression and activity of HO-1 [67].
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Mechanotransduction

The endothelium is always exposed to mechanical forces regulating its function [68]. It is 

well recognized that laminar and disturbed flows regulate endothelial function differently. 

For instance, disturbed flow is associated with atherosclerosis or tumor blood vessels. 

Initially, studies by Park et al. [69] revealed that exposure of ECs to shear stress increased 

number of caveolae. Moreover, Rizzo et al. [70] showed that shear stress can also stimulate 

NO production in ECs by promoting the dissociation of eNOS from Cav-1. In another study 

from the same group Rizzo et al [71] demonstrated that exposure of ECs to shear stress 

could also lead to tyrosine phosphorylation of caveolar proteins. Studies of Sun et al. [72] 

have also shown the translocation of numerous signaling molecules to caveolae, 

subsequently leading to activation of the Ras-p42/44/MAPK pathway. Studies involving 

Cav-1 KO mice, and ECs isolated from these mice, further reinforced the functional 

significance for Cav-1 in short- and long-term mechano transduction in the vasculature [73]. 

Most recently, Yang et al. [74] showed that p190RhoGAP links integrins and Cav-1/

caveolae to RhoA in a mechano transduction cascade that participates in endothelial 

adaptation to flow. Taken together, these data suggest that EC caveolae in general, and 

Cav-1 in particular, plays essential roles in controlling normal endothelial response to shear 

stress and vascular flow in vitro and in vivo.

Endothelial Cav-1 and Disease

Numerous pathologies have been reported in Cav-1 KO mice, many of which are likely a 

consequence of a selective loss of Cav-1 in endothelium. Remarkably, specific re-expression 

of Cav-1 in endothelium of Cav-1 KO mice reversed most of pulmonary and cardiac 

pathologies, suggesting that loss of Cav-1 in endothelium might be rimarily responsible for 

both pulmonary and cardiac defects. In addition, endothelial Cav-1 was shown to play an 

important role in other pathologies such as atherosclerosis, tissue ischemia, lung injury, or 

pathological angiogenesis and inflammation (Figure 1).

Endothelial Cav-1 and pulmonary hypertension

Endothelial dysfunction, cell hyper-proliferation and impaired apoptosis are key features of 

pulmonary hypertension. Numerous cardiopulmonary, autoimmune and inflammatory 

diseases, portal hypertension, or exposure to appetite suppressants are known to lead to 

pulmonary hypertension [75]. Regardless of its etiology, pulmonary hypertension is 

associated with endothelial dysfunction, medial hypertrophy, neointima formation, occlusion 

of small arteries leading to elevated pressure, and right ventricular hypertrophy with 

subsequent right heart failure and premature death. Several independent studies have 

demonstrated pulmonary arterial hypertension in Cav1 KO mice [76–78]. Moreover, marked 

reduction of endothelial Cav-1 has been reported in a number of clinical and experimental 

forms of pulmonary hypertension [79, 80, 81]. For instance, Cav1 reduction can be seen in 

rat models of pulmonary hypertension including monocrotaline-induced pulmonary 

hypertension [79, 80] and U5416/hypoxia-induced pulmonary hypertension [82]. 

Specifically, Cav1 (predominantly the EC-restricted isoform Cav1α in the lung) expression 

was decreased in rat lungs starting 48 h after monocrotaline challenge [80]. Intriguingly, the 
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reduction of Cav-1 expression was mainly seen in the intimal layer of the pulmonary arteries 

but not the pulmonary veins. Moreover, reduced Cav1 expression was associated with 

hyperactivation of STAT3 and ERK1/2 signaling in pulmonary ECs upon treatment with 

monocrotalinepyrrole in vivo and in vitro [80]. Interestingly, in addition to rats with 

chemically-induced pulmonary hypertension, a similar increase in tyrosine phosphorylated 

STAT3, and the expression levels of cyclin D1 and D3 were observed in whole lung 

homogenates from Cav-1 KO mice [79]. Importantly, delivery of a cell permeable peptide 

containing CSD reversed pulmonary hypertension and the accompanying increases in 

pulmonary phospho-STAT3, cyclin D1, and cyclin D3 expression in rats exposed to 

monocrotaline [83]. In another rat model of severe pulmonary hypertension, induced by a 

single subcutaneous injection of the VEGFR inhibitor SU5416 and subsequent 3-week 

exposure to chronic hypoxia, Cav1 expression was selectively reduced in the arterial lesions 

[82]. Furthermore, these authors also observed decreased expression of Cav-1 in lungs of 

patients with severe pulmonary hypertension. Specifically, the reduced expression levels of 

Cav1 could be seen in plexiform lesions and in some muscularized precapillary arterioles in 

lung tissues without ignificant change in Cav-1 expression in total lung lysates [82]. In 

contrast to the previously discussed findings, a study by Patel et al. [84] found decreased 

expression of Cav-1 in total lung lysates. In addition, they also observed decreased 

expression of Cav-1 in pulmonary vascular ECs in lung tissues from idiopathic pulmonary 

aortic hypertension patients. Remarkably, in contrast to ECs, Cav1 expression was elevated 

in smooth muscle cells in lung tissues from idiopathic pulmonary aortic hypertension 

patients. These data suggest differential regulation of Cav-1 expression levels between ECs 

and smooth muscle cells during pulmonary hypertension in humans.

Consistent with results reported earlier, recent studies also demonstrated a marked decrease 

of Cav-1 expression in total lung lysates from idiopathic pulmonary aortic hypertension 

patients [51]. Altogether, the results of these studies, strongly suggest that Cav-1, 

particularly as expressed in pulmonary arterial ECs, is a critical regulator of pulmonary 

vascular function and that specific reduction of Cav-1 in pulmonary arterial vessels could 

play an important role in the pathology of pulmonary hypertension in humans.

Since eNOSis an important target of Cav-1, it is not surprising that numerous studies 

explored the possibility that changes in eNOS activity and function could be responsible for 

the pulmonary hypertension seen in Cav-1 KO mice. For example, in one study, treating 

Cav-1 KO mice with the NOS inhibitor l-NAME in the first two months of life, resulted in a 

complete reversal of pathological pulmonary changes, heart hypertrophy and pulmonary 

arterial hypertension [77]. Moreover, they also found evidence for enhanced oxidative stress 

in Cav-1 KO mice that was substantially reduced by chronic l-NAME treatment. Based on 

this data, the authors suggested that a perturbation of NO signaling, together with enhanced 

superoxide production originating from NO synthases, could play a pivotal role in the 

pathogenesis of the pulmonary arterial hypertension seen in Cav-1 KO mice.

In a subsequent study the same group tested the hypothesis that eNOS uncoupling, with 

generation of free radicals superoxide, peroxinitrite drives the cardiopulmonary changes in 

Cav-1 KO mice [85]. Specifically, they determined that the Cav-1 KO vessels produced 

more superoxide, and that the ratio between the essential eNOS cofactor tetrahydrobiopterin 
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(BH4) and its precursor and oxidation product dihydrobiopterin was reduced. This reduction 

in BH4 would most likely uncouple NOS activity, resulting in increased superoxide 

production. Finally, dietary supplementation with BH4 restored the BH4/dihydrobiopterin 

ratio and normalized cardiopulmonary phenotype. Altogether, these data strongly supports 

the idea that loss of Cav-1 uncouples eNOS resulting in free radical production, tissue 

damage and remodeling.

Consistent with Wunderlich’s observations, in another study, using a double knockout of 

Cav-1 and eNOS (Cav-1/eNOS KO), Zhao et al. [51] have shown that Cav-1/eNOS KO 

mice did not develop pulmonary hypertension and the ratio of right ventricle weight/left 

ventricle plus septum weight was normalized in Cav-1/eNOS KO mice. The defects in 

pulmonary vasculatures and alveolar capillary structures as well as vessel wall thickness 

were all corrected in Cav-1/eNOS KO mice. In addition to data with mouse models, they 

also performed studies on samples from idiopathic pulmonary arterial hypertension patients. 

Interestingly, they observed increased eNOS activity and PKG nitration concomitant with 

decreased Cav-1 expression in lung tissues from idiopathic pulmonary arterial hypertension 

patients compared with normal lungs in the absence of marked changes of eNOS and PKG 

expression [51]. These findings are in agreement with previous studies showing that 

decreased Cav-1 expression in lungs with idiopathic pulmonary arterial hypertension is 

mainly in the plexiform lesions [82] and selectively in ECs [84]. Because eNOS is robustly 

expressed in the plexiform lesions of idiopathic pulmonary arterial hypertension lungs [86], 

these data support the idea that eNOS hyperactivation due to loss of Cav-1 is important in 

developing pulmonary hypertension in mice and humans. Moreover, PKG nitration and 

subsequent impairment of its kinase activity is a critical downstream target through which 

hyperactive eNOS induces pulmonary hypertension in mouse models and in humans.

Altogether, the data discussed in this chapter also strongly suggest that loss of Cav-1 in ECs 

is primary responsible for the pulmonary hypertension observed in Cav-1 KO mice and in 

humans. This notion is further supported by the fact that pulmonary hypertension was 

completely reversed in Cav-1 KO mice by a specific re-expression of Cav-1 in endothelium 

[76]. Thus therapeutic approaches restoring Cav-1 expression in endothelium, using cell-

permeable CSD peptide, could potentially be useful in treatment of pulmonary hypertension.

Is loss of Cav-1 expression in ECs the causative factor for cardiac 

hypertrophy?

Cardiac hypertrophy is a critical pathology leading to heart failure. Although ventricular 

cardiomyocytes express primarily Cav-3, surprisingly numerous studies have reported 

cardiomyopathy in Cav-1 KO mice [76,78,87,88] For example, Cohen et al. [87] have 

shown that Cav-1 KO mice develop progressive concentric left ventricular hypertrophy, as 

well as right ventricular dilation. Cav-l expression was restricted to the supporting cells of 

the heart, such as fibroblasts and ECs. Excessive activation of the Ras-p42/p44-MAP kinase 

cascade could be seen in Cav-l KO cardiac fibroblasts and thus the authors concluded that 

these changes in fibroblasts are important upstream factors promoting hypertrophy and 

fibrosis in the adjacent myocytes. Moreover, Cav-1 KO cardiac fibroblasts exhibited 

p42/p44 MAP kinase hyperactivation as compared to WT fibroblasts. This data suggests that 
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the hypertrophy observed in Cav-l KO hearts is a result of a paracrine regulation of 

myocytes fibrosis by hyperproliferating fibroblasts [87]. However, later studies by Murata et 

al. [76] revealed that the mechanism leading to cardiac hypertrophy in Cav-1 KO mice are 

even more indirect and appear to originate in ECs rather than fibroblasts. Specifically, they 

showed that selective re-expression of Cav-1 in endothelium completely reversed cardiac 

hypertrophy and associated fibrosis [76]. Perhaps, additional studies using an independent 

EC-specific promoter such as VE-cadherin are needed to further confirm the importance of 

endothelial Cav-1 in cardiac pathophysiology.

The role of endothelial Cav-1 in acute lung injury and associated 

inflammation

Primary acute lung injury is a direct injury to the lung which may be caused by pneumonia, 

ventilation-associated injury, hyperoxic injury, trauma, and contusion [89–91]. Secondary 

acute lung injury can be caused indirectly by conditions such as severe sepsis, pancreatitis, 

or transfusion-related acute lung injury [89–91]. Acute inflammation has been associated 

with the pathological stages of acute lung injury and acute respiratory distress syndrome, 

along with augmented vascular permeability, fibroproliferation, epithelial cell apoptosis, and 

varying degrees of interstitial fibrosis [89–91]. Results of several studies suggest that 

caveolae and Cav-1 expressed in ECs play a critical role during acute inflammation, 

primarily through regulating the transport of macromolecules such as albumin from the 

blood-space to the tissue-space [37,40,92,93]. Albumin is not endocytosed by Cav-1 KO 

lung ECs and remains in the blood vessel lumen [40]. Caveolae are particularly abundant in 

ECs and transmembrane water channel protein aquaporin-1 is expressed in caveolae of lung 

ECs [94], suggesting that caveolae play a critical role in endothelia-mediated transcellular 

transport of water [94]. Previous studies have suggested that caveolae and lipid rafts 

contribute to non-cardiogenic pulmonary edema during acute lung injury [92,93]. Later 

studies with a specific targeting of Cav-1, using a cell-permeable CSD peptide have shown 

that CSD regulates calcium store release-induced calcium influx in ECs, suggesting a 

potential role in endothelial permeability [95]. Evidence has also been gathered suggesting 

that Cav-1 may play a dual role in regulating microvascular permeability: i.e As a caveolae-

associated structural protein, Cav-1 may control caveolar transcytosis; ii. As a tonic inhibitor 

of eNOS activity, Cav-1 may negatively regulate paracellular permeability [40]. As a result 

of this dual regulation, although the Cav-1 KO mice have lung vascular and fluid balance 

abnormalities, these mice are resistant to acute lung injury relative to WT mice. Moreover, 

Cav-1 KO mice have improved survival following LPS challenge [96,97]. Similar results 

were reported using hyperoxia [67]. Remarkably, Cav-1 KO mice have basal pulmonary 

edema, with elevated extravascular lung water. It has been postulated that this opposing 

tissue pressure may limit further transport and accumulation of pulmonary edema fluid 

because of vascular damage during lung injury [98]. In addition, loss of Cav-1 leads to 

hyperactivation of eNOS and subsequent dampening of Tolllike receptor 4 (TLR4) 

signaling, resulting in decreased innate immune response to LPS that protects from LPS-

induced inflammation and injury [97]. These data are consistent with the previous studies by 

Garrean et al. [96], showing that Cav-1 KO mice have an impaired inflammatory response to 

LPS via NF-κB-mediated pathways. Taken together, the literature discussed in this chapter 
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suggests that Cav-1 expressed in lung microvascular ECs may promote acute lung injury in 

mice. However, EC-specific re-expression of Cav-1 in Cav-1 KO mice or EC-specific Cav-1 

KO approaches will be required to unequivocally determine if loss of endothelial Cav-1 is 

entirely responsible for the protection from lung injury observed in global Cav-1 KO mice.

Endothelial Cav-1 and atherosclerosis

Atherosclerosis is the result of inflammatory and fibro-proliferative responses which reflect 

a complex crosstalk among the vascular wall, circulating cells and cardiovascular risk 

factors. Many studies involving animals and humans have provided the evidence showing 

that EC dysfunction plays a major role in initiation of the atherosclerotic process [99, 100]. 

Substantial reduction in the production, bioavailability, and actions of eNOS is one of the 

major outcomes of EC dysfunction [99,101]. Cardiovascular risk factors (high cholesterol, 

smoking, diabetes, and others) disturb the normal equilibrium of the vascular wall, thereby 

stimulating the expression of adhesion molecules such as E-selectin, P-selectin, ICAM-1 and 

VCAM-1 [102]. As a consequence, circulating leukocytes are attracted to endothelium, 

contributing to an “inflammatory state.” These events are driven by the deposition of low 

density lipoprotein (LDL) and their modification in the subendothelial space [103]. The 

entrapment of LDL particles in the sub-endothelial space of arteries and their subsequent 

modification is believed to be one of the key events that ultimately lead to the development 

of an atheroma [104,105].

Alarge body of evidence suggests that endothelial caveolae and Cav-1 have the potential to 

affect the process of atherosclerosis. Cav-1 is a cholesterol-binding protein that can transport 

cholesterol from the endoplasmic reticulum to the plasma membrane. Moreover, the major 

receptors for high-density lipoprotein, SR-B1, and a scavenger receptor for modified forms 

of LDL, CD36, can localize to caveolae microdomains [106]. In addition, oxidized LDL can 

extract caveolar cholesterol, mislocalize eNOS, and impair NO release [107]. Conversely, 

blockade of HMG CoA reductase with statin-based drugs reduced Cav-1 expression levels 

and led to eNOS activation [108]. In apolipoprotein (ApoE) KO mice, treatment with statin 

decreased Cav-1 expression and increased eNOS activity in vivo. Results of numerous 

studies suggest that Cav-1has a pro-atherogenic function. For example, Cav-1 is upregulated 

in ECs upon LDL exposure [109]; down-regulation of Cav-1 is associated with reduced 

uptake of oxidized DL by ECs [110]. Cav-1 translocation to the plasma membrane is 

enhanced in ECs incubated with LDL. It was shown that oxidized LDL can modify the 

localization of both Cav-1 and eNOS, resulting in impaired eNOS activation by 

acetylcholine, most likely due to disruption of the signaling complex containing eNOS and 

other molecules required for eNOS activation [109]. In another study, it was demonstrated 

that CD36, a class B scavenger receptor which is associated with caveolae, could possibly 

be responsible for this effect [110]. This result is important because impairment of 

endothelium-derived relaxation is observed in both hypercholesterolemic patients and 

animal models [111, 112]. Consistent with these findings, it was also shown that exposure of 

ECs to serum from hypercholesterolemic patients increases the interaction between eNOS 

and Cav-1 [113].
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Although the findings of the above mentioned studies strongly support the importance of 

caveolae and Cav-1, the direct confirmation has been obtained in Cav-1 KO mice. 

Specifically, using Cav-1 KO mice bred to ApoE KO mice, Frank et al. [114] showed that 

the loss of Cav-1 reduces fatty streak lesion formation by c.a. 70%, compared with ApoE 

KO mice. This reduction was associated with lower CD36 expression in the aorta. 

Moreover, plasma LDL levels in Cav-1 KO mice were increased, suggesting a problem with 

either uptake and/or transfers of LDL to peripheral tissues, which is consistent with a role 

for caveolae in the LDL transcytosis process [114]. Because, in addition to ECs, 

macrophages are also involved in LDL uptake, it was important to determine a specific 

contribution of ECs to this process. To address this, an EC-specific reexpression of Cav-1 in 

Cav-1 KO mice was used [115]. These studies revealed that although global loss of Cav-1 in 

an ApoE KO background inhibited atherosclerotic lesion expansion, EC-specific re-

expression of Cav-1 restored this process. Mechanistically, loss of Cav-1 reduced LDL 

infiltration into the arterial wall, promoted NO production, and reduced the expression of 

leukocyte adhesion molecules such as VCAM-1, ICAM-1 and E-selectin. The latter effects 

of global loss of Cav-1 were completely reversed by re-expression of Cav-1 in endothelium 

[115]. Subsequent studies from the same laboratory also determined that endothelial-specific 

overexpression of Cav-1 enhanced the progression of atherosclerosis in mice which was 

associated with reduced EC proliferation, migration, and NO production in vitro and 

increased expression of VCAM-1 in vivo [116]. Taken together, these data strongly suggest 

that Cav-1 expressed in ECs plays a pro-atherogenic role in mouse models of 

atherosclerosis. Interestingly, the clinical evidence obtained to date suggests that Cav-1 

could play an anti-atherogenic role in humans. Specifically, studies of Rodriguez-Feo et al. 

[117] revealed that the expression levels of Cav-1 were significantly lower in carotid 

plaques than non-atherosclerotic vascular specimens harvested from a large group (378) of 

subjects that underwent carotid endarterectomy. Also, low expression levels of Cav-1 were 

associated with plaque instability. Taken together, these results suggest that local down-

regulation of Cav-1 in atherosclerotic lesions might contribute to plaque formation and/or 

instability leading to an increased occurrence of adverse clinical outcomes. Furthermore, 

loss of Cav-1 could be considered as a biomarker of vulnerable plaque with prognostic value 

[117]. Overall, the data using cultured ECs, mouse models of atherosclerosis provide a 

compelling mechanistic evidence for pro-atherogenic role of Cav-1. However, the 

mechanistic aspects of the involvement of Cav-1 in human atherosclerosis remain to be 

elucidated.

Endothelial Cav-1 and pathological angiogenesis associated with cancer 

and inflammation

Angiogenesis is a process of new blood vessel formation that takes place in three clearly 

distinct phases: initiation, proliferation of ECs, and morphogenesis. ECs play the central role 

in the process of angiogenesis. In contrast to the normal vasculature, the new blood vessels 

that develop in response to tumors and other pathological stimuli such as chronic 

inflammation are non-uniformly distributed, branch irregularly, do not conform to a clear 

hierarchical pattern, and are hyperpermeable to plasma and plasma proteins. Several 
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important signaling proteins involved in angiogenesis have been localized to caveolae such 

as the VEGF receptor (VEGFR), the urokinase receptor (uPAR), eNOS, TGF-β receptors.

Experimental evidence has accumulated suggesting that, depending on specific context, 

Cav-1 may play either a positive or negative role in pathological angiogenesis. Original 

studies using WT and Cav-1 KO mice implanted with basic fibroblast growth factor-loaded 

Matrigel plugs revealed reduced angiogenesis in Cav-1 KO mice [118], implying that Cav-1 

is required for optimal postnatal angiogenesis. In addition, three independent studies that 

used in vivo models of tumor-induced angiogenesis involving mouse B16 melanoma cells 

implanted in Cav-1 KO and WT C57BL/6 mice [118,119] and RM-9 prostate cancer cells or 

human prostate cancer LNCaP cells implanted into nude mice [120], have determined that 

Cav-1 plays a pro-angiogenic role in tumor-induced angiogenesis. Specifically, in the first 

study Woodman et al. [118] showed reduced tumor weight, volume, and vessel density in 

Cav-1 KO mice injected subcutaneously (s.c.) with B16 melanoma cells.

Similar results with B16 melanoma implanted in Cav-1 KO mice were reported later by 

Chang et al. [119], reinforcing the idea that Cav-1 plays a pro-angiogenic role in B16 

melanoma-induced angiogenesis in mice. The pro-angiogenic role of Cav-1 was also 

reported by Tahir et al. [120], who observed reduced tumor growth and angiogenesis in 

Cav-1 KO mice using an orthotopic RM-9 mouse prostate cancer model. Altogether, these 

the above discussed data suggest that Cav-1 expressed in host environment, plays a positive 

role in tumor-induced ngiogenesis in vivo. Is Cav-1 expressed in ECs primarily responsible 

for the positive role of Cav-1 in pathological angiogenesis in vivo? Although ECs play a 

central role in the process of tumor-induced angiogenesis, it is also important to remember 

that other host cells such as stromal cells could indirectly modulate the process of 

angiogenesis. Although not done for tumor-induced angiogenesis, the direct role of Cav-1 

expressed in ECs was recently addressed by Chidlow et al. [121] in another murine model of 

pathological angiogenesis associated with inflammatory bowel disease. Specifically, 

angiogenesis was markedly reduced in global Cav-1 KO mice relative to WT mice with 

pharmacologically-induced colitis. Remarkably, specific re-expression of Cav-1 in the 

endothelium of Cav-1 KO mice resulted in increased angiogenesis which was comparable to 

the result in WT mice. These data clearly suggest that Cav-1 expressed in ECs plays a 

positive role in pathological angiogenesis associated with experimental colitis. Thus, Cav-1 

expressed in ECs could be considered as a potential therapeutic target for inflammatory 

bowel disease.

In addition to the previously discussed role of Cav-1 in pathological angiogenesis in vivo, 

numerous studies involving isolated primary ECs also suggest that Cav-1 plays a positive 

role in angiogenesis in vitro. Specifically, at least two studies including Cav-1 KO aortic EC 

support the pro-angiogenic role for Cav-1 in vitro. For example, studies of Sonveaux et al. 

[122] showed that both VEGF-induced signaling and angiogenesis were suppressed in Cav-1 

KO aortic ECs compared to WT counterparts. Consistent with the aforementioned studies, 

Tahir et al. [120] showed that treatment with recombinant Cav-1 restored angiogenic 

functions in Cav-1 KO aortic ECs. A number of studies involving downregulation of Cav-1 

with antisense or siRNA, often combined with Cav-1 overexpression, also support pro-

angiogenic function of Cav-1 in cultured human ECs. Specifically, antisense oligos-
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mediated knockdown of Cav-1 resulted in suppression of capillary tube formation in fibrin 

gel-based angiogenesis assay [123]. Liu et al. [124] showed that overexpression of Cav-1 or 

treatment with cell-permeable CSD peptide increased capillary-like tube formation in 

matrigel, while down-regulation of Cav-1 with antisense decreased capillary-like tube 

formation in matrigel. Studies of Galvez et al. [125] revealed that caveolae-disrupting agents 

cyclodextrin or filipin, or siRNA knockdown of Cav-1 decreased MT1-MMP function, cell 

migration through polycarbonate filters, invasion into collagen gel, and capillary tube 

formation in matrigel. Consistent with the latter studies, Beardsley et al. [126] showed that 

siRNA knockdown of Cav-1 also inhibited directional EC migration in response to VEGF, 

suggesting that Cav-1 is essential for VEGF-induced migration. Taken together, compelling 

experimental evidence has accumulated suggesting that endothelial Cav-1 may promote 

pathological angiogenesis associated with cancer and inflammation.

Some of the clinical studies also seem to support the positive role of Cav-1 in tumor-induced 

angiogenesis (in particular studies showing a positive correlation between Cav-1 

expressions), tumor microvascular density, and often shorter survival time. For instance, Joo 

et al. [127] showed that there was a good correlation between microvascular density and 

Cav-1-specific immunostaining. Their studies were performed on clear cell renal cell 

carcinoma tissue sections from 67 patients undergoing radical nephrectomy, using double 

immunohistochemical staining with specific antibodies against Cav-1 and the EC-specific 

marker CD34. The higher intensity of Cav-1/CD34 co-immunostaining significantly 

correlated with the degree of metastasis and significantly worse survival of patients [127]. 

These data suggest that Cav-1 expressed in tumor ECs might play a pro-angiogenic role in 

the progression of clear cell renal carcinoma, resulting in a poor clinical prognosis for 

patients.

Using double immunofluorescent labeling with antibodies to CD34 and Cav-1, Yang et al. 

[128] determined that the microvascular density values were also significantly higher in 

Cav-1-positive than in Cav-1-negative prostate cancer tumors. Importantly, they also 

observed an increased Cav-1 positivity in tumor-associated ECs, primarily restricted to 

regions with Cav-1-positive tumor cells, corresponding to the higher percentage of Cav-1-

positive microvessels within these regions, as opposed to Cav-1-negative tumors. This data 

suggest that Cav-1 released by prostate cancer cells could play a pro-angiogenic role during 

prostate cancer progression in humans [128]. Using dual-label immunofluorescence staining 

with Cav-1 and CD34 antibodies in hepatocellular carcinoma sections Zhang et al. [129] 

showed a positive correlation between Cav-1 expression and microvascular density, 

implying that Cav-1 plays a positive role in regulating hepatic cell carcinoma tumor-induced 

angiogenesis in humans. Taken together, the results of these clinical studies support pro-

angiogenic role of Cav-1 expressed either in tumor endothelial cells or tumor cells 

themselves.

There is also experimental evidence suggesting that Cav-1 could play an anti-angiogenic 

role. An anti-angiogenic function for Cav-1 has been shown using Cav-1 KO, Cav-1 

overexpression or delivery of cell permeable CSD peptide. In the first study, Brouet et al. 

[130] showed that in vivo transfection of Cav-1 delayed Lewis lung carcinoma (LLC) tumor 

growth in mice. Consistent with Brouet’s study, Lin et al. [131] showed increased tumor 
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growth, angiogenesis, and permeability in Cav-1 KO mice with subcutaneously implanted 

LLC tumors. Moreover, treatment with cell-permeable CSD peptide prevented increased 

tumor microvessel permeability and tumor growth in Cav-1 KO mice. Taken together, these 

data suggest that Cav-1 may play anti-angiogenic role in a murine LLC model of tumor-

induced angiogenesis. Consistent with the Lin’s study using LLC, increased tumor growth, 

angiogenesis and tumor vessel permeability were observed in Cav-1 KO mice 

subcutaneously implanted with B16 melanoma cells [132]. At this point, it is not clear as to 

why results obtained in this study are opposite of previously discussed studies also involving 

a B16 melanoma model of tumor-induced angiogenesis [118,119].

To date, limited clinical evidence is available to support a potential negative role for tumor 

EC-expressed Cav-1 in tumor-induced angiogenesis in humans. Specifically, Shi et al. [133] 

using immunohistochemical labeling with antibodies against Cav-1, VEGF, and CD34 in 

patients with mucoepidermoid carcinoma, showed an inverse correlation between increased 

microvascular density and the expression levels of Cav-1 in tumor microvasculature. These 

data suggest that decreased expression of Cav-1 and increased microvascular density might 

translate into a poor prognosis for patients with mucoepidermoid carcinoma.

It may be important to reconcile studies showing a pro-angiogenic role of Cav-1 with those 

studies indicating an anti-angiogenic role. One of the features of angiogenesis is the balance 

between pro- and anti-angiogenic factors that may depend on a specific tumor model, phase 

of tumor growth and angiogenesis, genetic backgrounds, age, or gender of animals used for 

experiments. Moreover, variations among specific angiogenesis assays in vitro, EC source, 

or pro-angiogenic stimuli may lead to different end result. Numerous studies showed that 

Cav-1 via its scaffolding domainis capable of interacting with and inhibiting function of 

several signaling molecules such as eNOS, PI3K, Src, PKC, or Erk that play a role in 

angiogenesis (see review by [14]. It is likely that when no, or low levels of pro-angiogenic 

stimuli are present, Cav-1 has an anti-angiogenic function. However, once a critical level of 

proangiogenic stimulation is achieved, the functional role of Cav-1 could switch from anti- 

to pro-angiogenic. This notion could be supported by the fact that Cav-1 is essential for 

maintaining intact and functional caveolar membranes. In addition, caveolar targeting may 

be essential for optimal functional activity of many receptors and downstream signaling 

proteins involved in angiogenesis such as VEGFR2 [122, 134], PDGF receptor, Src, eNOS, 

PI3K, or PKC [135]. While the previous studies may explain differences between n various 

models or stages of angiogenesis, it is very difficult to explain the opposite outcome of 

tumor-induced angiogenesis involving the same model such as B16 melanoma. The most 

likely explanation seems to be different KO-targeting approaches and background in which 

these mice were generated. EC-specific re-expression of Cav-1 in Cav-1 KO mice, such as 

that done in Chidlow’s murine model of pathological angiogenesis associated with drug-

induced experimental colitis [121] could possibly help to explain these differences.

Endothelial Cav-1 and Ischemia

Recent studies have directly addressed the functional role of Cav-l expressed in ECs in 

ischemic injury [122,136]. Initially, Sonveaux et al. [122] used Cav-1 KO mice to examine 

the role of Cav-1 in a hindlimb ischemia model. Specifically, evaluation of the ischemic 
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tissue perfusion and histochemical analyses revealed that in contrast to WT, Cav-1 KO mice 

were unable to recover a functional vasculature and lost part of the ligated limbs. ECs 

isolated from Cav-1 KO aorta displayed an impaired response to VEGF stimulation, NO 

production and endothelial tube formation. Cav-1 transfection in Cav-1 KO aortic ECs 

redirected the VEGFR-2 to caveolarmembranes and restored the VEGF-induced ERK and 

eNOS activation. In another study, Jasmin et al. [136] examined the role of Cav-1 in the 

pathogenesis of cerebral ischemia. Initially, using immunoblotting and immunofluorescence 

analyses of rat brains subjected to middle cerebral artery occlusion, they have shown 

increases in the expression levels of Cav-1 and Cav-2 proteins in ECs. Next, they 

investigated the effects of cerebral ischemia in Cav-1 and Cav-2 KO mice and have shown 

marked increase of cerebral volume of infarction and elevated apoptotic index in Cav-1 KO 

relative to WT and Cav-2 KO mice. Importantly, there was a reduced number of 

proliferating ECs in Cav-1 KO ischemic brains as compared to WT counterparts. Similarly, 

the expression levels of eNOS were markedly reduced in Cav-1 KO ischemic brains as 

compared to WT counterparts. These data suggest that Cav-1 expressed in ECs plays a 

protective role during cerebral ischemia in mice. Although both studies strongly support a 

protective role of Cav-1 in mouse models of tissue ischemia, the clinical significance of 

these findings still remains to be determined. Taken together, the results of these studies 

suggest that endothelial Cav-1 is essential for optimal recovery after ischemia-induced 

injury in mouse models of ischemia. However, clinical significance of these observation s 

remains to be elucidated.

Does endothelial Cav-2 play a role in disease?

Original studies revealed a hyperproliferative phenotype in the lung of Cav-2 KO mice and 

suggested ECs as a major hyperproliferating cell type [22]. Interestingly, the identical 

phenotype was in the lungs of Cav-1 KO mice [48]. However, the expression level of Cav-2 

in the lung of Cav-1 KO mice diminishes to ca. 5% of the respective expression level in WT 

mice. In addition, the remaining Cav-2 does not target to plasma membrane lipid raft/

caveolar domains and thus loses any function which is dependent on plasma membrane 

caveolae targeting. In contrast, the expression level of Cav-1 in the lung of Cav-2 KO mice 

is only reduced to 50%, and Cav-1 heterozygotes expressing comparable level of Cav-1 to 

that observed in Cav-2 KO mice do not develop the hyperproliferative phenotype. Overall, 

these findings implicate the lack of Cav-2 rather than Cav-1 as the direct cause for the 

hyperproliferative phenotype in the lung. Interestingly, the major hyperproliferating cell 

type in the lung appears to be VEGF-R2 (known as Flk-1 in mouse) positive and because 

Flk-1 is predominantly expressed in ECs, this observation suggests that Cav-2 may 

negatively regulate lung microvascular EC proliferation. The mechanistic nature of this 

seemingly EC-specific hyperproliferation in the lung requires further investigation. 

Interestingly, as previously discussed for Cav-1, the same EC-specific hyperproliferative 

phenotype observed in Cav-1 KO mice has been implicated in specific diseases such as 

pulmonary hypertension. Moreover, in addition to Cav-1, Cav-2 was also reduced in rats 

with moncrotaline-induced pulmonary hypertension [79]. Remarkably, as determined in a 

rat model of chemically-induced pulmonary hypertension, similar increases in tyrosine 

phosphorylated STAT3, and the expression levels of cyclin D1 and D3 were observed in 
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whole lung homogenates from Cav-1 and Cav- 2 KO mice [79]. However, unlike in Cav-1 

KO mice, the possibility that Cav-2 KO mice have pulmonary hypertension was not 

examined. Nevertheless, based on previously discussed dependence of Cav-2 protein 

stability and plasma membrane lipid raft/caveolar targeting on Cav-1, it is possible that 

reduction/loss of Cav-2 rather than Cav-1 could be more directly responsible for 

hyperactivation of the STAT3 pathway, increased expression of cyclins D1 and D3, and 

pulmonary hypertension in mice and possibly rats with chemically-induced pulmonary 

hypertension. Further studies testing the possibility of pulmonary hypertension in Cav-2 KO 

mice will be necessary. In addition to these in vivo studies, several recently reported studies 

using cultured ECs suggest the importance of Cav-2 in regulating EC proliferation and TGF-

β mediated signaling and function in ECs. Specifically, to test if the hyperproliferative 

phenotype involving Flk-1 positive cells may indicate that Cav-2 plays a negative role in EC 

proliferation, we have compared proliferation potential in lung ECs isolated from WT and 

Cav-2 KO mice. The results of these studies revealed that Cav-2 suppresses lung 

microvascular EC proliferation by inhibiting extracellular signal regulated kinase 1/2 

(ERK1/2) phosphorylation, increased expression of cyclin-dependent kinase (cdk) inhibitors 

p16INK4 and p27Kip1 and activation (hypophosphorylation) of the retinoblastoma (Rb) 

protein, resulting in a reduced cell cycle progression [137]. Consistent with our data in lung 

ECs, more recently, another group has also reported anti-proliferative function of Cav-2 in a 

rat prostate EC cell line (YPEN-1) [138]. These data suggests that in addition to the lung, 

Cav-2 can also inhibit EC proliferation from other organs such as the prostate. Our most 

recent findings suggest that the role of Cav-2 in regulating lung micro-vascular EC 

proliferation is more complex and context-specific [139]. Specifically, we have shown that 

Cav-2 may be a physiological inhibitor of anti-proliferative function and signaling of TGF-β 

in ECs. Mechanistically, Cav-2 inhibits anti-proliferative action of TGF-β by suppressing 

Alk5/Smad2/3 pathway manifested by reduced magnitude and length of TGF-β-induced 

Smad2/3 phosphorylation as well as activation of Alk5/Smad2/3 target genes, plasminogen 

activator inhibitor-1 and collagen type I in Cav-2-positive ECs. Because EC responses to 

TGF-β could be important for various processes such as angiogenesis, atherosclerosis, or 

even for any disorders involving fibrosis due to endothelial to mesenchymal transition, our 

data with exaggerated response of Cav-2 KO ECs to TGF-β may imply that Cav- 2 plays a 

role in some of the above mentioned disorders. However, studies addressing the role of 

endothelial Cav-2 in regulating TGF-β signaling and function in vivo will be necessary.

Conclusions, Future Directions, and Clinical Significance

The literature reviewed here suggests that endothelial caveolae and their major coat protein 

Cav-1 play an important role in regulating cardiovascular and pulmonary function and 

associated disorders. Remarkably, specific loss of Cav-1 in ECs appears to be responsible 

for many of pathologies reported in Cav-1 KO including pulmonary hypertension and 

cardiac hypertrophy (Figure 1). Moreover, endothelial Cav-1 may promote pathological 

processes such as acute lung injury, atherosclerosis, or pathological angiogenesis associated 

with cancer and inflammation. Also, clinical evidence supports the importance of 

endothelial Cav-1 deficiency in development of pulmonary hypertension in patients. 

Remarkably, delivery of a cell-permeable peptide containing CSD proved to effectively 
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prevent the development of pulmonary hypertension, right ventricular hypertrophy, and 

pulmonary artery medial hypertrophy in a monocrotaline-induced pulmonary hypertension 

rat model [83]. Thus, development of therapeutic approaches involving endothelium-specific 

delivery of Cav-1 mimicking peptides or gene therapy restoring Cav-1 expression in 

endothelium of patients with pulmonary hypertension could be of clinical significance. In 

addition to pulmonary hypertension, administration of a cell-permeable peptide containing 

CSD also suppressed tumor progression in mice by blocking microvascular permeability 

[140]. Thus specific delivery of Cav-1 mimetic peptides to tumor blood vessels of cancer 

patients could potentially be exploited in antitumor therapy.

In addition to Cav-1, endothelial Cav-2 may play a role in pulmonary and possibly other 

diseases. However, additional experimental and clinical evidence will be required to 

determine specific importance of endothelial Cav-2 in disease. Despite considerable 

progress, many unresolved issues still remain with respect to caveolae and caveolins, 

although the role of endothelial Cav-1 in pulmonary and vascular diseases seems 

unquestioned. In particular, development of tools allowing endothelial-specific targeting or 

mimicking Cav-1 and possibly Cav-2, will be important because of the ubiquitous 

expression of Cav-1 and -2 proteins.
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Figure 1. The role of endothelial cell (EC) caveolin-1 (Cav-1) in disease
Green indicates pathological processes promoted by a loss of EC Cav-1 in rodent models of 

disease or in patients with pulmonary hypertension. Thus, approaches restoring or 

mimicking Cav-1 expression in ECs from patients with pulmonary hypertension might have 

therapeutic potential. Red represents pathological processes suppressed by a loss of 

endothelial Cav-1 in mouse models of disease. Thus, approaches suppressing Cav-1 

expression or antagonizing Cav-1 function in ECs could potentially alleviate pathological 

processes such as atherosclerosis, or acute lung injury, as well as pathological angiogenesis 

associated with tumor growth and inflammatory bowel disease.
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