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Abstract

Introduction: Intravenous vitamin C was administered following hematopoietic stem

cell transplant tomitigate nonrelapsemortality (NRM) in a Phase II clinical trial.

Methods: Patients with advanced hematologic malignancies received IV vitamin C,

50 mg/kg/day, in three divided doses on days 1–14 after HSCT, followed by 500 mg

bid oral until 6 months.

Results:All patients enrolled (55) were deficient in vitamin C at day 0 and had restora-

tion to normal levels. Vitamin C recipients had a trend for lower nonrelapse mortality

(NRM, 11% vs. 25%, p-value = 0.07) compared with propensity score-matched histor-

ical controls. A similar trend toward improved survival was observed (82% vs. 62%

p= 0.06), with no attributable grade 3 and 4 toxicities to vitamin C.

Conclusion: In patients undergoing allogeneic HSCT, repletion of vitamin C is feasible

and may reduce NRM and improve overall survival. Randomized trials in large uni-

form cohorts of patients are needed to confirm the utility of this easily available and

inexpensive therapy.
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Preparative myeloablative conditioning regimens for hematopoietic

stem cell transplant (HCT) work in large part by widespread, indis-

criminate oxidative damage to DNA [1]. The oxidative stress produced

by these regimens induces variable degrees of enteral mucositis, loss

of functioning epithelial cells and disrupts tight junctions increasing

the translocation of bacterial products and inflammatory cytokines,

an essential factor in the pathogenesis of acute graft versus host dis-

ease (GVHD) [2], which contributes to nonrelapse mortality (TRM) in

myeloablative allogeneic HCT [3, 4].

Therapy to mitigate GVHD incidence contributing to NRM in HCT

recipients without the reciprocal immune deficiency, that immune sup-

pressants cause, is urgently needed. Ascorbic acid (vitamin C) is an

antioxidant/anti-inflammatory agent with the ability to inhibit NF-κB-
driven inflammatory cytokine (IL-6, IL-8, and TNF-α) expression and to
attenuateendothelial permeability [5, 6, 7]. In previous reports, vitamin

C deficiency was observed during the acute phase of HCT and this was

significantly associated with elevated levels of inflammatory markers,

CRP, and ferritin [8, 9, 10].

A Phase II study was developed to prospectively administer par-

enteral vitamin C following HCT, to study the hypothesis that mitigat-

ing the proinflammatory/oxidant effects of HCT with early adminis-

tration of vitamin C will attenuate endothelial and organ injury from

high-dose conditioning and ameliorate GVHD andNRM.

This was a prospective Phase II clinical trial with a safety lead-in

cohort (FDA-IND 138924). This trial was approved by the Institu-

tional Review Board (IRB) at Virginia Commonwealth University

(NCT03613727). The study population included patients 18–78 years

old with acute myelogenous leukemia (AML), acute lymphoblastic

leukemia (ALL), chronic myelogenous leukemia (CML), and myelodys-

plastic syndrome (MDS) who underwent their first allogeneic HCT

from HLA-matched sibling and unrelated donors, matched at either

7/8 or 8/8, HLA-A, -B, -C, -DRB1 loci using high-resolution DNA-based

typing. Patients undergoing nonmyeloablative conditioning were not

included.

An initial cohort of patients (N = 14) were enrolled if they had

low vitamin C levels (< 0.5 mg/dL). Vitamin C levels were checked at

baseline and on day −2 in these patients. Patients were treated with

parenteral vitamin C 50 mg/kg/day (Ascorbic Acid; McGuff Pharma-

ceuticals, Santa Ana, CA) divided into three doses from day+1 through
day+14 and transitioned to oral vitaminC500mg twice daily fromday

+15 through day+180 (Figure S1). Vitamin Cwas given in 50mL of 5%

dextrose and water over 30 min every 8 h in UV-light-protected bags

and tubing. Subsequently, consecutive patients meeting inclusion cri-

teria were enrolled in the trial till study completion (N = 55). Patients

in the vitamin C and historical control cohorts received rabbit anti-

thymocyte globulin (ATG) as a part of the GVHD prophylaxis regimen

predominantly on days −3 to −1 in the historical control and days −9
to−7 in the vitamin C recipients

The primary endpoint was NRM at 1 year; Simon’s two-stage Min-

imax design was utilized for this study. In the first stage, after 14

patients became evaluable, a threshold of 3 or more patients expe-

riencing NRM was set to result in study termination for futility;

otherwise, the study would continue. The total sample size calculated

for Simon’s two-stage design was 55 patients for a reduction in NRM

from 35% to a null-hypothesized value 20% (which would achieve a

desired 15%absolute reduction or a 42% relative reduction).We reject

the null hypothesis if there are 13 or fewer NRMs in the total 55

patients.

For this analysis, comparing clinical outcomes between the study

cohort and a set of historical control patients, propensity score match-

ing was performed to help balance select covariates between groups.

The study team conducted chart review audits to identify similarly

treated patients for the historical control cohort. To accomplish the

matching, a logistic regression model was fit with an intervention

indicator as the binary outcome (intervention vs. historical control),

against three matching variables important in contextualizing allo-

geneic SCT recipients, which include diagnosis (ALL, AML, and CML

+MDS), conditioning regimen (busulfan + cyclophosphamide, fludara-

bine+melphalan, and total body irradiation+ cyclophosphamide), and

CIBMTR disease risk index (high and intermediate/low). The result-

ing probabilities of belonging to the intervention group were used as

propensity scores, with nearest neighbor matching of those scores

used to identify the matching set of historical control subjects in a 1:1

ratio with the trial enrollees.

A Kaplan–Meier step function was performed for mortality

assessment, while cumulative incidence curves were constructed for

relapse (accounting for competing risk of nonrelapse mortality), acute

GVHD, chronic GVHD (accounting for competing risks of relapse

and mortality), and NRM (accounting for relapse). Cox proportional

hazard models were used to estimate adjusted hazard ratios between

the time-to-event outcomes and group, adjusted for patient age,

donor type, stem cell source, disease type, conditioning regimen,

and disease risk. The R (4.1.2) and RStudio (version 2022.02.0) sta-

tistical software platforms were used for all data management and

analysis.

Patients were prospectively enrolled in this study betweenOctober

2018 andOctober 2021 and propensity scoresmatchedwith historical

controls transplantedbetween2015and2018. Follow-upwasupdated

as of February 2023. Patient characteristics are described in Table S1;

55patients received IVvitaminC, including10/10HLA-MRDandMUD

(n= 48) and 9/10 HLAMUD recipients (n= 7; 4 HLA-DQ, 2 HLA-B and

1HLA-Amismatch).

A safety lead-in cohort of 14 patients was initially enrolled. All

patients enrolled were deficient in vitamin C at day 0, with a median

level of 0.3 mg/dL (range: 0.1–0.5). Safety endpoints of lack of myeloid

engraftment, grade 3 acute GVHD and NRM were evaluated in these

patients, without triggering any of the stopping thresholds.

In the entire cohort of patients treated with Vitamin C (N = 55),

times to neutrophil and platelet engraftment were 11 days (range: 9–

15 days) and 12 days respectively (8–21 days). T-cell chimerism at days

30, 60, and 90 following HSCTwas> 95% in the vitamin C group.

Clinical outcomes were generally improved in vitamin C recipi-

ents. NRM (at any time) in the vitamin C-treated group (11%) was

nominally lower compared to the historical control (25%) (HR = 0.4,

95% CI: 0.1, 1.0, p-value = 0.069) (Figure 1A and B), and while overall

survival tended toward improvement (HR = 0.5, 95% CI: 0.2, 1.0,
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F IGURE 1 (A) Cumulative incidence curves depicting NRM in the VC-treated patient. (B)Multivariate model. (C) KM curves depicting
improved survival in the VC-treated patients (p= 0.057). (D)Multivariate model, only donor type and diagnosis were significant.

p-value = 0.065) (Figure 1C and D), neither results achieved statistical

significance in this small varied cohort of patients.

No difference was observed in the risk of acute GVHD in the

control versus study cohorts (grade II–IV, (33% vs. 33%) p-value= 0.81

and grade III and IV, (24% vs. 17%) p-value = 0.35). Moderate to

severe chronic GVHD rate when accounting for competing risks of

relapse and mortality was lower in the Vitamin C group (11% vs.

24%) (adj HR = 0.60, 95% CI: 0.20, 1.76, p-value = 0.352) (Figure S2).

Relapse incidence in the two cohorts was not different (24 vs. 22%, p

value= 0.9).

CMV reactivation (> 200 IU/mL) was not different between histor-

ical controls (36%) and intervention cohort (24%; p-value = 0.35), nor

EBV reactivation (> 500 IU/mL and requiring Rituximab) (33% vs. 35%;

p-value = 0.88). There were no grade 3–5 adverse events attributable

to vitamin C therapy in this trial, particularly no nephrotoxicity or renal

calculi were observed (Table S2).

Vitamin C level (normal 0.4–2.0 mg/dL) was universally low prior to

intervention and was restored to normal by day 14 (Figure 2), while

CRP (normal 0–0.5 mg/dL) rose in the early aftermath of transplant

following conditioning and engraftment, and came down later.

In this paper, the results of a prospective trial evaluating par-

enteral vitamin C in allogeneic HCT are presented, demonstrating

the feasibility of its administration following allogeneic HCT. While

there were nominal improvements in NRM and survival, there was

no statistical evidence of differences between the study cohort and

historical controls. These observations support the hypothesis of vita-

min C associated benefit that merits being tested in a larger cohort of

patients.

NRM diminishes the benefit that comes from the immune graft

versus malignancy effect in HCT. The origin for NRM is in the ini-

tial mucosal and endothelial injury seen following high-dose therapy,

which promotes alloantigen presentation to donor cells, setting up

alloimmune response culminating in GVHD [11, 12]. Proinflammatory

cytokines released following tissue injury from high-dose therapy is a

major contributor to the pathophysiology in these instances [13]. Fur-

ther, due to the oxidative stress of pretransplant conditioning with
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F IGURE 2 (A) Vitamin C levels in the entire cohort of patients. (B) CRP levels at the same time points.

radiation and alkylating agents [14, 15], followed by poor oral intake,

nutrient levels, particularly vitamin C stores are rapidly depleted [16],

leading to a severely deficient state [11, 17, 18]. Given this logic, the

clinical trial reported here was designed to rapidly restore vitamin C

following transplantation and utilize its endothelial stabilizing effect to

reduce the impact of mucosal and endothelial injury post-transplant

[19, 20]. The findings reported support the hypothesis that vitamin

C administration may lower the risk for NRM with possible down-

stream benefit in survival, providing rationale for future studies of this

inexpensive and readily available agent in HCT.

A reduction in inflammation may increase the risk of infections.

Infectionswere seen in the vitaminC recipients, but not at a higher rate

than the matched historical controls, nevertheless given a reduction in

the inflammatory response, this bears close observation in future tri-

als, as was suggested by a randomized trial of vitamin C administration

in patients with early sepsis [21]. Such a trial, of necessity, must be ran-

domized, and optimally conducted in patientswhodo not receive T-cell

depletion (in vivo or ex vivo).

An inherent limitation of our approach is the use of a historical

control group for comparison with our study cohort. The risks of

using historical data are known, as such we contextualize our results

as hypothesis formulating. To help overcome any structural differ-

ences between the two cohorts, we used propensity score matching

to select a set of historical control patients whose aggregate covariate

profile better matched the study cohort.While sample sizes were rela-

tively small, thematching process did improve the comparability of the

covariate distributions between groups.

If vitamin C repletion following high-dose therapy and HSCT is

proven to be of benefit in patients undergoing T-cell replete allografts,

it will be a significant advance on a global scale, particularly in eco-

nomically challenged regions, given its low cost and wide availability.

Therefore, our study demonstrating the absence of increased toxicity

and the potential favorable impact on NRM represents a crucial first

step in that direction.
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