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1  | INTRODUC TION

Our body is endlessly exposed to microbial agents and environmen‐
tal noxious substances. These may cause serious illness, or toxicity 
to the body; therefore, they must be eliminated. This is mediated 
by the innate immune system, which is the first line of host defense 
against foreign invasion. Any disruption in the physical barriers that 
prevent pathogens from entering the body triggers pro‐inflamma‐
tory responses by activating myeloid cells and dendritic cells (DCs) 
that are central players of the innate immune defense. Furthermore, 
pro‐inflammatory responses induce antigen presentation shifting 
from an innate immune response to an acquired immune response. 
B cells and T cells, in which antigen receptors are individually spe‐
cialized by DNA rearrangement, mainly mediate acquired immune 
responses. One of the main features making the innate immune 
system highly specialized is the germline‐encoded receptors dis‐
tinguishing between self and nonself. This discrimination is me‐
diated by membrane‐bound or cytoplasmic pattern recognition 
receptors (PRRs).1 The membrane‐bound receptors are Toll‐like 

receptors (TLRs) and C‐type lectin receptors (CLRs). The cytoplas‐
mic‐type receptors are retinoic acid‐inducible gene I (RIG‐I)‐like re‐
ceptors (RLRs) and nucleotide‐binding and oligomerization domain 
(NOD)‐like receptors (NLRs). These receptors directly sense various 
components from pathogens and distinguish conserved microbial 
structural features, called pathogen‐associated molecular patterns 
(PAMPs).2 The recognition of PAMPs leads to robust innate immune 
responses through the activation of these downstream signaling 
pathways. PRRs also recognize self‐components released from the 
damaged cells, called damage/danger‐associated molecular patterns 
(DAMPs), and can thus be associated with the pathogenesis of many 
diseases.

Allergy is an increasing problem in the health sector, with 
a soaring number of patients in recent years. Accumulating evi‐
dence suggests the importance of the innate immune system in 
the development of allergy susceptibility. Therefore, in this review, 
we will summarize recent advances in the involvement of PRRs in 
allergic diseases, and improvements to current allergy treatment 
modalities.
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Abstract
Innate immune system quickly responds to invasion of microbes and foreign sub‐
stances through the extracellular and intracellular sensing receptors, which recognize 
distinctive molecular and structural patterns. The recognition of innate immune re‐
ceptors leads to the induction of inflammatory and adaptive immune responses by 
activating downstream signaling pathways. Allergy is an immune‐related disease and 
results from a hypersensitive immune response to harmless substances in the envi‐
ronment. However, less is known about the activation of innate immunity during ex‐
posure to allergens. New insights into the innate immune system by sensors and their 
signaling cascades provide us with more important clues and a framework for under‐
standing allergy disorders. In this review, we will focus on recent advances in the in‐
nate immune sensing system.
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2  | T‐HELPER 2 RESPONSE AND ALLERGY

In recent years, although highly criticized, the hygiene hypothesis has 
been proposed to explain the increase in frequency of patients with 
allergy worldwide.3 It suggests that a cleaner environment may lead 
to development of allergic diseases, highlighting that early exposure 
to microbes and parasites during childhood is essential to reduce 
development of susceptibility.4 As evidence in favor of the hygiene 
hypothesis, it is demonstrated that maternal intranasal exposure to 
the nonpathogenic microbe Acinetobacter protected against the de‐
velopment of experimental asthma in the progeny.5

Allergy is characterized by a T‐helper 2 (Th2) hypersensitivity 
response with a significant increase in immunoglobulin (Ig) E. Type 
2 immune responses are characterized by the expression of type 2 
cytokines, such as interleukin (IL)‐4, IL‐5, IL‐9, and IL‐13. Contact 
with bacteria during early development may be protective by induc‐
ing T‐helper 1 (Th1) cell differentiation. Intestinal microbiota also 
plays an important role in the prevention of allergies.6,7 Although 
oral administration of ovalbumin (OVA) abrogates both Th1 and 
Th2 responses in specific pathogen‐free mice, only Th1 responses 
are reduced in germ‐free mice.8 The reconstitution of the intestinal 

microbiota of germ‐free mice suppressed the susceptibility of the 
Th2 responses in neonates,9 suggesting the importance of expo‐
sure to intestinal microbiota at the neonatal stage for prevention 
of allergies.

A high dose of lipopolysaccharide (LPS) promotes Th1 immune 
responses and prevents allergic disease in an OVA‐induced allergic 
asthma model.10 Conversely, a low amount of LPS skews the immune 
response to Th2 type and induces allergic airway inflammation in 
a thymic stromal lymphopoietin (TSLP)‐dependent manner.11 TSLP 
is an epithelial cell‐derived cytokine expressed in the thymus, lung, 
skin, and gut. The release of TSLP,12,13 IL‐25,14,15 IL‐33,16 and gran‐
ulocyte‐macrophage colony‐stimulating factor (GM‐CSF)17 from 
nonlymphoid cells is important for the initiation of Th2 immune re‐
sponses. Furthermore, epithelial cells in the damaged barriers may 
also cooperate in the initiation of Th2 immune responses to repair 
the tissue injury. Activation of group 2 innate lymphoid cells (ILC2s) 
by epithelium‐derived cytokines such as TSLP, IL‐7, IL‐25, IL‐33, and 
also IL‐4 induces the production of type 2 cytokines including IL‐5, 
IL‐9, IL‐13, and epidermal growth factor receptor (EGFR) ligand am‐
phiregulin (AREG) for leading innate type 2 immunity.18‐20 In this con‐
text, the intensity of activation of downstream signaling molecules 

F I G U R E  1   TLR‐mediated signaling pathway. All TLR proteins have LRR and TIR domains (in the balloon). Individual TLRs recognize 
different ligands, such as LPS, triacyl lipopeptide, diacyl lipopeptides, bacterial flagellin, DNA, and RNA. TLRs localize at the cell surface or in 
endosomes. TLRs recruit two adaptor proteins, MyD88 and TRIF. The ligand engagement of TLRs induces the formation of the Myddosome 
(MyD88 and IRAKs) and activates the NF‐κB pathway. TLR3 and TLR4 also induce the formation of a signalosome (TRIF, TRAF3, TBK1, 
and IKKi [IKKε]). Activated IRF‐3 induces type I IFN production. Th1/Th2 polarization into either a Th1 immune response or Th2 immune 
response is dependent on the signal dose through TLRs. IKKi, inducible inhibitor of NF‐κB (IκB) kinase; IRAK, IL‐1 receptor‐associated kinase; 
IRF‐3, IFN regulatory factor 3; LPS, lipopolysaccharide; LRR, leucine‐rich repeat; MyD88, myeloid differentiation primary response 88; 
NF‐κB, nuclear factor‐kappa B; TBK1, TRAF‐associated NF‐κB activator (TANK)‐binding kinase 1; Th1, T‐helper 1; Th2, T‐helper 2; TIR, Toll/
interleukin‐1 receptor; TLR, Toll‐like receptor; TM, transmembrane; TRAF3, TNF receptor‐associated factor 3; TRIF, TIR‐domain‐containing 
adaptor inducing interferon (IFN)‐β
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and pathways may be strongly associated with the development of 
allergy.

3  | TOLL‐LIKE RECEPTORS

The TLRs were the first discovered PRR and are mammalian 
homologues of Drosophila Toll protein involved in innate immune 
response.21,22 Studies over the past two decades have revealed im‐
portant roles of TLRs in a variety of biological phenomena including 
inflammation, the bridging between innate and acquired immune re‐
sponses, and cancer cell proliferation and survival.

3.1 | TLR family

Toll‐like receptors include 10 and 13 family member proteins in 
humans and mice, respectively. The TLR family is evolutionally 
conserved and contains the ligand‐binding domains via leucine‐
rich repeat (LRR) motifs at the N‐terminus and intracellular Toll/
IL‐1 receptor (TIR) domain at the C‐terminus (Figure 1). TLRs act as 
the gatekeepers of host defense to various pathogens through struc‐
ture‐ and sequence‐dependent immune recognition (Figure 1).23‐26 
Most TLRs in humans and mice recognize similar PAMPs with some 
exceptions. TLR11, TLR12, and TLR13 have been lost in the human 
genome, and the Tlr10 gene is disrupted in the mouse genome. 
TLR1 through to TLR9 are conserved in both species. TLR4 recog‐
nizes bacterial LPS. Triacyl and diacyl lipopeptides are recognized 
by dimerization of TLR2 with TLR1 and TLR6, respectively. TLR5 
recognizes bacterial flagellin derived from flagella. TLR9 is a de‐
oxyribonucleic acid (DNA) sensor and recognizes nonmethylated 
cytosine‐phosphate‐guanine (CpG) DNA. TLR3 recognizes double‐
stranded RNAs (dsRNAs), and both TLR7 and TLR8 detect unmodi‐
fied uridine‐rich single‐stranded RNAs (ssRNAs). TLRs localize 
either on the cell surface (TLR1, TLR2, TLR4, TLR5, and TLR6) or in 
endosomes (TLR3, TLR7, TLR8, and TLR9) through the transmem‐
brane (TM) domain (Figure 1).

3.2 | TLR signaling

Once activated by their ligands, individual TLRs recruit two major 
TIR‐containing adaptor molecules, myeloid differentiation primary 
response 88 (MyD88) and TIR‐domain‐containing adaptor induc‐
ing interferon‐β (IFN‐β) (TRIF) (Figure 1). The engagement of all 
TLRs except for TLR3 induces the signaling complex, named the 
Myddosome, which consists of MyD88 and IL‐1 receptor‐associ‐
ated kinases (IRAKs), leading to activation of NF‐κB.27 The ligand 
engagement to TLR3 or TLR4 recruits TRIF, which results in activa‐
tion of IFN regulatory factor 3 (IRF‐3) through a signalosome com‐
plex (TNF receptor‐associated factor 3 [TRAF3], TRAF‐associated 
NF‐κB activator [TANK]‐binding kinase 1 [TBK1], and inducible in‐
hibitor of nuclear factor [NF]‐κB [IκB] kinase [IKKi], also known as 
IKKε, IKBKE). Phosphorylated IRF‐3 translocates into the nucleus 
and eventually induces the production of type I IFN.

3.3 | TLR and allergy

Allergic development is believed to result from genetic backgrounds 
and environmental factors. Mutations in TLR family genes have been 
investigated using single nucleotide polymorphism (SNP) analysis 
and meta‐genome‐wide association studies (GWAS). Indeed, SNPs 
in the TLR4 gene are a risk factor for asthma,28,29 indicating that ge‐
netic variations of TLR family genes are related to susceptibility to 
allergic diseases.

Toll‐like receptor family proteins are differentially expressed 
in all cells types including macrophages, DCs, B cells, regulatory T 
(Treg) cells, and epithelial cells. They are directly capable of interact‐
ing with pathogens or foreign particles in the epithelial barrier and 
influence host immune cell responses with environmental factors. 
Barrier epithelial cells function as an origin of allergic response to ex‐
ternal signals from the mucous membranes of the respiratory tract, 
intestinal tract, or skin. Tight junction barriers are extremely sensi‐
tive to detergents.30 LPS also increases tight junction permeability in 
a TLR4‐dependent manner.31 The dysregulation of the epithelial bar‐
rier may increase uptake of allergens in the pathogenesis of allergy.

Microbial‐treated TLR2/3/4/7/9 knockout mother mice are 
no longer protected from the development of asthma in their off‐
spring,5 suggesting that maternal TLR signaling plays a pivotal role 
in the transfer of protective effects. However, the precise roles of 
TLRs in the development of allergic diseases are greatly influenced 
by many factors, such as cell types, expression level, and the nature 
of antigens. Indeed, TLR4 signaling leads to allergic responses.32‐34 
This TLR4‐mediated allergic reaction develops only by intranasal 
sensitization but not by subcutaneous or intraperitoneal sensitiza‐
tion, suggesting that TLR‐mediated reactions influence the dose of 
immune‐stimulatory components, as well as the route of administra‐
tion and the timing of exposure. Treg cells have also been implicated 
in allergy development.35 Manipulation of Th1/Th2 balance or Treg 
cell function by administrating TLR agonists may be promising for 
the treatment of allergic diseases.36

3.4 | Allergen‐specific immunotherapy for TLRs

Different TLR agonists have been assayed in clinical trials as ad‐
juvants.37 These were further developed in the context of aller‐
gen‐specific immunotherapy (AIT) with different outcomes. Oral 
administration of TLR9 agonists displayed a significant benefit in 
the treatment of asthma and food allergy in mice.38 Several kinds of 
TLR agonists have now been applied to asthmatic or allergic patients 
in clinical trials.37,39 In the case of TLR9 agonists, CpG‐containing 
nucleotides (Amb a 1‐CpG vaccine)40,41 and bacteriophage‐derived 
virion‐like particles (VLPs) packaging A‐type CpG motif42 have 
been shown to be effective in treating rhinitis and allergic asthma. 
Intranasal administration of a TLR7 agonist (AZD8848) and TLR8 
(VTX‐1463) has also reduced nasal symptoms in patients with aller‐
gic rhinitis.43 TLR4 agonist monophosphoryl A (MPL) promotes Th1 
and Treg cell responses in cooperation with switching from IgE to 
IgG blocking antibody production.39
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4  | C‐T YPE LEC TIN RECEPTORS

CLRs recognize a diverse range of nonself PAMPs derived from 
microbes, especially fungi and house dust mites.44‐46 Most cells, 
including DCs and macrophages, express CLRs. CLRs belong to 
the C‐type lectin‐like domain (CTLD) superfamily, which carries 
the carbohydrate recognition domain (CRD). CLRs contain one 
or more conserved CTLD.47 Type II transmembrane CLRs, which 
possess a single CRD, have been most extensively studied among 
CLRs (Figure 2). This subfamily includes DC‐associated C‐type 
lectin‐1 (Dectin‐1, CLEX7A), Dectin‐2 (CLEC6A), macrophage‐in‐
ducible C‐type lectin (Mincle, CLEC4E), DC‐specific intracellular 
adhesion molecule 3 (ICAM3)‐grabbing nonintegrin (DC‐SIGN, 
CD209), and DC NK lectin group receptor‐1 (DNGR‐1, CLEC9A).

4.1 | Dectin‐1, Dectin‐2, and Mincle

Dectin‐1 and Dectin‐2 recognize fungal wall‐derived β‐glucan and 
α‐mannan structure, respectively48 (Figure 2). Both are organized 

in the gene cluster in the human and mouse genomes.49,50 Mincle, 
a member of the Dectin‐2 family, recognizes various glycolipids 
(Figure 2), such as trehalose‐6,6′‐dimycolate (TDM) in the cell wall 
of Mycobacterium tuberculosis,51 glucosyl diacylglycerol (Glc‐DAG) 
of Streptococcus pneumoniae,52 monoglucosyldiacylglycerol (MGDG) 
produced by Group A Streptococcus,53 and others derived from self 
and nonself.54

4.2 | CLR signaling

Dectin‐1 directly transduces the signal through its immunoreceptor 
tyrosine‐based activation motif (ITAM)‐like motif in the cytoplasmic 
domain. Dectin‐2 and Mincle are required for the ITAM‐containing 
adaptor protein Fc receptor common gamma chain (FcRγ, FCER1G) 
(Figure 2). Once ligands are bound to CLRs in a calcium‐dependent 
manner, spleen tyrosine kinase (Syk) is recruited to phosphorylated 
ITAM motifs, leading to cellular activation. In this signaling cascade, 
caspase‐recruitment domain (CARD)‐containing adaptor proteins, 
CARD9 and B‐cell CLL/lymphoma 10 (BCL10), form a complex with 

F I G U R E  2   Type II transmembrane CLR. Type II transmembrane CLR proteins possess a single CRD. Dectin‐1 (CLEC7A) recognizes fungal 
wall‐derived β‐glucans. Dectin‐2 (CLEC6A) recognizes the structure of α‐mannans. Mincle (CLEC4E) recognizes diverse glycolipids including 
TDM, Glc‐DAG, and MGDG. Dectin‐1 transduces the signal through its ITAM‐like motif. Both Dectin‐2 and Mincle associate with FcRγ 
for signaling. Ligand‐bound CLRs result in the Syk‐dependent formation of the CBM (CARD9‐BCL10‐MALT1) complex. The CBM complex 
activates the pathways of MAPK and NF‐κB, leading to pro‐inflammatory cytokine production. BCL10, B‐cell CLL/lymphoma 10; CARD9, 
caspase‐recruitment domain 9; CLR, C‐type lectin receptor; CRD, carbohydrate recognition domain; Dectin‐1, dendritic cell (DC)‐associated 
C‐type lectin‐1; Dectin‐2, DC‐associated C‐type lectin‐2; FcRγ, Fc receptor common gamma chain; Glc‐DAG, glucosyl diacylglycerol; ITAM, 
immunoreceptor tyrosine‐based activation motif; MALT1, mucosa‐associated lymphoid tissue protein 1; MAPK, mitogen‐activated protein 
kinase; MGDG, monoglucosyldiacylglycerol; Mincle, macrophage‐inducible C‐type lectin; NF‐κB, nuclear factor‐kappa B; Syk, spleen 
tyrosine kinase; TDM, trehalose‐6,6′‐dimycolate
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caspase‐like cysteine protease mucosa‐associated lymphoid tissue 
protein 1 (MALT1). CARD9‐BCL10‐MALT1 (CBM) complex activates 
NF‐κB and mitogen‐activated protein kinase (MAPK) pathways, re‐
sulting in the production of pro‐inflammatory cytokines (Figure 2).

4.3 | CLRs and allergy

Dectin‐1 is involved in fungal‐mediated allergic inflammation medi‐
ating T‐helper 17 (Th17) cell differentiation.55,56 Genetic polymor‐
phisms of Dectin‐1, TLR3, and TLR9 are significantly associated with 
susceptibility to severe asthma with fungal sensitization.57 Dectin‐2 
has been implicated in allergic inflammation to house dust mites with 
Th2 polarization.58‐60 A recent study shows that Mincle recognizes 
not only glycolipids but also self‐derived cholesterol sulfate in skin 
epithelial cells and is involved in the induction of allergic skin inflam‐
matory response.61

4.4 | Allergen‐specific immunotherapy for CLRs

Recent findings have shown that allergoids conjugated to nonoxi‐
dized mannan from Saccharomyces cerevisiae are next‐generation 

vaccines targeting DCs through CLRs. These vaccines are candidates 
for AIT of allergic diseases as they promote the generation of Treg 
cells by mechanisms partially depending on programmed death‐li‐
gand 1 (PD‐1) and IL‐10 in both humans and mice.62,63 Phase II clini‐
cal trials for grass‐pollen and house dust mite allergens are currently 
ongoing.64

5  | RIG ‐I‐LIKE RECEPTORS

5.1 | RLR family

Tlr3 ‐deficient cells showed normal type I IFN production toward 
viral infection,65 suggesting that additional mechanisms were hid‐
den in the RNA sensing. As the cytosolic dsRNA sensor sensing 
both RNA helicases, RIG‐I (DDX58)66 and melanoma differentia‐
tion‐associated gene 5 (MDA5, IFIH1) 67 were identified.68 The 
RLR family proteins possess the DExHD motif containing the heli‐
case domain for dsRNA recognition and have the two CARD do‐
mains at the N‐terminus (Figure 3).69 Laboratory of genetics and 
physiology 2 (LGP2, DHX58) lacks a CARD domain and, therefore, 
has no intrinsic signaling activity.

F I G U R E  3   Nucleic acid sensors. RIG‐I and MDA5 have two CARD domains at the N‐terminus and a helicase domain at the center. Both 
RIG‐I and MDA5 bind viral RNAs bearing 5’‐triphosphate or 5’‐diphosphate distinct from the mammalian RNA with 5’ cap structure. After 
viral RNA recognition, RIG‐I and MDA5 interact with IPS‐1 (MAVS) through CARD‐CARD interactions. IPS‐1 (MAVS) is localized on the 
mitochondrial outer membrane. Aggregated IPS‐1 (MAVS) activates TBK1 and IKKi (IKKε) through TRAFs, leading to induction of type I IFN 
via phosphorylation of IRF‐3/7. cGAS binds dsDNA and produces a second messenger, cGAMP, from ATP and GTP. cGAMP binds to STING 
localized on the ER membrane and induces type I IFN production via the TBK1/IRF‐3 pathway. CARD, caspase‐recruitment domain; cGAMP, 
cyclic GMP‐AMP; cGAS, cyclic GMP‐AMP synthase; ER, endoplasmic reticulum; IKKi, inducible inhibitor of NF‐κB (IκB) kinase; IPS‐1, IFN‐β 
promoter stimulator 1; IRF, IFN regulatory factor; MDA5, melanoma differentiation‐associated gene 5; RIG‐I, retinoic acid‐inducible gene I; 
STING, stimulator of IFN genes; TBK1, TRAF‐associated NF‐κB activator (TANK)‐binding kinase 1; TRAF, TNF receptor‐associated factor
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5.2 | RLR recognition and signaling

Retinoic acid‐inducible gene I and MDA5 have different roles in the rec‐
ognition of RNA viruses.70 RIG‐I recognizes relatively short viral RNA 
blunt ends bearing 5′‐di‐/triphosphate distinct from the host cellular 
RNA with 5′ cap structure.71‐73 RIG‐I detects many RNA viruses, such 
as rhinovirus, Sendai virus, vesicular stomatitis virus, and influenza virus. 
RIG‐I‐mediated RNA recognition mechanisms are viral replication‐inde‐
pendent.71 MDA5 responds to longer (over 1k bp) dsRNA,74 such as pol‐
yinosinic‐polycytidylic acid [poly(I:C)], as well as dsRNA generated after 
infection of picornaviruses including encephalomyocarditis virus (EMCV), 
Mengo virus, and Theiler's virus. After viral RNA recognition, RIG‐I and 
MDA5 interact with the downstream CARD‐containing adaptor protein, 
IFN‐β promoter stimulator 1 (IPS‐1, MAVS), through CARD‐CARD inter‐
actions75‐78 (Figure 3). IPS‐1 localizes on the mitochondrial outer mem‐
brane, which triggers prion‐like aggregation of IPS‐179 (Figure 3). The 
aggregated IPS‐1 recruits IRF‐3 kinase and activates the IRF‐3‐TBK1‐IKKi 
(IKKε)‐IRF‐3/7‐IFN‐dependent signaling pathway through TRAFs.

5.3 | RLRs and allergy

Early viral infections in children are associated with further allergic 
sensitization and asthma persistence. Similarly, viral infections in 

asthma patients (both allergic and nonallergic) are also associated 
with asthma exacerbations. In the development of respiratory dis‐
ease, innate immune mechanisms are involved in virus‐infected air‐
way epithelial cells.80 Loss‐of‐function mutations in the IFIH1 gene 
increase susceptibility to severe respiratory infection caused by 
human rhinovirus in children.81,82 A meta‐phenome‐wide association 
study also revealed a novel association of an IFIH1 allele mutation to 
increased risk for asthma.83 In an experimental model, poly(I:C) and 
rhinovirus‐derived dsRNA exacerbated asthma.84‐86 Taken together, 
RLRs play a nonredundant and critical role in the development and 
progression of asthma.

5.4 | cGAS—DNA sensor

Recent studies have revealed the existence of a new intracellular DNA 
sensing system. Cyclic GMP‐AMP synthase (cGAS), a member of nu‐
cleotidyltransferase family, binds dsDNA in a sequence‐independ‐
ent manner but is activated in a length‐dependent manner (longer 
than 94‐bp DNA).87 cGAS undergoes a conformational change of its 
catalytic center and then produces the cyclic GMP‐AMP (cGAMP) 
from ATP and GTP (Figure 3).88‐90 cGAMP acts as second messen‐
ger,91,92 binds to the stimulator of IFN genes (STING),93‐95 localizes 
on the endoplasmic reticulum (ER) membrane, and induces type I 

F I G U R E  4   NLR family, PYD‐containing non‐NLR proteins, and NOD signaling. In the NLR family, there are five major subfamilies 
based on the unique N‐terminal domain structure: NLRA (AD‐type), NLRB (BIR‐type), NLRC (CARD‐type), NLRP (PYD‐type) and NLRX 
(X‐type). All family proteins have a NACHT domain in the central region. NOD2 senses bacterial cell wall‐derived peptidoglycan derivative 
MDP; however, NOD1 only senses Gram‐negative bacteria‐derived iE‐DAP. After sensing ligands, NODs oligomerize and interact with 
RIPK2 through the CARD domain. RIPK2 further activates downstream cascades and MAPK and NF‐κB pathways, leading to cytokine 
production. AD, transactivation domain; BIR, baculoviral inhibitor of apoptosis repeat; CARD, caspase‐recruitment domain; FIIND, 
function‐to‐find domain; HIN200, hematopoietic interferon‐inducible nuclear antigens with 200 amino acid repeats; iE‐DAP, γ‐D‐glutamyl‐
meso‐diaminopimelic acid; LRR, leucine‐rich repeat; MAPK, mitogen‐activated protein kinase; MDP, muramyl dipeptide; NACHT, NAIP, 
CIIA, HeT‐E, and TEP1; NF‐κB, nuclear factor‐kappa B; NOD1, nucleotide‐binding oligomerization domain‐containing protein 1; NOD2, 
nucleotide‐binding oligomerization domain‐containing protein 2; PYD, Pyrin domain; RIPK2, receptor‐interacting serine/threonine‐protein 
kinase 2
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IFN production via the TBK1/IRF‐3 pathway (Figure 3).96,97 cGAMP 
senses viral‐derived DNA as well as host‐derived DNA.98,99 cGAS is 
involved in DNA damage‐induced inflammatory signaling in cancer 
cells.100,101 The cGAS‐STING‐mediated DNA sensing system also 
contributes to the induction of apoptosis, control of ER stress re‐
sponse, and autophagy.

6  | NOD ‐LIKE RECEPTORS

A third group of PRRs are NLRs.102 NLRs are localized in the cy‐
tosol and recognize PAMPs and DAMPs. NLRs carry three unique 
structural properties (Figure 4); the central region is named NOD 
or nucleotide‐binding domain (NACHT), which consists of conserved 
motifs including ATP/GTPase‐specific phosphate‐binding loop and 
magnesium‐binding site; the C‐terminal region contains LRRs, which 
respond to ligand specificity similar to TLRs; the N‐terminal region 
is different among NLRs (Figure 4). Based on the name, NLRs are 
divided into five major subgroups (NLRA, NLRB, NLRC, NLRP, and 
NLRX) (Figure 4). So far, twenty‐five NLR family genes have been 
identified in the human genome.

6.1 | NOD1 and NOD2

NOD1 (CARD4) and NOD2 (CARD15) are founding members of NLR 
family103 and belong to the NLRC subfamily. NOD1 has a single 
CARD domain and NOD2 has two CARD domains at the N‐termi‐
nus (Figure 4). Both NOD1 and NOD2 sense bacterial cell wall‐de‐
rived peptidoglycan derivative γ‐D‐glutamyl‐meso‐diaminopimelic 
acid (iE‐DAP) and muramyl dipeptide (MDP) structures, respectively 
(Figure 4). iE‐DAP is derived from Gram‐negative bacteria, whereas 
MDP is derived both from Gram‐positive and Gram‐negative strains.

6.2 | NOD signaling

Upon recognition, NODs oligomerize and interact with CARD‐
containing receptor‐interacting serine/threonine‐protein kinase 2 
(RIPK2) through the CARD domain, and then activate transforming 
growth factor (TGF)‐β‐activated kinase 1 (TAK1, MAP3K7) and IKK 
complex for leading to MAPK and NF‐κB activation104 (Figure 4). 
NOD1 is widely expressed by a variety of cell types, whereas NOD2 
expression is limited to certain cell types such as hematopoietic 
cells105 and Paneth cells in the intestine.106

6.3 | NODs and allergy

NOD1 and NOD2 promote Th1 and Th17 adaptive immunity by in‐
ducing the secretion of TNF and IL‐1107,108 in addition to Th2 immune 
response,109 suggesting that signaling through these receptors may be 
central to susceptibility and exacerbation of allergies. Although inha‐
lation of NOD1 and NOD2 ligands induces Th2 response, NOD2 ap‐
pears to have more potent activity than NOD1 in Th2‐driven allergic 

inflammation. It is shown that NOD2 displays this function by promot‐
ing the expression of TSLP, OX40 ligand (OX40L/CD252, TNFSF4), and 
IL‐25.110 NOD2‐induced suppression of Treg cell development and in‐
duction of early IL‐4‐secreting cells are completely dependent on TSLP. 
NOD1 cannot induce strong TSLP expression. However, intranasal in‐
fusion of high doses of NOD2 ligands did not break tolerance nor lead 
to asthma susceptibility, indicating a dose‐dependent effect of NOD2 
in allergy development.

Polymorphisms of NOD1 and NOD2 are highly associated with 
inflammation development in the respiratory airways,111 childhood 
asthma,112 and atopic diseases.113‐115 It has been thought that these 
phenotypes arise from a defect in NOD sensing fragments of bac‐
terial peptidoglycan. However, a recent study shows that NODs 
also participate in sensing infection with viruses and parasites by 
inducing ER stress‐induced inflammation,116 and further research is 
needed to elucidate the role of NODs in allergic diseases.

6.4 | PYD‐containing non‐NLRs

The NLRP family has the Pyrin domain (PYD) at the N‐terminal re‐
gion. Similarly to the CARD domain, PYD prefers to assemble to‐
gether; thus, PYD‐containing proteins give rise to a complex. The 
complex formation of NLRs is important for signaling and inflam‐
mation. The overall composition of NLRs is not well characterized 
yet, but it is important to uncover the role of NLRs, especially in 
the inflammasome (Section 7). Studies on additional small mol‐
ecules, such as PYD‐only proteins (POPs) family (Figure 4) and 
CARD‐only proteins (COPs) family, may provide a more detailed 
mechanism.117‐119

7  | INFL AMMA SOME

NLRP family proteins, a subgroup of NLR family, and absent in mela‐
noma 2 (AIM2) form a complex with apoptosis‐associated speck‐like 
protein containing a CARD (ASC, PYCARD) through their PYD do‐
mains and recruit the CARD domain of pro‐caspase‐1, forming the 
inflammasome120 (Figure 5). Inflammasomes are cytosolic multimeric 
protein complexes sensing and responding to pathogenic microbes 
and cellular damage.121 To date, various inflammasomes including 
NLR subfamily proteins (NLRP1 [CARD7], NLRP2, NLRP3, NLRP4, 
NLRP6, and NLRC4 [CARD12]) and PYD‐containing non‐NLR pro‐
teins (AIM2, pyrin (MEFV), and IFN‐γ‐inducible protein (IFI) 16) have 
been identified. Based on the activation mechanism, the inflammas‐
omes are categorized as canonical or noncanonical.

7.1 | Canonical inflammasome

Caspases are a group of cysteine‐aspartic acid proteases, of which 12 
and 10 family members have been identified in humans and mice, re‐
spectively. Caspases play an essential role in programmed cell death and 
are involved in either apoptosis or inflammation along with pyroptosis122 
(Section 8). In the steady state, the caspase family is present in inactive 
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forms called zymogens, which require activation. Inflammasome me‐
diates the activation of caspase‐1 through CARD‐CARD interac‐
tions. Caspase‐1, caspase‐4 (human only), caspase‐5 (human only), 
caspase‐11 (mouse only), and caspase‐12 are known to be involved in 
the inflammatory pathway, and those inflammatory caspase genes are 
clustered in the human and mouse genome.123 Inflammasomes activate 
caspase‐1, resulting in production of pro‐inflammatory cytokines IL‐1β 
and IL‐18 upon activation by various signals124 (Figure 5). Thus, “canoni‐
cal” inflammasome relies on the activation of caspase‐1.

7.1.1 | NLRP3 inflammasome

NLRP3 inflammasomes can respond to a variety of substances includ‐
ing crystals such as urate, cholesterol, asbestos, silica, aggregated 
amyloid‐β, and islet amyloid polypeptide.125 As a direct interaction of 
NLRP3 with these substances has not been detected, NLRP3 inflam‐
masome activation is considered to occur via mitochondrial and lyso‐
somal damage. Reactive oxygen species (ROS) also trigger NLRP3 
inflammasomes priming.126 Extracellular ATPs released from acti‐
vated or necrotic cells activate P2X purinoceptor 7 (P2X7, P2RX7) 

receptor127 and induce caspase‐1 activation, leading to IL‐1β produc‐
tion via formation of an NLRP3 inflammasome.128 IL‐1β is critically 
involved in Th17 cell differentiation, production of Th17‐associated 
cytokines, and neutrophilic inflammation.129 In addition to the Th2 
response, a Th17 response is associated with asthma, notably severe 
glucocorticoid‐resistant asthma.130 From various studies of human 
diseases and mouse models, the elevation of IL‐1β and IL‐18 is associ‐
ated with the development of allergic diseases, such as asthma, der‐
matitis, rhinitis, and conjunctivitis.131 All these events are connected 
with inflammasome activation and suggest participation of the in‐
flammasome in the development and progression of asthma. Th2 
and Th17 inflammatory pathways are mutually regulated in asthmatic 
patient samples.132 Type II cytokine suppression promotes Th17 re‐
sponses, indicating that combined therapy targeting both Th2 and 
Th17 responses may benefit asthmatic patients.

7.1.2 | AIM2 inflammasome

Cytoplasmic dsDNA sensor AIM2 is a member of IFI20X/IFI16 
family.133 In normal conditions, the N‐terminal PYD of AIM2 

F I G U R E  5   Inflammasome. NLRP3 forms a complex with ASC through their PYD binding each other and recruiting the CARD domain of 
pro‐caspase‐1. After assembly, this multimeric complex is called the inflammasome (upper box). In the canonical inflammasome assembly, 
ligand‐sensing NLRs (NLRP1, NLRP3, NLRP6, NAIP/NLRC4, and AIM2) (blue balloons) form multisubunit disk‐like structures comprising 
an inner ring and outer ring. Pro‐caspase‐1 is located in the central portion (black balloon). Activated caspase‐1 processes IL‐1β/IL‐18 and 
triggers proteolytic cleavage of GSDMD (brown boxes). In the noncanonical inflammasomes, caspase‐11 and caspase‐8 participate in the 
cytoplasmic LPS sensing pathway and Dectin‐1‐CBM signaling pathway, respectively (pink boxes). Activated caspase‐11 cleaves GSDMD 
similarly to caspase‐1 (red arrow). GSDMD‐derived NTD induces pore formation for pyroptosis and stimulates the NLRP3 inflammasome 
pathway (black arrows). Activated caspase‐8 with FADD is capable of cleaving pro‐IL‐1β/pro‐IL‐18 (red arrow). Caspase‐8 may positively 
regulate NLRP3 inflammasome pathway (red arrow). AIM2, absent in melanoma 2; ASC, apoptosis‐associated speck‐like protein containing 
a CARD; CARD, caspase‐recruitment domain; CBM, CARD9‐BCL10‐MALT1; Dectin‐1, lipopolysaccharide; GSDMD, gasdermin D; LPS, 
lipopolysaccharide; LTA, lipoteichoic acid; NAIP, NLR family apoptosis inhibitory protein; NLRC4, NLR family CARD domain containing 4; 
NLRP1, NLR family Pyrin domain containing 3; NLRP3, NLR family Pyrin domain containing 3; NLRP6, NLR family Pyrin domain containing 6; 
NTD, N‐terminal domain; PYD, Pyrin domain
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maintains an autoinhibitory state through interaction with C‐
terminal hematopoietic IFN‐inducible nuclear proteins with a 
200‐amino acid repeat (HIN‐200) domain, which directly binds 
to the sugar‐phosphate backbone of dsDNA in a sequence‐in‐
dependent manner.134,135 The ligand binding to the HIN‐200 do‐
main triggers the activation of the AIM2 inflammasomes, leading 
to pyroptosis and the production of IL‐1β and IL‐18.136‐139 The 
AIM2 inflammasomes play an important role in infection, can‐
cer, and autoimmunity 140 by sensing of virus/bacteria‐derived 
dsDNA and tumor‐derived DNA.141,142 A recent study shows 
that AIM2 is dispensable for inflammasome activation in some 
primary human myeloid cells, where STING‐dependent cell 
death can trigger NLRP3 inflammasome activation by induc‐
ing potassium efflux.143 This result implicates the presence of 
a cell‐type‐specific alternative pathway in the dsDNA sensing 
system. Inflammasome‐derived caspase‐1 binds to cGAS and 
restricts its downstream STING‐TBK1‐IRF‐3/7‐IFN‐dependent 
signaling pathway by cutting out cGAS,142 implicating a crosstalk 
between type I IFN production and the inflammasome. cGAMP 
also functions in the priming and activation of AIM2 and NLRP3 
inflammasomes.144

7.1.3 | Other inflammasomes

NLRC4 inflammasomes are activated by NLR family apoptosis in‐
hibitory protein (NAIP) harboring three baculoviral inhibitor of 
apoptosis repeat (BIR) domains at N‐terminus.145,146 NAIP fam‐
ily proteins detect monomeric flagellin or the needle/rod regions 
of type III secretion system (T3SS),147‐150 leading to the activation 
of downstream NAIP/NLRC4 inflammasome responses. The tran‐
scription of Naips is regulated by the transcription factor IRF‐8.151 
NLRC4 is implicated in the exacerbation of psoriatic lesions,152 
and NLRP4 mutation is associated with exacerbation of asthma in 
smoking adults.153 Polymorphisms of NACHT‐LRR in NLRP12 and 
the promoter regions of NLRC4 and NLRP1 are associated with at‐
opic dermatitis.113 The elusive other inflammasomes remain of out‐
standing interest.

7.2 | Noncanonical inflammasome

Caspase‐11 senses cytosolic LPS with noncanonical function154‐158 
(Figure 5). This intracellular LPS sensing can trigger caspase‐11‐me‐
diated pyroptosis under a TLR4‐independent mechanism.159‐161 In 
this caspase‐1‐independent pathway, murine caspase‐11 (caspase‐4 
and caspase‐5 in humans) directly senses LPS through its CARD do‐
main.162 Thus, “noncanonical” inflammasomes can lead to the acti‐
vation of caspase‐11. The NLRP3 inflammasome is involved in both 
canonical and noncanonical activation. Interestingly, the NLRP6 
inflammasome senses Gram‐positive bacteria‐derived lipoteichoic 
acid (LTA) (Figure 5).163 In this activation mechanism, NLRP6 re‐
cruits both caspase‐1 and caspase‐11. The processed caspase‐11 
induces caspase‐1 activation, resulting in the production of IL‐1β 
and IL‐18.

7.2.1 | Caspase‐8

Caspase‐8 is known to play a central role in apoptosis as initiator and 
apical activator. Caspase‐8 has two death effecter domains (DEDs) in 
its N‐terminus and is structurally different to CARD‐containing inflam‐
matory caspases. Interestingly, caspase‐8 has been shown to form a 
noncanonical inflammasome in response to fungal and mycobacte‐
rial infection by Dectin‐1.164 Fungal PAMPs activate Dectin‐1 signal‐
ing to induce a noncanonical caspase‐8‐ASC with CBM complex in a 
caspase‐1‐independent manner.165 Caspase‐8 assumes its inflamma‐
tory roles by inducing IL‐1β activation165,166 (Figure 5). Furthermore, 
caspase‐8 mediates both canonical and noncanonical NLRP3 inflam‐
masome priming and activation with a death domain (DD)‐containing 
adaptor protein Fas‐associated protein with DD (FADD).167 Caspase‐8‐
mediated IL‐1 signaling promotes Th2 responses in allergic airway in‐
flammation,168 implicating its therapeutic potential for asthma.

7.3 | Inhibition of inflammasome activation

Inflammasomes are multiple protein complexes; therefore, abnormal 
assembly causes hyperinflammatory conditions, as in the case of 
skin inflammation in NLRP1 germline mutation.169 Some pathogens 
are able to selectively inhibit the activation of the caspase‐11‐medi‐
ated noncanonical NLRP3 inflammasome.170 However, the regula‐
tory mechanisms of inflammasomes are not fully understood and 
need further characterization. Interestingly, a recent study shows 
that TAK1 restricts the NLRP3 inflammasome to regulate cell ho‐
meostasis and death in myeloid cells.171 TAK deficiency promotes 
spontaneous NLRP3 inflammasome activation. TAK1 inhibits the 
activation of DD‐containing receptor‐interacting serine/threonine‐
protein kinase 1 (RIPK1). Activated RIPK1 induces the caspase‐8‐
FADD pathway. TAK1 inactivation induces RIPK1 activation, leading 
to the caspase‐8‐dependent pathway,172 indicating that RIPK1 plays 
a role upstream of caspase‐8. This machinery is also associated with 
neuroinflammation, aging, and infection.173 Hence, the mechanism 
requires further investigation to understand the implications of in‐
hibiting inflammasome activation.

8  | PYROPTOSIS

8.1 | Pyroptosis

Pyroptosis is one form of cell death and is morphologically differ‐
ent to apoptosis and necrosis. Apoptosis is an immunologically si‐
lent death mode while necrosis and pyroptosis are pro‐inflammatory 
death modes tightly associated with inflammation.174 Caspase‐1 is 
a key player of pyroptosis in cell death (canonical inflammasome). 
As described above, caspase‐11 also contributes to the central 
mechanism of pyroptosis (Figure 5).155 Pyroptotic cells release their 
entire cellular contents including nuclear and mitochondrial DNA. 
Pyroptosis preferentially occurs in macrophages, monocytes, and 
DCs. Neutrophil cell death is called NETosis (neutrophil extracel‐
lular traps) and releases chromatin components to the extracellular 



     |  1669MAEDA Et Al.

space.175,176 It is found that NETosis‐derived dsDNA mediates al‐
lergic asthma exacerbations during rhinovirus infection,177,178 sug‐
gesting dsDNA acts as an adjuvant to boost type II‐mediated allergic 
inflammation.

8.2 | Gasdermin

The gasdermin (GSDM) family consists of six member proteins 
(GSDMA, GSDMB, GSDMC, GSDMD, GSDME, and Pejvakin).179 
The molecular mechanisms underlying pyroptosis and GSDM fam‐
ily functions have been elucidated.161,180‐186 Activated caspases di‐
rectly cleave GSDMD into two fragments, the N‐terminal domain 
(NTD) and C‐terminal domain (CTD). The NTD of GSDMD oligomer‐
izes to form a pore on the cell membrane. This formation perforates 
the plasma membrane and initiates pyroptosis, leading to inflamma‐
some‐mediated secretion of mature IL‐1β and IL‐18 (Figure 5). Recent 
studies show that GSDMD is involved not only in pyroptosis but also 
in NETosis.187‐189

8.3 | GSDMB and allergy

Importantly, the genome locus of GSDMB and orosomucoid 1‐like 3 
(ORMDL3) on chromosome 17q21 is strongly associated with child‐
hood‐onset asthma.190,191 GSDMB is highly expressed in airway epi‐
thelial cells.192 GSDMB‐mediated pyroptosis in epithelial cells may 
be involved in the pathogenesis of asthma. Furthermore, GSDMB 
transgenic mice assume asthma symptoms in the absence of airway 
inflammation,192 implicating that the induction of GSDMB triggers 
asthma.

9  | ALPK1‐TIFA‐NF‐κB A XIS

Besides LPS itself, ADP‐β‐D‐manno‐heptose (ADP‐Hep) and D‐
glycero‐β‐D‐manno‐heptose 1,7‐bisphosphate (HBP),193‐195 inter‐
mediate products of the LPS biosynthetic pathway, activate the 
NF‐κB signaling pathway (Figure 6). ADP‐Hep is more potent than 
HBP. TRAF‐interacting protein with forkhead‐associated domain 
(TIFA) was originally identified as a TRAF2‐binding protein that is 
involved in the NF‐κB pathway.196 Both ADP‐Hep and HBP sensing 
trigger TIFA oligomerization.193 Recent studies have shown that 
TIFA oligomerization can be induced by ADP‐Hep or ADP‐heptose 
7‐P that is converted from HBP by host adenylyltransferase en‐
zymes of the nicotinamide mononucleotide adenylyltransferase 
(NMNAT) family (Figure 6).197 Alpha‐kinase 1 (ALPK1), a member 
of the atypical kinase family alpha kinases, is necessary for phos‐
phorylation‐dependent formation of TIFA oligomerization.194,195 
These sugar molecules directly bind the N‐terminal domain of 
ALPK1, stimulating its kinase domain to phosphorylate and acti‐
vate TIFA. The role of ADP‐Hep as a PAMP was further confirmed 
on comparison with synthetic HBP.198 This ADP‐heptose sensing 
system stimulates host innate immune responses.

10  | CONCLUSION

Over 20 years, we have witnessed a remarkable advance in under‐
standing the mechanism of pathogen recognition by the innate im‐
mune system. New players involved in the innate immune system 
continue to be reported. However, despite enormous efforts, our 
knowledge of how the innate immune system is involved in the 
development of allergic diseases is still limited, and feasible target 
molecules or pathways are yet to be discovered. It is necessary to 
determine how pathogen recognition molecules and subsequent 
signaling pathways are involved in the development of allergic 
diseases.

F I G U R E  6   ALPK1‐TIFA‐NF‐κB axis. Once HBP and ADP‐Hep, 
bacterial products of the LPS biosynthetic pathway, are transported 
into the host cell, both types of sugars activate NF‐κB signaling 
pathway. ADP‐heptose 7‐P, which is converted from HBP by host 
enzyme NMNAT, interacts to N‐terminus of ALPK1. Activated 
ALPK1 phosphorylates TIFA and induces the TIFA oligomerization 
with TRAFs, named TIFAsome. ADP‐Hep can also interact with 
ALPK1 in the same fashion, leading to the activation of NF‐κB and 
inflammation. ADP‐Hep has much more potent NF‐κB activator 
than HBP. ADP‐Hep, ADP‐β‐D‐manno‐heptose; ALPK1, alpha‐
kinase 1; HBP, D‐glycero‐β‐D‐manno‐heptose 1,7‐bisphosphate; 
LPS, lipopolysaccharide; NMNAT, nicotinamide mononucleotide 
adenylyltransferase; TIFA, TRAF‐interacting protein with forkhead‐
associated domain; TRAF, TNF receptor‐associated factor
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