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Abstract: We present the integration of a flow focusing microfluidic device in a dielectrophoretic
application that based on a tapered aluminum microelectrode array (TAMA). The characterization
and optimization method of microfluidic geometry performs the hydrodynamic flow focusing on the
channel. The sample fluids are hydrodynamically focused into the region of interest (ROI) where the
dielectrophoresis force (FDEP) is dominant. The device geometry is designed using 3D CAD software
and fabricated using the micro-milling process combined with soft lithography using PDMS. The
flow simulation is achieved using COMSOL Multiphysics 5.5 to study the effect of the flow rate ratio
between the sample fluids (Q1) and the sheath fluids (Q2) toward the width of flow focusing. Five
different flow rate ratios (Q1/Q2) are recorded in this experiment, which are 0.2, 0.4, 0.6, 0.8 and
1.0. The width of flow focusing is increased linearly with the flow rate ratio (Q1/Q2) for both the
simulation and the experiment. At the highest flow rate ratio (Q1/Q2 = 1), the width of flow focusing
is obtained at 638.66 µm and at the lowest flow rate ratio (Q1/Q2 = 0.2), the width of flow focusing is
obtained at 226.03 µm. As a result, the flow focusing effect is able to reduce the dispersion of the
particles in the microelectrode from 2000 µm to 226.03 µm toward the ROI. The significance of flow
focusing on the separation of particles is studied using 10 and 1 µm polystyrene beads by applying a
non-uniform electrical field to the TAMA at 10 VPP, 150 kHz. Ultimately, we are able to manipulate
the trajectories of two different types of particles in the channel. For further validation, the focusing
of 3.2 µm polystyrene beads within the dominant FDEP results in an enhanced manipulation efficiency
from 20% to 80% in the ROI.

Keywords: tapered aluminum microelectrode array; dielectrophoresis force; hydrodynamic flow
focusing; microfluidics

1. Introduction
1.1. Microfluidic Technology for Biological Analysis

The manipulation and separation of targeted particles from their sample play an
essential role in biomedical analysis. Recent developments in microfluidic technology and
the manipulation and separation of particles can be achieved on a chip. The advantages
of this method are portability, only a small amount of sample is required, low cost and
low time consumption compared with the conventional method [1,2]. The difference in
size, density [3,4], magnetic properties [5] and dielectric properties [6,7] can manipulate
the targeted particles from their sample.

Microfluidic separation can be classified into three categories, which are active, passive
and combined techniques, as can be seen in Figure 1. Active techniques use an external
field to manipulate the movement of the particle while the passive technique involves the
interaction between the microchannel structure and the flow field to manipulate the parti-
cles. To support the present work, a hydrodynamic flow focusing technique, Tanyeri et al.
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developed a focusing channel inlet that is identical to the inlet used in this study to achieve
high manipulative outcomes [8–10]. According to Gossett et al., the microfluidic devices
were fabricated using standard photolithographic methods and they used the SU-8 mold,
which is easily damaged [11]. However, we used a 3D printing mold or computer numer-
ical control (CNC) milling process, which have the advantage of being able to be used
multiple times without causing damage. Furthermore, in this current work, we integrated
with a tapered aluminum microelectrode array (TAMA) to reduce the dispersion width
and improve the particle manipulation efficiency.
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Alazzam et al. proposed a microfluidic device capable of separating green fluorescent
protein-labeled MDA-MB-231 and other types of cancer cells from healthy ones using
planar interdigitated dielectrophoresis (DEP) microelectrodes [12]. Chen et al. designed
and fabricated an ICEO microfluidic chip that combined DEP to separate particles with
different dielectric properties of yeast cells from silica particles continuously [13]. Li et al.
created a miniature isomotive DEP-based continuous cell-sorting device integrated with
a microfluidic chip to distinguish between living and dead yeast cells [14]. Yang et al.
demonstrated the development of a DEP microfluidic device with interdigitated microelec-
trodes to concentrate and selectively capture listeria cells bonding with antibodies from
other types of cells [15]. Choi et al. demonstrated a microfluidic device for DEP based on a
trapezoidal electrode array (TEA) for separating different sizes of polystyrene beads [16].
In 2009, Wang et al. developed a microfluidic DEP separation device with interdigitated
microelectrodes in the sidewalls of microchannels for the separation of beads and cells [17].
The recent trends in incorporating the microfluidic principle with the DEP technique as
well as their applications are discussed. However, none of them focus on the TAMA profile
microelectrode. They cover different aspects of various designs. Moreover, our study
concentrates on the TAMA profile microelectrode.

Active sorting techniques such as DEP are among the most familiar separation tech-
niques that have been studied in recent research [18–20]. DEP is a method that utilizes the
dielectric properties of particles [21]. In this technique, different dielectric particles can
be manipulated by implementing a sinusoidal time-varying and spatially non-uniform
electrical field. Particles that are more polarizable than the suspended medium will move
toward the region of the strong electrical field and such a movement is called positive
dielectrophoresis (PDEP). In contrast, the particles that are less polarizable than the sus-
pended medium will move toward a low electrical field. This motion is referred as negative
dielectrophoresis (NDEP) [22–26]. This scenario plays an important role in the biomedical
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analysis as it depends on the success of the separation and isolation of particles from their
main sample.

In this study, a TAMA profile microelectrode is used which in turn generates a non-
uniform electric field for a DEP force (FDEP). A TAMA consists of an aluminum micro-
electrode array on a silicon substrate and is fabricated based on the CMOS processing
technique [27,28]. Based on the investigation from our previous studies, the FDEP produced
by this microelectrode produced a higher gradient non-uniform electrical field from the top
and bottom edges of the microelectrode [29,30]. It managed to separate and isolate more
than one type of particle depending on the FDEP acting on the particles by adjusting the
frequency of the electrical field.

Through a TAMA type of microelectrode, the manipulation of targeted particles has
only been studied in the gap between two edges of microelectrodes called the region
of interest (ROI) [31]. At this region, the magnitude of the FDEP is dominant and strong
enough to influence the movement of the particle while in the other region, the fluid-particle
interaction will be dominated by the fluid flow consequently affecting the DEP effect on
the particles [32]. Thus, it faces a challenging problem to manipulate all of the particles as
the particles will disperse all around the microelectrodes once it is fed to the channel.

As a solution to this problem, we proposed the integration of a hydrodynamic flow
focusing technique to reduce the particle dispersion that involves a TAMA in an FDEP
application. There are different unique microelectrode designs with flow focusing combi-
nations that have been reported [33–35]. According to Shkolnikov et al., the manipulation
of particles has achieved an 80% separation efficiency by the integration of the FDEP and
the hydrodynamic flow focusing technique [36].

In this work, various techniques for a TAMA interaction with flow focusing are ex-
amined by introducing a hydrodynamic flow focusing of the sample to the TAMA profile
microelectrode wall. The FDEP strives to push the targeted particles away from the sample
fluid to the sheath fluid and separates them from the main sample by introducing a flow fo-
cusing to the wall of the microelectrodes. We focus on the characterization and optimization
of a hydrodynamic flow focusing technique on a TAMA DEP design application.

1.2. Active Technique: DEP

The electrical polarizable technique experiences a force due to the interaction of
electrical properties between the particle and the medium. The active technique of particle
separation using DEP is given by the equation below:

FDEP = 2πεoεmediumr3 Re CMF∇E2 (1)

where εo is the permittivity for the vacuum 8.854 × 10−12 F/m and εmedium is the rela-
tive permittivity of the suspended medium. The Clausius–Mossoti factor (CMF) is the
frequency-dependent reaction and is formulated by:

CMF =
(ε∗particle − ε∗medium)

(ε∗particle + 2ε∗medium)
(2)

where

ε∗particle = εparticle −
jσparticle

ω
(3)

and
ε∗medium = εmedium −

jσmedium
ω

(4)

where the ε*particle is the complex permittivity of the particle, εparticle is the absolute permit-
tivity of the particle, σparticle is the conductivity of the particle and σmedium represents the
conductivity of the medium.
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1.3. Passive Technique: Hydrodynamic Flow Focusing

The flow of fluid follows two general regimes of laminar and turbulent, which are
considered by the comparative significance of the inertial to viscous forces explained by the
Reynolds number (Re). At a low Re, the flow is laminar, which flows parallel to each other
and mixes only through convection and diffusion. A flow with a high Re is a chaotic flow
in which the fluid undergoes irregular fluctuations or mixing in contrast to a laminar flow.
The change among laminar and turbulence flows, in general, happens above Reynolds
2000 in interior flows. The Re is explained as:

Re =
ρVL

µ
(5)

where ρ is the fluid density, V is the average velocity, L is the length scale and µ is the fluid
velocity.

Theoretically, the microscale dimensions of the flow in microfluidics inhibits the
laminar regime because of the small Reynolds number. This advantage can lead to a
hydrodynamic flow focusing technique. Hydrodynamic flow focusing is a technique in
which a sheath fluid is introduced from the side to the side of the main flow to squeeze
the flow sample [34]. The inability of the sample fluid to mix with the sheath fluid in the
laminar flow region is the reason for producing flow-focusing with a different flow rate
ratio. where the fluid flow is described by parallel lines flowing linearly with no mixing as
a very ordered flow. As shown in Figure 2, the sample fluid Q1 is focused and sheathed
downstream by sheath flow Q2 [35]. The size of flow focusing is tuned along the main
channel by characterizing and optimizing the flow rate ratio of the particles to the ROI
where the FDEP is dominant.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 16 
 

 

where the ε*particle is the complex permittivity of the particle, εparticle is the absolute permit-
tivity of the particle, σparticle is the conductivity of the particle and σmedium represents the con-
ductivity of the medium. 

1.3. Passive Technique: Hydrodynamic Flow Focusing 
The flow of fluid follows two general regimes of laminar and turbulent, which are 

considered by the comparative significance of the inertial to viscous forces explained by 
the Reynolds number (Re). At a low Re, the flow is laminar, which flows parallel to each 
other and mixes only through convection and diffusion. A flow with a high Re is a chaotic 
flow in which the fluid undergoes irregular fluctuations or mixing in contrast to a laminar 
flow. The change among laminar and turbulence flows, in general, happens above Reyn-
olds 2000 in interior flows. The Re is explained as: 𝑅௘ = 𝜌𝑉𝐿𝜇  (5)

where 𝜌 is the fluid density, V is the average velocity, L is the length scale and μ is the 
fluid velocity. 

Theoretically, the microscale dimensions of the flow in microfluidics inhibits the lam-
inar regime because of the small Reynolds number. This advantage can lead to a hydro-
dynamic flow focusing technique. Hydrodynamic flow focusing is a technique in which a 
sheath fluid is introduced from the side to the side of the main flow to squeeze the flow 
sample [34]. The inability of the sample fluid to mix with the sheath fluid in the laminar 
flow region is the reason for producing flow-focusing with a different flow rate ratio. 
where the fluid flow is described by parallel lines flowing linearly with no mixing as a 
very ordered flow. As shown in Figure 2, the sample fluid Q1 is focused and sheathed 
downstream by sheath flow Q2 [35]. The size of flow focusing is tuned along the main 
channel by characterizing and optimizing the flow rate ratio of the particles to the ROI 
where the FDEP is dominant.  

Figure 2. Hydrodynamic flow focusing microfluidic channel. 

2. Materials and Methods 
The material used in this study includes fluorescent polymer microspheres, 1, 3.2 and 

10 µm, from Thermo Fisher Scientific (Fluoro-max Dyed, Thermo Fisher, Scientific Inc., 
Waltham, MA, USA). We used polydimethylsiloxane (PDMS) as a microfluidic layer be-
cause of its transparency. A Sylgard 184 silicone elastomer base and curing agent from the 
Dow Corning Corporation (Midland, MI, USA) were used to produce a PDMS microflu-
idic channel. The PDMS base and curing agent were combined in a 10:1 mass ratio before 

Figure 2. Hydrodynamic flow focusing microfluidic channel.

2. Materials and Methods

The material used in this study includes fluorescent polymer microspheres, 1, 3.2
and 10 µm, from Thermo Fisher Scientific (Fluoro-max Dyed, Thermo Fisher, Scientific
Inc., Waltham, MA, USA). We used polydimethylsiloxane (PDMS) as a microfluidic layer
because of its transparency. A Sylgard 184 silicone elastomer base and curing agent
from the Dow Corning Corporation (Midland, MI, USA) were used to produce a PDMS
microfluidic channel. The PDMS base and curing agent were combined in a 10:1 mass ratio
before pouring into the mold. Afterward, the microfluidic layer and the TAMA profile
microelectrode substrate were bonded using oxygen plasma. The process of molding,
casting and bonding are illustrated in Figure 3a.
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2.1. Device Design

We used 3D CAD software (SolidWorks 2020, accessed on 1 October 2019) to design
our channel. A schematic diagram of the proposed design is shown in Figure 3b based on
a TAMA profile microelectrode designed with 24 pairs. Each microelectrode dimension
was 1000 × 1000 µm with a microelectrode gap of 80 µm as the ROI [36]. The flow focusing
microfluidic device consisted of three inlets and three outlets. The two side inlets were
used as a sheath flow while the middle inlet was used for the main flow. The inlets and
outlets then created three flow streams in the channel. In characterizing and optimizing
the flow rate of the main flow, we could tune the width of the main flow to the center of
the TAMA profile microelectrodes.

The microfluidic device was fabricated using a soft lithography technique. The forma-
tion of an SU-8 mold was replaced by 3D printing or a CNC milling process. The benefits
of using this process were that it facilitated a precise design control and a robust mold
compared with the SU-8 mold and it could be reused. The steps involved a casting process
of a polymer material to form a mold. An assembly process then took place as the parts
were cast separately. This assembly process involved an alignment and stacking procedure.
The parts were joined together with a bonding technique. The depth of the channel was
500 µm. Once the mold was designed, it was then transferred to the software used for
the CNC milling machine (Roland MDX-40a). The PDMS layer contained a microchannel
that held the liquid sample and allowed the fluid to flow from the inlet to the outlet. The
microelectrode layer at the bottom of the PDMS layer served as a substrate for particle
manipulation in the channel.
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2.2. Flow Simulation

The characterization and optimization of a suitable flow rate ratio by a numerical
simulation study were achieved by using COMSOL Multiphysics 5.5 (www.comsol.com,
accessed on 14 November 2019). A theoretical volumetric flow rate ratio was studied
to obtain the desired width of flow focusing. The simulation was modeled under the
conditions of a laminar flow and the transport of diluted species using a 3D model. The
model was computed under a stationary time. The device geometry and the flow rate
parameters were set to be identical to the real devices and experiment.

2.3. Experimental Setup

In the flow focusing preliminary experimental setup, two ink solutions were used. The
yellow-colored deionized (DI) water was used as a sheath fluid while blue-colored DI water
was used for the sample fluid to identify and characterize the ability of hydrodynamic flow
focusing. The chip that was connected to the microfluidic tubing (Tygon tube) was inserted
into the inlets and outlets (middle outlet) for the pumping process. The fluid was then
pumped into the system through the inlets using a Terumo syringe (Tuberculin, 1 mL) and
a syringe pump system (Longerpump, TS-2A/L0107-2A).

The flow rates of the sample fluid (Q1) were manipulated at 500, 400, 300, 200 and
100 µL/m while the flow rate of the sheath fluid (Q2) was kept constant at 500 µL/m. The
device was manually loaded with DI water to pre-fill all of the fluidic channels to eliminate
any trapped air bubbles in the microchannel. Air bubbles, for example, which can be
present at the inlet ports, could disrupt hydrodynamic focusing and therefore impact on
the flow of the sample stream while air bubbles at the outlet ports could adversely impact
the operation reliability and the effectiveness of the device in producing flow focusing. In
this experiment, a glass slide was used as a substrate.

A secondary experimental validation of the focusing performance was conducted via
the monitoring of the top view of the flow pattern inside the microchannel using a standard
camera, as shown in Figure 4a, to observe the significance of the flow focusing technique
on improving DEP separation in the TAMA. A detailed experiment was set up by bonding
the device with the TAMA profile microelectrode. The manipulation of 3.2 µm polystyrene
beads was used for visualizing the particle movement in the flow focusing effect while the
buffer syringe was filled with pure filtered DI water.
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For the ultimate experimental validation of the DEP particle separation, 10 and 1 µm
polystyrene beads were used. The system consisted of an additional alternating current
(AC) power supply generator (Teledyne LeCroy-WaveStation 2022–20 V peak to peak (VPP),
15 MHz) with a connected prober to control the current with the specific frequency applied
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to the microelectrodes. The experiments were performed at 10 VPP and the frequency of
the supplied voltage was set to 150 kHz. A frequency of 150 kHz was selected.

As a result, the 10 µm polystyrene beads would experience NDEP while 1 µm particles
would experience PDEP, based on previous studies [31,37]. The image was captured by
a microscope with a built-in camera (Olympus BX53M). The detail of the experiment is
shown in Figure 4b.

3. Results
3.1. Leaking Test

Within the evaluation of the functionality of the fabricated microfluidic device in
producing flow focusing a leaking test was conducted. In this investigation, five different
flow rate ratios between the main flow and the sheath flow (Q1/Q2) were set up to observe
the presence of any leakage within the microfluidic channel. The conditioning fluid flow
was also observed to determine if it flowed in laminar or turbulence. The flow rate ratios
in this experiment were set up at 0.2, 0.4, 0.6, 0.8 and 1.0.

Based on Figure 5a–e, it could be concluded that the fluid flow in all conditions was
ideal, which indicated that there was no blockage in the microchannel or any leakage
between the PDMS layer and the glass slide. This microfluidic chip also demonstrated its
ability to produce a laminar flow profile as flow focusing effects were obtained for all of
the parameters, which implied there was no mixing occurring between the main flow and
the sheath flow.
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3.2. Effect of the Flow Rate Ratio to the Hydrodynamic Flow Focusing Width

The capability of producing flow focusing on the microelectrodes was evaluated by
the microfluidic chip bonded to the TAMA. The width of flow focusing was analyzed by
using five different flow rate ratios between the main flow and the sheath flow (Q1/Q2).
The width of flow focusing was analyzed by measuring the focused streamline at the
center along the channel. The width of flow focusing was then measured by using imaging
software (Olympus CellSens-Standard).

Subsequently, the experimental results were compared with the COMSOL simulation.
The width of flow focusing was measured using the concentration effect for the simulation
results. The method for the measurement of the width of flow focusing for both the
experiment and the simulation can be seen in Figure 6a−e and Figure 6f−j, respectively.
The results of the width of flow focusing with different flow rate ratios are tabulated
in Table 1.
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Table 1. Flow focusing width for experimental and simulation results.

Flow Rate Ratio between
the Main Flow and the
Sheath Flow (Q1/Q2)

Experimental Flow
Focusing Width

(µm)

Simulation Flow
Focusing Width

(µm)
Differences (µm)

0.2 226.03 322.47 96.44
0.4 371.66 485.51 113.85
0.6 473.30 612.15 138.85
0.8 565.84 732.39 166.55
1.0 638.66 836.24 197.58

From Table 1, it was revealed that the width of flow focusing increased with the flow
rate ratio for both the experiment and the simulation. The flow focusing width between
the experimental and simulation trends can be seen from the graph plotted in Figure 7a.
The graph for the experiment and the simulation shows the same trend and these results
were expected based on previous studies because as the main flow increases, the main
fluid starts to dominate the channel [32,38–42]. As the flow rate ratio decreases between
the main and the sheath flow, the main fluid is less dominant in the channel resulting in
the reduction of the flow focusing width.

However, the width differences between the experiment and the simulation increased
with the flow rate ratio, as can be seen in the graph in Figure 7b. At Q1/Q2 = 0.2, the width
difference was only about 96.44 µm before it increased to 197.58 µm at Q1/Q2 = 1.0. This
was due to the inaccurate flow rate value between the experiment and the simulation as
the flow rate fluctuations came from the mechanical syringe pump to feed the fluid to the
channel. Flow rate fluctuations occurred in the syringe pump-driven system because of the
mechanical oscillation of the pump motor and it was not precisely calibrated. There might
also have been an inaccuracy in the reading of the flow rate value in the system.
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Consequently, the flow rate value between the experiment and the simulation may
not be accurate, resulting in differences in the flow focusing width. In this research, these
differences in value between the experiment and the simulation did not have a significant
impact on the particle separation. From these results, at a 0.2 flow rate ratio between the
main flow and the sheath flow, we reduced the width of the main sample in the channel by
a 10:1 ratio from 2000 µm to 226.03 µm.

After successfully producing flow focusing on the channel, the dispersion of the
particles was studied using polystyrene beads as an interest in observing the ability of
flow focusing to reduce the dispersion of the particles in the TAMA. The experiment was
repeated three times by feeding the polystyrene beads to the main sample and the flow
rate ratio between the main flow and the sheath flow was set up at 0.2. The movement
of the particles was recorded under a fluorescence light source and 3.2 µm particles were
used in this experiment to provide a better visualization.

The movement of the particles is depicted in Figure 8 with four different phases.
During the first phase, Figure 8a, the TAMA profile microelectrode was shown without the
flow of the particle. The main flow containing particles was then fed to the microfluidic
chip without any sheath flow interference and is presented in Figure 8b. In this phase, the
particles were dispersed in all of the surfaces of the microelectrodes. As shown in Figure 8c,
once the sheath flows were introduced, the dispersion particles were squeezed by both
sheath fluids resulting in the particles focusing on the ROI. The flow was then stopped to
manipulate or separate the particles in the ROI, as shown in Figure 8d and its recording is
given in Video S1. It could be concluded that the particles remained in the main sample
after the sheath flow was initiated. With a repeated analysis, the particle dispersion was
significantly reduced from 2000 µm to 226.03 µm at a 0.2 flow rate ratio between the main
flow and the sheath flow.

3.3. DEP Separation

The significance controlling the dispersion width of the particles on the TAMA at the
DEP of the ROI area was studied by separation of 10 µm and 1 µm polystyrene beads in the
DI water medium. The TAMA was supplied at a constant applied 10 VPP with a frequency
of 150 kHz for three minutes. The chosen value of the frequency applied was based on a
CMF calculation and exposed the used particles for two different FDEPs. The 10 µm was
exposed to a vertical repelled under a negative FDEP, NDEP and the 1 µm was exposed to a
laterally attracted under positive FDEP and PDEP subjected to a high electric field region.
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The trajectories for both particles were observed under a fluorescence light source with
three different filters to view each specific size of the particles. A UV filter was used to
observe both particle trajectories while the red, blue and green filters were used to observe
the 10 and 1 µm particles. The red and blue filters were used specifically for the 10 µm green
particle observation while the blue and green filters were used for the 1 µm red particles.

The magnified views of the microelectrodes at 10× are presented in the figures in
Table 2. The capturing action was performed as per the following time frame. Initially, all
of the particles were focused by hydrodynamic flow focusing within the ROI as shown in
Table 2 figures a, c and e. The particles were then manipulated and separated by applying
FDEP and the trajectories were tracked for three minutes as shown in Table 2 figures b,
d and f. From the preliminary observation, the ability of the DEP integration with the
hydrodynamic flow focusing of a microfluidic device in separation was achieved for all of
the particles in the ROI.

In Table 2 figure b, it is shown that the 10 µm particles were vertically repelled with
NDEP in two different directions depending on the position of the particle. From the
experimental observation, the particles that were situated at the ROI tended to move to the
center of the gap between the two microelectrodes while the particles that were situated at
the surface of the microelectrode slightly away from the ROI tended to move away from
the edges of the microelectrodes. Both movements show the NDEP movement where it was
repelled from the high electric field region.

Based on the simulation results and experimental works done by Buyong et al. [31],
the highest electrical field region was situated at the edge of the microelectrode. Due to the
strong electrical field that presented in the edges of the microelectrodes, the 10 µm particles
in the gap between the two-edge microelectrode, the ROI in Table 2 figure c tended to move
to the center as the region had a relatively lower electrical field compared with the edges of
the microelectrode. These edges acted as a barrier that prevented the particles in the center
from moving to the side of the microelectrode resulting in two different movements of the
10 µm particles because of the position of the particle. A detailed movement of the 10 µm
particles can be seen in Table 2 figures c and d.

The trajectory of the 1 µm particle movements were lateral attracted, with PDEP to
the higher electrical field region, which was situated at the edges of the microelectrode.
The particle size was too small compared with the 10 µm particles to barely observe the
movement under the UV filter. Thus, the movement of the 1 µm particles could only be
seen clearly under the blue and green filters, as shown in Table 2, figure e and f. As shown
in the illustration in the Table, 1 µm red particles were initially dispersed within the ROI.
After 10 VPP with a frequency of 150 kHz was applied, the particles were laterally attracted
to the edges of the microelectrode where a high electrical field was situated showing the
PDEP movement and is presented in Table 2, figure f.
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Table 2. The manipulation of particles in a fluorescence light source with three different light filters: (a,b) UV filter; (c,d)
red-blue filters; (e,f) blue-green light.
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4. Discussion

The validation of the integration of a DEP TAMA with a flow focusing technique was
specified into four analysis: (a) a leaking test and flow focusing test of yellow and blue dye,
(b) a flow focusing test of 3.2 µm, (c) a DEP and flow focusing test of 1 and 10 µm for a
manipulation and separation application and (d) a DEP and flow focusing test of 3.2 µm
for a manipulation efficiency analysis.

The ultimate validation was the manipulation efficiency and was analyzed in the area
of the 3.2 µm particles covered in the ROI. The condition before and after DEP manipulation
and integration without and with flow focusing were demonstrated. Using an ImageJ
analysis, Figure 9 shows that the area of the 3.2 µm particle was measured within the ROI.
The efficiency enhancement of manipulation via the combination of flow focusing and
FDEP is elaborated in the Supplementary Materials.

The principle of integration was flow focusing the particle to the ROI by concentrating
the dispersion of the particle exposed to FDEP. The manipulation of the particles under
lateral attraction PDEP then forced the particle to migrate from the sample fluid to the sheath
fluid. The continuous flow focusing enhanced the lateral attraction PDEP of the particle
due to the reduction of the loading of the FDEP manipulation in the ROI. The measurement
was taken five times for each condition. The values are tabulated in Table 3 and detailed
calculations are given in the Supplementary Materials.

As depicted in Table 3, the efficiency of the manipulation of 3.2 µm particles without
the flow focusing condition was achieved at 20% while in the flow focusing condition, the ef-
ficiency of the particle separation was achieved at 80%. A significant correlation of the four
analyses of the integration of the DEP TAMA with the flow focusing technique was able to
enhance the particle manipulation efficiency in the TAMA type microelectrode application.
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without flow focusing  
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flow focusing 
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As depicted in Table 3, the efficiency of the manipulation of 3.2 µm particles without 
the flow focusing condition was achieved at 20% while in the flow focusing condition, the 
efficiency of the particle separation was achieved at 80%. A significant correlation of the 
four analyses of the integration of the DEP TAMA with the flow focusing technique was 
able to enhance the particle manipulation efficiency in the TAMA type microelectrode 
application. 

5. Conclusions 
This research work aimed to advance the DEP mechanism, which is specific in terms 

of particle manipulation and separation efficiency for a TAMA profile microelectrode ap-
plication. The identified root cause was due to the dispersion of particles out from the 
DEP ROI range. The utmost solution was the reduction of the dispersion of the particles 
in the microfluidic channel using the flow focusing technique. The microfluidic chip was 
fabricated using a micro-milling technique assisted with a soft lithography PDMS, which 

Figure 9. Particle surface area the red color indicates 3.2 µm particle, black color represents absence of particle: (a) before
DEP force without flow focusing; (b) before DEP force with the sheath flow; (c) after DEP force without the sheath flow;
(d) after DEP force with the sheath flow.

Table 3. The efficiency of manipulating a 3.2 µm polystyrene particle with and without flow focusing.

Condition Before Manipulation
(µm2)

After Manipulation
(µm2)

Manipulation
Efficiency (%)

Area covered by particles
without flow focusing 519,422.8 414,208.1 20.3

Area covered by particles
with flow focusing 517,465.7 102,116.3 80.3

5. Conclusions

This research work aimed to advance the DEP mechanism, which is specific in terms
of particle manipulation and separation efficiency for a TAMA profile microelectrode
application. The identified root cause was due to the dispersion of particles out from the
DEP ROI range. The utmost solution was the reduction of the dispersion of the particles
in the microfluidic channel using the flow focusing technique. The microfluidic chip was
fabricated using a micro-milling technique assisted with a soft lithography PDMS, which
is one of the low-cost techniques. The ability to produce flow focusing on the ROI was
obtained with five different flow ratios between the main flow and the sheath flow (Q1/Q2).
The outcome, the integration of a flow focusing microfluidic chip with a TAMA DEP
microelectrode, reduced the particle dispersion from 2000 µm to 226.03 µm, resulting in
enhancing the particle separation efficiency from 20% to 80%.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/s21154957/s1, Video S1: The supplementary text document includes the efficiency enhancement
of manipulation via the combination of flow focusing and FDEP and the manipulation efficiency
calculation in Section 4.
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