
Predicting Poisson’s Ratio: A Study of Semisupervised Anomaly
Detection and Supervised Approaches
Raheel Hammad* and Sownyak Mondal*

Cite This: ACS Omega 2024, 9, 1956−1961 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Auxetics are a rare class of materials that exhibit a
negative Poisson’s ratio. The existence of these auxetic materials is
rare but has a large number of applications in the design of exotic
materials. We build a complete machine learning framework to
detect Auxetic materials as well as Poisson’s ratio of non-auxetic
materials. A semisupervised anomaly detection model is presented,
which is capable of separating out the auxetics materials (treated as
an anomaly) from an unknown database with an average precision
of 0.64. Another regression model (supervised) is also created to
predict the Poisson’s ratio of non-auxetic materials with an R2 of
0.82. Additionally, this regression model helps us to find the
optimal features for the anomaly detection model. This methodology can be generalized and used to discover materials with rare
physical properties.

■ INTRODUCTION
As a fundamental elastic property, Poisson’s ratio reflects the
ratio of lateral strain to the axial strain under an applied stress.1 It
governs the distribution of the stress and strain fields as well as
the deformation process of a material. Poisson’s ratio also affects
the speed of wave in material. For example, if the value is large,
the longitudinal wave propagates much faster than shear wave
and vice versa.2 In seismology, it is employed to analyze rock
properties and forecast the propagation of seismic waves in the
Earth’s crust. In the realm of the theory of elasticity, it is
acceptable to have materials exhibiting a negative Poisson’s ratio
(NPR). Counterintuitively, these exotic NPR materials contract
under applied tension.3 They are termed as “Auxetic” materials.
The auxeticity of thesematerials leads tomany special properties
like enhancement of plane strain fracture resistance, increment
of fracture toughness, shear modulus, and even boosting of
acoustic response.4

Several 2D materials, including graphene oxide, transition
metal selenides, and transition metal halides with the
stoichiometry MX (where M represents elements such as V,
Cr, Mn, and Fe; X represents elements like Se, Cl, Br, and I),
exhibit auxetic behavior.5,6 Although most auxetic materials with
homogeneous (NPR for all directions) values are either porous
foams or specifically designed meta-materials,7−9 Dagdelen et
al.10 came up with three distinctive types of auxetic crystals and
discovered some new auxetic compounds. Later, Chibani et al.11

reported a few more auxetic materials.
In recent years, the substantial data generated through

computational and experimental methods, along with the
application of advanced machine learning (ML) techniques,
has propelled the field of materials science into a new era often

described as the fourth paradigm of scientific exploration.12

Different machine learning (ML) algorithms are utilized to
generate efficient and accurate predictions of elastic properties
of materials like Young’s modulus and shear modulus.13

Typically, supervised algorithms are used to build accurate
models where the model is trained using a fully labeled data set.
The prediction is then done by minimizing the error metric in
both sets of problems, classifications and regressions. Bulk and
shear moduli have been predicted with great accuracy in search
of superhard materials in these reports.14−17 Deng et al.18

explained the difficulties of building an ML model to predict
Poisson’s ratio with high accuracy but still managed to achieve
R2 around 0.7 by Random Forest Regression (RFR) for a class of
materials called oxide glass. Gaillac et al.19 described how
important a supervised ML model can be to speed up the
discovery of auxetic zeolite materials. Poisson’s ratio is predicted
for specific binary alloys also using supervised ML.20 So far, the
literature is missing anMLmodel that can predict Poisson’s ratio
with good accuracy for any general material.

On the other hand, applications of anomaly detection
algorithms have increased rapidly to address real-world issues
like fraud detection in banks,21,22 cyber threats,23 and disease
variant detection.24 Historically, many of these algorithms were
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designed to find outliers to be removed. In a recent report,
Zhang et al. introduced an anomaly detection model to the
material community for the first time.25 The fact that the radial
distribution function is poorly reconstructed for superhard
materials is the basis for their unsupervised anomaly detection
model. In a recent article, Schrier et al.26 proposed how ML can
be utilized to get the exceptions and anomalies that exist in
chemical and material science.

In this study, we aim to build a general model using supervised
ML algorithms to predict Poisson’s ratio. We observe that the
accuracy varies drastically based on whether the auxetics
materials are used in the data set or not. Moreover, the presence
of homogeneous auxetic material in nature is pretty low. So we
treat the NPR materials as anomalies. Therefore, we build an
Autoencoder Neural Network (ANN)-based semisupervised
anomaly detection model where labeled data is used to train the
Autoencoder. Materials with only a positive Poisson’s ratio are
used for training so that the autoencoder fails to reconstruct the
auxetic materials. Based on the reconstruction loss, we can
identify our anomalies, the NPR materials. We show that the
precision of this anomaly detection model is 0.64 with an
F1score of 0.57. We also build a supervised regression model to
predict Poisson’s ratio with an R2 of 0.82 applicable to general
non-auxetic materials. The supervised model is used to
determine the optimal descriptors for learning the pattern of
Poisson’s ratio. This in turn helps in optimizing both the
supervised and anomalous detection models.

■ METHODS
We investigated several semisupervised anomaly detection
methods like One Class SVM,27 Isolation forest,28 and
Autoencoder.29 In all of these methods, a score is associated
with each data point, which is then used to label the point as
anomaly or normal class. We have observed that Autoencoder
works best for our system. The details about anomaly detection
using One class SVM and isolation forest are given in the
Supporting Information.

The choice of the evaluation metric plays an important role in
MLproblems. Anomaly detection is no different. In fact, more so
since using a commonly used classification metric like accuracy
might be counterproductive given the large imbalance of data
sets for anomaly detection. Therefore, we use F1 score and
Precision for our model; formulas for the same are given below.

precision
TP

TP FP
=

+ (1)

recall
TP

TP FN
=

+ (2)

F
2 precision recall

precision recall1 = × ×
+ (3)

where TP, TN, FP, and FN stand for true positive, true negative,
false positive, and false negative, respectively. Multiple incorrect
identifications leading to false positives contribute to reduced
precision, while failing to identify true positives results in a
decreased recall. The F1 score serves as a means to strike a
balance between these two metrics and is consequently
employed for the purpose of optimizing the hyperparameters
of the Autoencoder.

The ANN Autoencoder is shown in Figure 1. The left side
(encoder) of the network encodes the input data X into a latent
dimension (central layer), while the right side (decoder) of the

network aims to reconstruct the input X′. In an ideal scenario,
the input passed through the Autoencoder is perfectly
reconstructed (X = X′). However, information is lost during
the encoding and decoding process. This results in different X
and X′, using which a reconstruction error is calculated. This
reconstruction error is the anomaly score that we discussed
earlier. It reveals how the data are represented in the latent layers
and are widely used for pattern recognition.

The autoencoder is trained using a combination of crystal and
elemental properties. These elemental descriptors are repre-
sented using the mathematical expressions average, minimum,
maximum, and difference, respectively. Out of the total 170
features, we ended up taking 60 features.

The process of choosing the features is described in the
Results and Discussion section. These 60 descriptors are
provided as input to the Autoencoder in Figure 1, which
compresses it to the latent dimension using 2 fully connected
hidden layers. The ReLU (Rectified Linear Unit) activation
function is applied at each synaptic connection to introduce
nonlinear properties within the neural network. The decoder
network uses a ReLU for the hidden layer and a sigmoid for the
output layer. The autoencoder network is trained to minimize
the loss using ADAM,30 a stochastic gradient descent method.
The loss in this case is defined as the mean squared error
between input X and output X′. Usually, the network is
optimized by minimizing this loss to obtain better reconstruc-
tions of the input. However, for Anomaly detection, this is not
necessary; therefore, we optimize the hyperparameters and the

Figure 1. (a) Schematic of the Autoencoder used in the semisupervised
anomaly detection. (b) K-Fold cross-validation used in the Anomaly
model. Auxetic Materials (red strip) are constrained to be kept in all of
the validation folds. Pi denotes the precision in each fold.
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network architecture by maximizing the F1 score (see the
Supporting Information for details).
Supervised Regression Model. We have employed

Support Vector Regression (SVR), RFR, and Gradient Boosting
Regression (GBR) to predict the Poisson’s ratio of non-auxetic
materials using supervised learning. The models were trained on
the previously mentioned descriptors using 80% percent of the
set, while 20% of the set was reserved for testing. The coefficients
of determination (R2) and root mean squared error (RMSE)
were used to validate the models. The formulas for the same are
given below.

( )
R

y y

y y
1

( )
i i i

i i

2

2

2=
(4)

( )y y

n
RMSE i i i

2

=
(5)

where y represents the average true value, yi signifies the ith true
value, yi denotes the ith predicted value, and n is the count of
samples. As R2 approaches 1 and RMSE diminishes toward 0, the
model’s predictions converge closer to the values computed
using DFT.
Data Processing. In a recent report, Chibani et al.11

explored the mechanical properties of more than 13k materials.
After collecting the elastic tensor data from Materials Project,
properties like shear modulus, bulk modulus, Young’s modulus,
Poisson’s ratio, and linear compressibility have been calculated
using Elate software developed by the same group. They
reported 121 auxetic materials (average Poisson’s ratio is
negative) out of 11 764 materials. However, only 75 materials
out of them are stable. Only stable auxetic materials are used in
this study. All of the necessary descriptors of thesematerials have
been gathered from the ever-reliable Material Project. To ensure
that the Autoencodermodel shown in Figure 1 learns the desired
patterns effectively, the anomaly model should consider only the
auxetic materials as exceptions. Hence, we clean the data based
on the widely used protocol of removing points below Q1 − 1.5
× IQR (Interquartile range) or above Q3 + 1.5 × IQR of the
features, where Q1, Q3, and IQR are 25th percentile, 75th
percentile, and Q3−Q1 respectively. Additionally cleaning the
data using this method helps in increasing the accuracy of the
regression model. This has been shown in detail in the
Supervised Regression Model section.

For example, materials with energy above the convex hull less
than 80 meV (stability criteria) are retained. Moreover,
substances having lower than 46 computationally traceable
sites are kept.10 More details of the cleaning are provided at
https://github.com/Sudo-Raheel/Poisson_ratio. The reduced
set containing 15 auxetic materials and 4476 normal samples
with 60 descriptors (discussed later) is fed into the model.

■ RESULTS AND DISCUSSION
Previous studies11 suggest that roughly 1% of the total materials
are auxetic in nature. Due to the extremely skewed nature of the
distribution, we treat auxetic materials as anomalies. To this end,
we develop a semisupervised anomaly detection to predict the
auxeticity of material.

Although unsupervised anomaly detection techniques are
widely used, it is a challenging task to connect to a targeted
quantity using unlabeled data. As shown by Brogch et al.,25 the

MRBT crystal features used in the study correctly label (poorly
reconstructed) the Superhard materials as anomalies. In our
case, we want the features to be poorly reconstructed for auxetic
materials. Therefore, in an unsupervised model, the only
parameters that can be tuned are the features and the network
architecture since there is no target quantity to fit, unlike
supervised learning. Therefore, finding the optimal set of
features and network architecture that will best represent the
target quantity can be a daunting task. To ease this, we employ a
semisupervised learning approach in the sense that during the
training of the Autoencoder, it is only fed with normal class
(non-auxetic) samples in the hope that it learns the patterns
related to the normal class in a better way. This would result in
the auxetic materials being reconstructed poorly, and thereby
distinguishing them will be easier.31

We used 4-fold validation to confirm that the model performs
equally well on the total data, thereby minimizing the risk of
overfitting. Moreover, at each fold, the auxetic materials are kept
in the testing set only. Since it has been already discussed that
the model will be trained on the normal class only.

4-Fold validation additionally mimics the realistic auxetics
percentage in nature; this has been discussed in detail in the
Supporting Information (Figure S2). On top of this, we shuffle
the data twice and repeat the 4-fold validation to make the
metrics more robust.

The model can separate the auxetic materials from the rest
with an average F1 score of 0.57 and an average Precision of 0.64
over the full set. The model labels materials above a certain
threshold of reconstruction error as anomalies. This threshold is
decided by maximizing the F1 score. The hyperparameters and
the architecture of the autoencoder are also optimized by
maximizing the F1 score over multiple folds (see the Supporting
Information for details).

Figure 2 shows that the model labels 8 out of 15 auxetic as
Anomalies, while only 5 out of 1119 non-auxetic are incorrectly

labeled as Anomalies. The threshold for labeling anomalies is
approximately 99 percentile of the total reconstruction error for
the testing case. The model successfully labels all of the α-
cristobalite SiO2 materials as anomalies, which are well-known
auxetics.32

Additionally, we make separate sets of material with high
reconstruction error(above 90 percentile) and low reconstruc-
tion. This is done to signify the features that are being
reconstructed poorly in the materials labeled as potential
anomalies.

If a property is reconstructed properly, both histograms
should be overlapped; if not, there should be a clear separation

Figure 2. Truth table plot of reconstruction error vs Poisson’s ratio for
semisupervised anomaly detection model using Autoencoder.
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between the two sets. We found that average d-valence electrons
and average density are not reconstructed properly for the high
reconstruction error set (Figure 3). Many features are

reconstructed well throughout the whole region (Figure S3).
Interestingly, it is well known that density and valence electrons
are important properties for predicting Poisson’s ratio33 (Figure
S4). Moreover, these quantities have a good correlation with the
Poisson’s ratio as shown in Figure 5 (Figure S7 also). This
further validates that the autoencoder is learning the pattern of
positive Poisson’s ratio.
Supervised Model. The regression model is built to predict

the values of non-auxetic Poisson’s ratio. However, predicting
Poisson’s ratio for a general material has turned out to be a
difficult task. This is due to the noisy nature of Poisson’s ratio
data sets.16,18 Cleaning of the data set is done as mentioned in
the Data Processing section. Table 1 shows the performance of

GBR on training and testing sets for both types of data(raw and
cleaned) using the same features. It shows that the model fails to
generalize on the testing(raw) set, which indicates overfitting.

While the improved performance on the testing (cleaned) set
shows that IQR cleaning decreases the noise in the data set.

The cleaned data set is fed into various different algorithms,
namely, GBR, SVR, RFR, CatBoost, LGBM, and NN. The
results are shown in Figures 4a and S5; Gradient Boosting is

performing the best. We obtain an MAE of 0.019 and R2 of 0.82
in predicting the Poisson’s ratio for non-auxetic materials.

In Figure S4, we have shown the importance scores for the
different features using RFR. Among the structural variables, the
average crystal radius and minimum bond seem to be affecting
the Poisson’s ratio, while electronic counts like average s,p,d
valence electrons and total valence electron count play an
important role in the model. This is verified by the Pearson
correlation plot between the Poisson’s ratio and other important
features in Figure 5. The features were sorted according to
importance scores by RFR (Figure S4). Afterward, we
maximized the cross-validated R2 score to choose the optimal
number of features, which turns out to be 60. Figure S6 shows
the Pearson correlation heat map for the 60 features used in the
model. The low inner correlations between features indicate the
low redundancy between features In addition to this, the good
correlation with the ground truth values dictates that these
features are optimal for predicting the Poisson’s ratio.

Using the same features, we use GBR to model the Poisson’s
ratio for the data set used in the anomaly detection method. We
used 4-fold validation to train and test the total data set, and the
results are shown in Figure 4b. Including the auxetic materials
deteriorates the performance of the model, especially in
predicting the auxetic materials itself. This further justifies the
treatment of auxetic materials as anomalies. Additionally, this
plot proves that the features are optimal for learning Poisson’s
ratio pattern for non-auxetic materials. Therefore, a similar
feature set was used for training the autoencoders for anomaly
detection.

Figure 3. Distribution of the individual reconstruction error for the
descriptors: (a) average valence d and (b) average Density.

Table 1. Comparison of Regression (GBR) Model
Performance for Clean and Raw Dataset

data set training data R2 testing data R2

cleaned 0.999 0.821
raw 0.969 0.506

Figure 4. Gradient Boosting predicted values vs the ground truth values
reported in Materials Project: (a) for non-auxetic data set and (b) for
total data set (auxetic + non-auxetic).
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■ CONCLUSIONS
To date, in the material science literature, mostly various kinds
of supervised models have been developed to predict different
properties. These approaches fail to predict exotic properties
due to a lack of data. In this work, we have demonstrated a new
methodology where a semisupervised anomaly detection
algorithm is used to predict the auxetic materials despite a
severe lack of data on auxetic materials. Moreover, a regression
model is built to predict the Poisson’s ratio for non-auxetic
material. This model also helps in determining the optimal
features for learning the Poisson’s ratio, which in turn helps in
building the descriptors for anomaly detection. Therefore, we
present a general framework to predict the poisson’s ratio as
shown in Figure 6. This complete framework exhibits versatility,
as it can be applied to the prediction of various material
properties beyond Poisson’s ratio. Particularly, it is well suited
for properties that exhibit both rare and normal regimes, such as
negative and positive refractive indices.
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