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Abstract 

Background:  Respiratory diseases are among the most common and expensive to treat diseases in camels with 
a great economic impact on camel health, welfare, and production. Bronchoalveolar lavage fluid (BALF) has been 
proven as a valuable sample for investigating the leukocyte populations in the respiratory tract of several species. In 
the present study, fluorescent antibody labeling and flow cytometry were used to study the immune cell composition 
of BALF in dromedary camels. Animals with clinical respiratory diseases (n = seven) were compared with apparently 
healthy animals (n = 10). In addition, blood leukocytes from the same animals were stained in parallel with the same 
antibodies and analyzed by flow cytometry.

Results:  Camel BALF macrophages, granulocytes, monocytes, and lymphocytes were identified based on their 
forward and side scatter properties. The expression pattern of the cell markers CD172a, CD14, CD163, and MHCII 
molecules on BALF cells indicates a similar phenotype for camel, bovine, and porcine BALF myeloid cells. The com‑
parison between camels with respiratory disease and healthy camels regarding cellular composition in their BALF 
revealed a higher total cell count, a higher fraction of granulocytes, and a lower fraction of macrophages in diseased 
than healthy camels. Within the lymphocyte population, the percentages of helper T cells and B cells were also higher 
in diseased than healthy camels. The elevated expression of the activation marker CD11a on helper T cells of diseased 
camels is an indication of the expansion of helper T cells population due to infection and exposure to respiratory 
pathogens. The higher abundance of MHCII molecules on BALF macrophages from diseased camels indicates a polari‑
zation toward an inflammatory macrophage phenotype (M1) in respiratory diseased camels. No significant differences 
were observed in the systemic leukogram between healthy and diseased animals.

Conclusions:  Collectively, the current study represents the first report on flow cytometric analysis of immune cell 
composition of bronchoalveolar lavage fluid (BALF) in dromedary camels.
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Background
Respiratory diseases are among the most common and 
expensive to treat diseases in camels with a high eco-
nomic impact on camel health, welfare, and production 
[1–7]. Causative agents of camel respiratory infectious 
diseases mainly include viral and bacterial pathogens 
[8]. Parainfluenza 3 virus [9], bovine respiratory syncy-
tial virus, Pasteurella spp., and Corynebacterium spp. 
[10, 11] are among the main pathogens isolated from 
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camels with respiratory disease. Camels can be infected 
by the Middle East respiratory syndrome coronavirus 
(MERS-CoV), which does not lead to the development 
of clinical disease in camels; however, it can be trans-
ferred to humans from infected dromedary camels [12].

Bronchoalveolar lavage (BAL) is a useful procedure 
to explore large areas of the respiratory tract [13–17]. 
Cytological, microbiological, and immunological evalu-
ation of BALF enables the detection of subclinical res-
piratory disease and the identification of the severity 
grade, and stage of inflammatory reactions in the res-
piratory tract [18, 19]. BALF has been proven as a valu-
able sample for investigating tissue resident immune 

cells in the respiratory tract of several species including 
mankind [17], horses [20], cattle [21, 22], sheep [23], 
alpaca [24], pigs [25], dogs [26, 27], and cats [28]. Also 
in the dromedary camel, the BAL procedure has been 
recently used for the collection of samples for cytologi-
cal analysis [29].

Alveolar macrophages, lymphocytes, and neutrophils 
are major immune cell populations of the BALF [30, 31]. 
The dominant cell type is alveolar macrophages, which 
represent long-living effector cells residing within the 
alveoli and can clear pathogens rapidly using their differ-
ent and elastic antimicrobial functions [32–34]. During 
the late phase of infection, alveolar macrophages con-
tribute to the resolution of inflammation and restoring 
homeostasis by clearing cell debris and apoptotic neu-
trophils [33, 35]. The current functional classification of 
macrophages distinguishes two main subsets, the M1 
classically-activated macrophages, and the M2 alterna-
tively-activated macrophages. While the polarization 
towards M1 macrophages is guided by pro-inflammatory 
stimuli like bacterial lipopolysaccharide (LPS) and the T 
helper (Th) 1 cytokine interferon γ (IFN-γ) [36], M2 mac-
rophage polarization requires type 2 cytokines like the 
Th2 cytokines IL-4 and IL-13 [37]. Classically-activated 
M1 macrophages have the potential to kill intracellu-
lar pathogens and contribute to the early inflammatory 
response through the production of pro-inflammatory 
cytokines such as tumor necrosis factor alpha (TNF-α) 
and interleukin 12 (IL-12). On the other side, M2 mac-
rophages are anti-inflammatory cells that play a role in 
the resolution of inflammation and wound healing by 
producing the immunoregulatory cytokine IL-10 [37]. 
Macrophage subsets can be distinguished according to 
their specific surface markers. Major histocompatibility 
complex (MHC) class-II molecules have been identified 

Table 1  List of antibodies

WSU Washington State University, PerCP Peridinin-Chlorophyll-Protein, 
MHC Major Histocompatibility Complex, WC1 Workshop cluster 1, APC 
Allophycocyanin, FITC Fluorescein isothiocyanate, PE Phycoerythrin, poly 
Polyclonal

Antigen Antibody 
clone

Labeling Source Isotype

CD14 CAM36A – WSU Mouse IgG1

CD14 Tuk4 PerCP Thermofisher Mouse IgG2a

MHCII TH81A5 – Kingfisher Mouse IgG2a

CD172a DH59b WSU Mouse IgG1

CD163 LND68A – Kingfisher Mouse IgG1

CD4 GC50A1 – WSU Mouse IgM

WC1 BAQ128A – WSU Mouse IgG1

CD11a HUH73A – WSU Mouse IgG1

B cell antigen GC26A – WSU Mouse IgM

Mouse IgM poly APC Invitrogen Goat IgG

Mouse IgG1 poly FITC Invitrogen Goat IgG

Mouse IgG2a poly PE Invitrogen Goat IgG

Table 2  List of primers

BRSV Bovine respiratory syncytial virus, BPIV-3 Bovine parainfluenza virus type 3, F Forward, R Revers [58, 59]

Target Sequence Expected product (bp) Annealing 
Temp.

BRSV F: 5ʹ-CAT CAA TCC AAA GCA CCA CAC TGT C-3ʹ 381 bp 62 °C

R: 5ʹ-GCT AGT TCT GTG GTG GAT TGT TGT C -3ʹ
BPIV-3 F: 5ʹ-AGT GAT CTA GAT GAT​GAT​ CCA-3ʹ 328 bp 47 °C

R: 5ʹ-GTT ATT GAT CCA ATT GCT GT-3ʹ

(See figure on next page.)
Fig. 1  Flow cytometric analysis of leukocyte populations in the bronchoalveolar lavage fluid (BALF) of healthy and diseased camels. A Gating 
strategy for the identification of BALF leukocytes. Camel BALF leukocytes were classified based on their forward (FSC) and side (SSC) light 
scattering characteristics into a major population of FSChigh/SSChigh macrophages, a smaller population of FSClow SSChigh granulocytes, and two 
minor populations of FSChigh SSClow monocytes and FSClow SSClow lymphocytes. B Total leukocyte count and the percentage of macrophages (C), 
granulocytes (D), monocytes (E), and lymphocytes (F) in BALF from healthy and diseased camels were calculated and presented graphically as 
mean ± SEM. * indicates a significant difference between the two groups (p < 0.05; t-test)
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as a marker of classical macrophages, whereas cluster 
of differentiation (CD)163 molecules are a characteris-
tic marker for M2 macrophages with anti-inflammatory 
properties [38]. Both macrophage subsets could be iden-
tified in the human BALF [35].

Marker surface antigens expressed by myeloid 
immune cells in the BALF include CD172a, CD14, 
CD163, and MHC class II molecules. The CD172a pro-
tein, which is also known as the signal regulatory pro-
tein α (SIRP α), is a molecule with inhibitory function 
expressed on all cells of the myeloid lineage including 
macrophages, neutrophils, and monocytes [39, 40]. The 
molecule CD14 is a well-known receptor for the rec-
ognition of the cell-wall component of gram-negative 
bacteria, LPS, and is mainly expressed on macrophages 
and monocytes [41]. The CD163 antigen, which is 
exclusively expressed by macrophages and monocytes, 
is the receptor for binding and uptake of hemoglobin-
haptoglobin complexes [42]. The MHC II molecules are 
antigen receptors involved in the presentation of exog-
enous peptide antigens to the T cell receptor and the 
subsequent activation of antigen-specific T helper cells 
[43, 44].

Flow cytometry is a methodology that has proven 
highly successful in characterizing cells in different 
organ systems. It provides the possibility to identify, 
quantify, phenotype, and isolate individual cell subsets. 
Using this technique, different staining panels for immu-
nophenotyping of leukocytes have enabled the rapid and 
detailed characterization of immune responses to vac-
cination or infection [45, 46]. For humans, cattle, pigs, 
and horses, the tissue-resident immune cells in the res-
piratory tract have been investigated by flow cytomet-
ric analysis of BALF [47–50], but little is known about 
the same in the dromedary camel. In the present study, 
fluorescent antibody labeling and flow cytometry were 
used to study the immune cell composition of BALF in 
dromedary camels. The percentages of several leukocyte 
populations were compared between animals with clini-
cal respiratory diseases and apparently healthy animals.

Methods
Animals and clinical examination
The present study was conducted at the Veterinary 
Teaching Hospital of the King Faisal University in 

Al-Ahsa region (Al-Hofuf ) in the Eastern Province 
of Saudi Arabia. Bronchoalveolar lavage fluid sam-
ples were collected from seventeen dromedary cam-
els (Camelus dromedaries) of the Al-Majaheem breed 
including ten healthy camels (control group) and 
seven camels with clinical respiratory disease (dis-
eased group). The camels of the control group (aged 
between eight and 11 years) were selected from the 
animals maintained at the Camel Research Center of 
the King Faisal University. The diseased group cam-
els (aged between 10 and 14 years) were selected 
randomly from camels with clinical symptoms of res-
piratory disease, which were brought to the Veterinary 
Teaching Hospital, College of Veterinary Medicine, 
King Faisal University. All camels were tested for the 
zoonotic virus Middle East respiratory syndrome cor-
onavirus (MERS-CoV) using the BIONOTE® Rapid 
MERS-CoV Ag Test Kit (BioNote Inc., Hwaseong, 
Gyeonggi, Republic of Korea) and nasal swabs [51] to 
exclude animals with MERS-CoV infection (zoonotic 
risk). Animal history and clinical examination signs 
were recorded for all animals. Camels with respiratory 
disease were identified based on abnormal respira-
tory signs such as cough, nasal discharge, dyspnea, or 
abnormal lung sounds [29].

Blood collection and leukocytes separation
Blood samples were collected from all animals by 
puncture of the vena jugularis externa using vacu-
tainer Ethylenediaminetetraacetic acid (EDTA) tubes 
(BD, Germany). Leukocytes were separated from 
blood samples after the removal of red blood cells by 
repeated cycles of hypotonic lysis. After dilution with 
phosphate-buffered saline (PBS) (1:9) in 15 ml falcon 
tubes, blood samples were centrifuged at 4 C° and 
1000×g for 25 minutes. After plasma removal, the red 
blood cells were lysed by adding 5 mL distilled water 
for 20 s followed by the addition of the same volume 
of double concentrated PBS and centrifugation at 
500×g and 4 C° for 10 min with a break. After re-sus-
pending the cell pellet, the procedure was repeated 
to ensure the removal of all red blood cells (RBC). 
Subsequently, 10 mL PBS was added to the cells, and 
the cells were washed two times (250×g and 100×g 
for 10 min each). Finally, the cells were adjusted to 

Fig. 2  Flow cytometric analysis of leukocyte populations in the blood of healthy and diseased camels. A Gating strategy for the identification of 
blood leukocytes. Camel blood leukocytes were classified based on their forward (FSC) and side (SSC) light scattering characteristics into FSClow/
SSChigh granulocytes, FSChigh SSClow monocytes, and FSClow SSClow lymphocytes. B Total leukocyte count and the percentage of granulocytes, 
monocytes, and lymphocytes in blood from healthy and diseased camels were calculated and presented graphically as mean ± SEM. * = p < 0.05

(See figure on next page.)
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5 × 106 cells/mL in cell staining buffer. The counting 
of total leukocytes in blood and BALF samples was 
estimated using Neubauer’s counting hemocytometer 
and microscopy. For blood samples, Türk Solution 
was added to lyse the RBC. For cell viability check, 
the DNA-binding dye propidium iodide (PI; 2 μg/
mL, Calbiochem, Germany) was added to the sepa-
rated cells followed by a flow cytometric analysis of 
PI uptake versus exclusion (FACSCalibur, Becton 
Dickinson Biosciences). The percentage of viable (PI-
negative) cells was always above 93% of total blood 
leukocytes.

Bronchoscopy and collection of bronchoalveolar lavage 
fluids (BALF)
Bronchoscopy and BALF collection were performed as 
previously described [29]. Camels were positioned in 
sternal recumbency position. After animal sedation by 
intravenous injection of 2% xylazine (Rompun, Bayer 
Health Care, Germany) at a dose of 0.1 mg per kg body 
weight, a 3.2 m long and 12 mm tip diameter broncho-
scope (EVIS Olympus, Vienna, Austria) was introduced 
into the oral cavity. During the BAL procedure, 20–40 mL 
of 1% Lidocaine were infused into the lower airway to 
reduce coughing. A 240 cm long catheter (EQUIVET 
B.A.L., KRUUSE, Denmark) was introduced through the 
speculum of the mouth gag into the oral cavity until the 
pharynx and then advanced into the larynx, trachea, and 
bronchi until reaching a slight resistance. Pre-warmed 
(37 °C) sterile isotonic saline (250 ml) was instilled via the 
BAL catheter. The BALF was aspirated immediately after 
injection and the samples were positioned on ice and 
submitted to the lab within 30 min of collection. Flow 
cytometric analysis was conducted after 1 h of sample 
collection.

Monoclonal antibodies
The antibodies used for cell staining are presented in 
Table 1.

All monoclonal antibodies were directed against leuko-
cyte antigens of other animals including bovine (CD14, 
CD163, CD4, WC1, CD11a), and swine (MH II). All anti-
bodies were tested for reactivity against camel leukocytes 
in previous studies [52–56].

Cell labeling and flow cytometry
Cell labeling and flow cytometric analysis of BALF 
and blood samples were performed as previously 
described [57]. Separated BALF or blood leukocytes 
were incubated for 20 min at 4 °C with unlabeled 
antibodies (Table  1) to the cell marker antigens 
CD172a, CD14, CD163, MHC-class II, CD4, WC1, 
GC26A or with directly labeled antibodies to CD14 
or the cell adhesion molecule CD11a. After two 
washing steps (by adding 150 μl washing buffer fol-
lowed by centrifugation at 300 xg for 3 min), mouse 
secondary antibodies (IgG1, IgG2a, and IgM; Invit-
rogen) labeled with different fluorochromes were 
added to the cells followed by incubation for 20 min 
at 4 °C. Staining with mouse isotype control anti-
bodies (BD, Biosciences) was also performed. After 
the final cell wash, labeled cells were analyzed by 
flow cytometry (FACSCalibur, Becton Dickinson 
Biosciences) by the acquisition of at least 100,000 
total blood leukocytes or 10,000 BALF cells. Col-
lected data were analyzed with the FlowJo software 
(FLOWJO, LLC).

Molecular detection of selected respiratory viruses in BAL 
fluid
Collected BALF samples were tested for the bovine 
parainfluenza 3 virus and bovine respiratory syncytial 
virus by reverse transcription-polymerase chain reac-
tion (RT-PCR) using primers shown in Table 2.

Total RNA extracted from BALF utilizing QIAamp 
Viral RNA Mini Kit (QIAGEN, USA) according to 
manufactures instructions. The extracted RNAs were 
subjected to RT-PCR using One-step RT-PCR Kit 
(QIAGEN, USA). Briefly, the amplification reaction was 
performed in a 25 μl RT-PCR reaction mixture includ-
ing 5 μl of the total RNA, 5 μl of the 5x Qiagen one-step 
RT-PCR buffer, 5 μl of the Q buffer, 1 μl of a dNTPs mix, 
1 μl (50 pmol) of each primer, 1 μl of the enzyme mix, 
and 6 μl of RNase free water. The RT-PCR reaction was 
performed at 50 °C for 30 min, then 95 °C for 15 min, 
followed by 40 cycles consisting of denaturing step at 
95 °C for 30 seconds, primers annealing temperature 
according to Table  2 for 30s and 72 °C for 30 seconds 

(See figure on next page.)
Fig. 3  Flow cytometric analysis of selected lymphocyte subsets in BALF from healthy and diseased camels. A Gating strategy for the identification 
of BALF lymphocyte subsets. Camel BALF leukocytes were stained with antibodies to CD4, the B cell marker GC26A, WC1, and LFA-1 (CD11a), 
and stained cells were analyzed by flow cytometry. B The percentage of helper T cells, B cells, and γδ T cells within total BALF lymphocytes were 
calculated for healthy and diseased camels and presented graphically. C The figure presents the expression level of CD11a on CD4+ helper T cells 
and γδ T cells. * = p < 0.05
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and final extension step at 72 °C for 10 min. The ampli-
fied PCR was electrophoresed in 1.2% agarose gel con-
taining 0.5 μg/ml ethidium bromide and analyzed using 
an ultraviolet gel documentation system (BIORAD) [58, 
59].

Statistical analyses
Statistical analysis was performed using the statistical 
software program Prism (GraphPad software version five, 
GraphPad Software, San Diego, CA, USA). The results 
were presented as means ± standard error of the mean 
(SEM). Data normal distribution was evaluated using the 
Kolmogorov–Smirnov test (with the Dallal–Wilkinson–
Lilliefor p-value). The unpaired student’s t-test or the 
Wilcoxon test were used to comparing the two groups for 
normally distributed data or for data that failed to pass 
the normality test, respectively. P-values < 0.05 were con-
sidered significant.

Results
Main leukocyte populations in the bronchoalveolar lavage 
fluid (BALF) from healthy and respiratory diseased camels
According to a previously described gating strategy 
for leukocytes in the bovine bronchoalveolar lavage 
fluid (BALF) [48], camel BALF leukocytes were clas-
sified based on their forward (FSC) and side (SSC) 
light scattering characteristics into four main popula-
tions: A major population (mean ± SEM = 70.1 ± 3.2% 
of total BALF leukocytes) of FSChigh SSChigh mac-
rophages, a smaller population of FSClow SSChigh 
granulocytes (12.7 ± 1.7% of total BALF leukocytes), 
and two minor populations of FSChigh SSClow mono-
cytes (3.6 ± 0.5% of total BALF leukocytes) and FSClow 
SSClow lymphocytes (9.6 ± 2.0% of total BALF leu-
kocytes) (Fig.  1A). BALF samples from respiratory 
diseased camels contained significantly (p = 0.0007) 
higher numbers of total leukocytes (444.3 ± 77.2 cell/
μl) than clinically healthy camels (103.5 ± 21.3 cell/
μl) (Fig.  1B). Within the BALF leukocyte popula-
tion of diseased camels, there was an expansion in 
the fraction of granulocytes (35.4 ± 9.4% compared 
to 12.7 ± 1.7% of total BALF leukocytes in healthy 
camels) with a reduced fraction of macrophages 
(49.6 ± 10.2% compared to 70.1 ± 3.2% of total BALF 

leukocytes in healthy camels) compared to healthy 
animals. The percentages of lymphocytes and mono-
cytes did not differ significantly (p > 0.05) between the 
two groups (Fig. 1C-F).

Blood leukocyte composition in healthy and respiratory 
diseased camels
With a mean ± SEM of 13.2 ± 1.2 cell/μl blood, the total 
leukocyte count in blood samples collected from cam-
els with the respiratory disease did not differ signifi-
cantly (p > 0.05) from the total leukocyte count in blood 
from healthy camels (11.5 ± 1.1). This was also the case 
for the differential leukocyte composition in blood with 
comparable (p > 0.05) fractions of granulocytes, lympho-
cytes, and monocytes in the two animal groups (Fig. 2). 
In addition, there was no correlation between the leu-
kocyte count in blood and BALF, neither for each ani-
mal group separately nor for the two groups together (r 
square = 0.12).

Lymphocyte composition and phenotype in BALF 
from healthy and diseased camels
Flow cytometric analysis of selected lymphocyte sub-
sets in BALF samples identified significant differ-
ences (P < 0.05) between healthy and diseased camels 
(Fig.  3A). BALF samples from camels with clinical 
respiratory disease contained higher percentages of 
CD4+ T helper cells (25.2 ± 3.4% of total lympho-
cytes versus 16.7 ± 2.3% in healthy animals; p = 0.02) 
and B cells (22.6 ± 3.8% of total lymphocytes versus 
10.7 ± 2.1% in healthy animals; p = 0.006) when com-
pared to lymphocyte composition in healthy animals 
(Fig. 3B). In addition, helper T cells in BALF samples 
from diseased animals expressed higher levels of the 
cell adhesion molecule lymphocyte function-associ-
ated antigen 1 (LFA-1; CD11a) than healthy camels 
(Fig.  3C). The percentage of WC1-positive gamma 
delta (γδ) T cells did not differ significantly between 
the two groups.

Lymphocyte composition and phenotype in blood 
from healthy camels and camels with respiratory disease
Within blood lymphocytes, the fraction of helper T cells, 
B cells, and γδ T cells did not differ significantly (p > 0.05) 

Fig. 4  Flow cytometric analysis of selected lymphocyte subsets in blood from healthy and diseased camels. A Gating strategy for the identification 
of blood lymphocyte subsets. Camel blood leukocytes were stained with antibodies to CD4, the B cell marker GC26A, WC1, and CD11a (LFA-1). 
Stained cells were analyzed by flow cytometry. B The percentage of helper T cells, B cells, and γδ T cells within total blood lymphocytes were 
calculated for healthy and diseased camels and presented graphically C) the expression level of CD11a on helper T cells and γδ T cells was 
calculated as mean fluorescence intensity and presented as mean ± SEM. * = p < 0.05

(See figure on next page.)
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between healthy and affected camels (Fig. 4A-B). Similarly, the 
abundance of LFA-1 on CD4+ helper T cells and γδ T cells 
was comparable in healthy and diseased animals (Fig. 4C).

The immunophenotype of BALF myeloid cells from healthy 
camels and camels with respiratory disease
The expression pattern of the myeloid cell marker 
CD172a (Signal regulatory protein α; SIRP α), the LPS 
receptor CD14, the scavenger receptor CD163, and the 
antigen-presenting receptor major histocompatibility 
complex (MHC)-class II molecules was analyzed for 
BALF macrophages, granulocytes, and monocytes in 
healthy and diseased camels (Fig. 5A-B). While CD172a 
was expressed on all cell types, only macrophages and 
monocytes expressed CD14, CD163, and MHC-II 
(Fig. 5A-B).

For all cell types, the expression levels of CD172a 
and CD14 did not differ significantly between healthy 
and diseased camels. BALF macrophages and mono-
cytes from diseased camels showed higher expression 
of MHC-II molecules compared to cells from healthy 
animals. Only for BALF monocytes, CD163 expression 
was significantly lower in diseased than healthy camels 
(Fig. 6).

Discussion
Respiratory diseases are among the most common and 
expensive to treat diseases in camels with high impact 
on camel health, welfare, and production. Under-
standing the immune cell dynamics in the respira-
tory mucosa is necessary for efficient management of 
camel respiratory diseases. Bronchoalveolar lavage  
fluid (BALF) has been proven as a valuable sample for 
investigating mucosal immune cells in the respiratory 
tract of several species. In the present study, fluores-
cent antibody labeling and flow cytometry were used to 
study the immune cell composition of BALF in drome-
dary camels. Animals with clinical respiratory diseases 
were compared with apparently healthy animals. In 
addition, blood leukocytes from the same animals were 
also stained with the same antibodies and analyzed by 
flow cytometry.

Based on their forward (FSC) and side (SSC) light scat-
tering characteristics, which are indicative of cell size and 

granularity, respectively, the immune cell populations in 
the camel BALF were classified into FSChigh SSChigh mac-
rophages, FSClow SSChigh granulocytes, FSChigh SSClow 
monocytes, and FSClow SSClow lymphocytes. Similar cell 
populations were identified in the bovine BALF based on 
the same light-scattering properties [48, 57]. The domi-
nance of macrophages (~ 70%) with smaller proportions 
for granulocytes, monocytes, and lymphocytes, indicates 
the similar composition of the immune cell populations in 
camel and bovine BALF [48, 57]. Similar results were also 
previously obtained by microscopic analysis of BALF cytol-
ogy in camels [29].

In camels with respiratory disease, BALF samples 
contained higher total immune cell numbers than 
healthy camels, which is similar to findings in res-
piratory diseased cattle and horses [15, 22, 60–62]. 
Similarly, the decrease in macrophages with expan-
sion in the fraction of granulocytes is also in line 
with findings in respiratory diseased cattle [21], 
horses [14, 60], donkeys [61], and other camelids 
[24]. Although the proportion of the total lympho-
cyte population in camel BALF was not affected by 
respiratory disease, BALF samples from diseased 
camels contained higher percentages of CD4+ T 
cells and B cells, than healthy animals. The higher 
abundance of the cell adhesion molecule LFA-1 on 
BALF CD4+ T cells from diseased animals indicates 
the higher presence of CD4+ T cells that are anti-
gen specific and expanded due to infection. Studies 
on the cellular composition of BALF in humans and 
experimental animals reported the presence of alveo-
lar macrophages in the alveolar space under steady-
state conditions, while, neutrophils and lymphocytes 
are recruited to the respiratory tract upon infection 
or injury. Interferon-gamma (IFN-γ), tumor necrosis 
factor-alpha (TNF-α), and interleukin (IL)-1β were 
reported as inflammatory cytokines involved in the 
lung inflammatory response [35, 63]. In the drom-
edary camel, the identification of immune media-
tors including cytokines and chemokines that are 
involved in the observed change in immune cell com-
position is not yet investigated.

Staining of camel BALF leukocytes with monoclo-
nal antibodies to the myeloid cell marker CD172a 

(See figure on next page.)
Fig. 5  Flow cytometric analysis of CD172a, CD14, CD163, and MHC-II expression on BALF myeloid cells. BALF leukocytes were labeled with 
monoclonal antibodies to the cell antigens CD172a, CD14, CD163, and MHC-II, and labeled cells were analyzed by flow cytometry. A BALF 
macrophages (MQ), granulocytes (G), and monocytes (M) were identified based on their SSC and FSC properties. B The cell-type-specific staining 
with monoclonal antibodies or isotype controls was shown for all cell types as histograms
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(Signal regulatory protein α; SIRP α) [64], the LPS 
receptor CD14, the scavenger receptor CD163, and 
the antigen-presenting receptor major histocompat-
ibility complex (MHC)-class II molecules identified 
these cell markers as a valuable tool for the immu-
nophenotyping of myeloid cell population in camel 
BALF. While CD172a was expressed on all cell types, 
only macrophages and monocytes expressed CD14, 
CD163, and MHC-II, implying a similar phenotype of 
myeloid cells in camel, bovine, and porcine BALF [48, 
57, 65].

Alveolar macrophages are essential cells that con-
tribute to the innate defense mechanism in the lungs 
by mediating a pro-inflammatory immune response 
and elimination of pathogens through phagocytosis. 
Moreover, these cells can mediate an anti-inflamma-
tory immune response to restore tissue homeostasis 
[66, 67]. They are characterized by plasticity, being 
able to change their phenotype and function depend-
ing on the inflammatory conditions [66, 68]. In the 
present study, the higher abundance of MHCII mole-
cules on BALF macrophages and monocytes from dis-
eased camels compared to cells from healthy animals 
indicates a polarization toward the M1 phenotype in 
respiratory diseased camels. This is also supported by 
the decreased expression of the M2 marker CD163 on 
BALF monocytes from diseased camels.

In contrast to the observed changes in BALF 
immune cell composition, blood samples from 
healthy and respiratory affected camels contained 
similar numbers of total leukocytes with compa-
rable fractions of granulocytes, lymphocytes, and 
monocytes in the two animal groups. This was also 
the case for blood lymphocytes with no changes in 
the fraction of helper T cells, B cells, and γδ T cells 
between the healthy and diseased camels. In a recent 
study, experimental infection with Chlamydia psit-
taci (C. psittaci) resulted in significant changes 
in the immune cell composition and phenotype in 
BALF of bovine calves. In addition, the infection-
induced changes in the phenotype of blood mono-
cytes, neutrophils, and T cells, characterized by 
enhanced expression of activation markers and 
adhesion molecules, contributed to the rapid eradi-
cation of the infection [48]. Although the results of 

the present study argue against the effect of respira-
tory disease in camels on blood leukocytes, further 
studies are required to evaluate the role of the sys-
temic cellular immune system in the local immu-
nity on mucosal surfaces of the respiratory tract in 
camels.

Although the BALF samples from diseased cam-
els were tested negative for two common respiratory 
viruses (BPV-3 and BRSV), we cannot exclude infection 
with other respiratory viruses. In addition, the sam-
ples were not tested for bacterial pathogens, which is a 
limitation of the present study. Therefore, further stud-
ies are required with detailed pathogen detection and 
a higher number of animals to evaluate the pathogen-
specific changes in the cellular composition of camel 
BALF.

Conclusions
The current study represents the first report on using 
flow cytometry for the analysis of immune cell com-
position of bronchoalveolar lavage fluid (BALF) in 
dromedary camels. Camel BALF macrophages, granu-
locytes, monocytes, and lymphocytes were identified 
based on their forward and side scatter properties. 
The expression pattern of the cell markers CD172a, 
CD14, CD163, and MHCII molecules on BALF cells 
indicates a similar phenotype for camel, bovine, 
and porcine BALF myeloid cells. The comparison 
between camels with respiratory disease and healthy 
camels regarding cellular composition in their BALF 
revealed a higher total cell count, a higher fraction of 
granulocytes, and a lower fraction of macrophages in 
diseased than healthy camels. Within the lymphocyte 
population, the percentages of helper T cells and B 
cells were also higher in diseased than healthy cam-
els. The elevated expression of the activation marker 
CD11a on helper T cells of diseased camels indicates 
a higher frequency of effector helper T cells in the 
inflamed respiratory tract. The higher abundance 
of MHCII molecules on BALF macrophages from 
diseased camels indicates a polarization toward an 
inflammatory macrophages phenotype (M1) in res-
piratory diseased camels. No significant differences 
were observed in the systemic leukogram between 
healthy and diseased animals.

Fig. 6  The expression density of the cell markers CD172a, CD14, CD163, and MHC-II on BALF myeloid cells from healthy and diseased camels. 
BALF leukocytes were labeled with monoclonal antibodies to the cell antigens CD172a, CD14, CD163, and MHC-II, and labeled cells were analyzed 
by flow cytometry. The expression density of all cell markers was calculated as mean fluorescence intensity (MFI) values and data were presented 
graphically for macrophages, granulocytes, and monocytes. * = p < 0.05

(See figure on next page.)
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