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Objective.*e incidence of superficial organ diseases has increased rapidly in recent years. New methods such as computer-aided
diagnosis (CAD) are widely used to improve diagnostic efficiency. Convolutional neural networks (CNNs) are one of the most
popular methods, and further improvements of CNNs should be considered. *is paper aims to develop a multiorgan CAD
system based on CNNs for classifying both thyroid and breast nodules and investigate the impact of this system on the diagnostic
efficiency of different preprocessing approaches. Methods. *e training and validation sets comprised randomly selected thyroid
and breast nodule images. *e data were subgrouped into 4 models according to the different preprocessing methods (depending
on segmentation and the classification method). A prospective data set was selected to verify the clinical value of the CNNmodel
by comparison with ultrasound guidelines. Diagnostic efficiency was assessed based on receiver operating characteristic (ROC)
curves. Results. Among the 4 models, the CNN model using segmented images for classification achieved the best result. For the
validation set, the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy, and area
under the curve (AUC) of our CNN model were 84.9%, 69.0%, 62.5%, 88.2%, 75.0%, and 0.769, respectively. *ere was no
statistically significant difference between the CNN model and the ultrasound guidelines. *e combination of the two methods
achieved superior diagnostic efficiency compared with their use individually. Conclusions.*e study demonstrates the probability,
feasibility, and clinical value of CAD in the ultrasound diagnosis of multiple organs. *e use of segmented images and clas-
sification by the nature of the disease are the main factors responsible for the improvement of the CNN model. Moreover, the
combination of the CNN model and ultrasound guidelines results in better diagnostic performance, which will contribute to the
improved diagnostic efficiency of CAD systems.

1. Introduction

*yroid and breast diseases are common superficial prob-
lems [1, 2]. Epidemiological data show that the five-year
survival rates for breast cancer and thyroid carcinoma rank
first and second [3, 4], and thus, early diagnosis and
treatment favor a good prognosis [5]. Ultrasound is the
primary means of detection for thyroid and breast diseases.
However, compared with computerized tomography (CT)
and magnetic resonance imaging (MRI), the quality of an
ultrasound image is more easily influenced by a variety of

factors, and the specificity is low in the diagnosis of certain
thyroid and breast diseases (such as identifying thyroid
adenoma and nodular goiter or identifying sclerosing ade-
nosis of the breasts and breast cancer). Moreover, manually
scanning the thyroid and breast with ultrasound is time-
consuming and subjective. Considering these limitations,
there is a need for new diagnostic strategies.

Progress in artificial intelligence has provided new so-
lutions in the medical field. Artificial intelligence uses
symbol-processing theory to find patterns in data at a level to
potentially learn, train, and analyze massive amounts of data.
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Artificial intelligence can quantitatively assess complex
subjects and endow machines with human-like thinking. In
recent years, the application of artificial intelligence in the
medical field has solved many complex medical problems.
For ultrasound, artificial intelligence technology is mainly
used in image classification, that is, identifying and dis-
tinguishing images based on different features extracted
from a large number of images, thereby reaching the goal of
intelligent diagnosis. Traditional image classification tech-
nology establishes a diagnostic classification model by
manually extracting and screening features [6, 7]. For in-
stance, Huang et al. extracted 140 texture features of breast
nodule images and applied a support vector machine (SVM)
algorithm to carry out a classification diagnosis, which
obtained better results [8]. However, as the amount of data
gradually increases and the required features become in-
creasingly complex, the manual screening of features can no
longer satisfy the application demand. In the early 21st

century, deep learning based on traditional classifiers was
developed to reduce the dimensionality of data (conversion
from high-dimensional data to low-dimensional data)
through training in a multilayer neural network. Deep
learning produces a high-efficiency classification model by
carrying out repeated training, learning, and feedback using
known data sets to achieve the automatic extraction and
screening of classification features. Research has confirmed
that the deep learning algorithm is applicable in the es-
tablishment of a big data sample model [9].*e classification
accuracy of the model can be further improved by image
preprocessing (such as image segmentation [10, 11]). *e
combination of ultrasound with artificial intelligence ex-
ploits the objectivity, stability, and accuracy of artificial
intelligence to compensate for the subjectivity, operator
dependence, and low specificity in thyroid and breast ul-
trasound diagnosis. It is essential that ultrasound method-
ology adapts to advances in big data and cloud technology.

Commercial applications of artificial intelligence in
superficial ultrasound are emerging, such as ultrasonic
computer-aided diagnostic (CAD) software for the thyroid,
“Amcad-UT,” which was researched and developed by
AmCad BioMed of Taiwan and has been successfully
marketed in the United States, the European Union, and
China [12]. However, this type of CAD system can only
conduct analyses for single-organ diseases, and some of the
software can only be loaded on the ultrasound instrument.
Part of the images must be output in a Digital Imaging and
Communications in Medicine (DICOM) format to carry out
the analysis, and this process is not conducive to practical
application and more widespread use. In addition, previous
studies have indicated an association between the incidence
rates of thyroid and breast carcinoma in women, and this
association might be related to the effect of estrogen, the
transport mechanism of iodine, and screening bias [13, 14].
Consequently, in Asia, departments of “*yroid Breast
Surgery” are common, and sonograms of the thyroid and
breast are frequently examined in the same test.

To optimize the cost ratio, thyroid and breast lesions
with similar ultrasonic diagnostic features were combined in
this paper to establish a thyroid-breast nodule ultrasonic

diagnostic system based on deep learning technology. Based
on the powerful feature extraction capability of deep
learning, this system expands the scope of application to
improve the practical application and promotion value of
the model. In addition, a comparative assessment of the
model was performed through the collection of prospective
cases, and the significance of the combined application of the
two methods in improving diagnostic efficiency was studied.

*e framework of this article is as follows: (1) a mul-
tiorgan CAD system based on a convolutional neural net-
work is developed, and the impacts of different
preprocessing techniques on diagnostic efficiency are further
investigated; (2) the diagnostic efficiencies of the CNN and
clinical guidelines are compared and validated.

2. Materials and Methods

2.1. Subjects and Dataset. In total, 537 ultrasound images
from 221 patients in the Picture Archiving and Commu-
nication Systems acquired during 2015 to 2018 were ret-
rospectively analyzed (Table 1). *e images came from a
variety of machines, including Phillips IU22, IE33, or CX50
(Philips Healthcare, Eindhoven, the Netherlands); HITA-
CHI Hi Vision Preirus or Ascendus (Hitachi Ltd, Tokyo,
Japan); GE Logiq E9, S6, S8, E6, or E8 (GE Healthcare,
Milwaukee, WI); Siemens S1000/S2000 (Siemens Healthi-
neers, Munich, Germany); and Toshiba Aplio 300 or Aplio
500 (Toshiba Medical Systems, Tokyo, Japan). Histopatho-
logical examination, including aspiration biopsy and surgery
pathology, was used as the reference standard. Images
without artifacts were eligible for participation. Nodules
larger than the region of interest (ROI), diffuse diseases, and
cystic nodules were excluded. Multiple lesions without a
separable nodule were excluded as well. Moreover, another
set of 85 images from 38 patients were prepared for the initial
validation of the CNN-based CAD systems. All images were
stored as PNG data. In this study, 30 additional cases were
enrolled prospectively to evaluate the value of the separate
and combined CAD systems and the ultrasound guidelines.
*e study was approved by the Ethics Committee of the*ird
Affiliated Hospital of Guangzhou Medical University.

2.2. Ultrasound Examination. Cases were enrolled pro-
spectively according to the principles as follows.

2.2.1. �yroid Ultrasound Scanning. *e patient assumed a
supine position with the head leaning slightly backwards,
fully exposing the anterior and lateral areas of the neck. *e
probe was first placed on the thyroid gland laterally to
observe the thyroid capsule and parenchymal situation on
the transverse section, and then, the probe was rotated 90°
and placed on one of the side lobes to longitudinally observe
the thyroid capsule and parenchymal situation and to
measure the size of the thyroid gland.

2.2.2. Breast Ultrasound Scanning. *e patient assumed a
supine position with both hands lifted above the head to fully
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expose both breasts and the axillary areas. *e bilateral
mammary glands, breast lesions, and bilateral axillary lymph
nodes were explored. Quadrant positioning and clock po-
sitioning methods were used to clearly locate the lesions.

*e observed thyroid and nodule ultrasonic features
included size of the nodule, morphology, location, echo,
margin, boundary, surrounding tissue, posterior echo, and
whether there was calcification. Multiple clear ultrasonic
images were taken.

2.3. Image Preprocessing. Since original ultrasound images
(especially for images of low quality) contain large amounts
of imprecise and incomplete information, preprocessing is
essential for data consistency and accuracy. In this paper, the
Windows built-in drawing software was used to standardize
the sample images. Centering on the lesion, the images of 537
cases of training sets and 85 cases of validation sets were
uniformly cut to 315× 315 pixels. A red line was used to
manually outline the boundary of the lesion in the images after
uniformity processing and saved in PNG format as “original
image training set” and “original image validation set.” *e
corresponding binary masks used for training the CNN were
separately saved in PNG format as “segmentation training set”
and “segmentation validation set” (Figure 1). All image pro-
cessing was performed by a physician with 4 years of expe-
rience in identifying lesion edges, and a senior physician
improved the match if the boundary was not well-identified.

2.4. Training and Validating the CNN-Based CAD System.
*e CNNs were developed using DIGITS (Deep Learning
GPU Training System, NVIDIA, USA). Inceptive charac-
teristics of GooLeNet and CaffeNet were exploited in clas-
sification. We set the image type as “Color,” the base learning
rate as 0.001, and the training epochs as 200. Transfer learning
was performed to increase the sample size. Finally, the model
used 5-fold cross validation for internal assessment.

We developed CNNmodels using the original images or
segmented images. Each group was classified into two
subgroups: one subgroup was classified by the nature of the
disease as benign or malignant and the other one was
classified by type of disease (fibroadenoma, invasive carci-
noma, nodular goiter, and papillary carcinoma). *e initial
validation of 85 cases was used to verify and choose the
outstanding model of the 4 CNN models for the following
steps (Figure 2).

2.5. Performance Measurement. In this study, diagnosis
performance was evaluated by accuracy, sensitivity, and

specificity. A total of 140 image samples that met the re-
quirements above were selected prospectively. We tracked
the pathological results of all cases. *e model was used for
automatic identification and classification diagnosis on the
prospective validation set to obtain the model diagnosis
results. *e classification of the 2017 American College of
Radiology (ACR) *yroid Imaging Reporting and Data
System (TI-RADS) [15] and the 2013 Breast Imaging
Reporting and Data System (BI-RADS) [16, 17] was used to
assess the risk of malignancy for thyroid and breast nodules.
In the ACR TI-RADS, points are given for all ultrasound
features, with more suspicious features being awarded ad-
ditional points.*e point total determines the nodule’s level,
which ranges from TR1 (benign) to TR5 (high suspicion of
malignancy). In the 2013 BI-RADS, nodules are also cate-
gorized as category 1 (benign) to 5 (high suspicion of
malignant) according to the ultrasound features. Nodules
with TR4 and higher or BI-RADS category 4 and above were
defined as having a malignant tendency. A senior physician
with 15 years of ultrasound experience performed the above
evaluation.

2.6. Statistical Analysis. *e Shapiro–Wilk test was used to
analyze the normality of the data. *e quantitative data were
presented as the means± SDs or interquartile ranges in case
of asymmetry. *e sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), and accuracy
were calculated by comparing the pathological findings.
Significant differences between the groups were assessed
using the paired McNemer’s test and chi-squared test.
P< 0.05 indicated a statistically significant difference. *e
diagnostic efficiencies of the CNN, ultrasound guidelines,
and their combination were evaluated by receiver operating
characteristic (ROC) curves. *e statistical analyses were
accomplished with SPSS software version 16.0 (SPSS, Chi-
cago, IL).

3. Results

3.1. Dataset of the CNN System. *e 537 images consisted of
158 thyroid nodules and 379 breast nodules, including 287
benign nodules (53.4%) and 250 malignant nodules (46.6%).
Since one case of papillary thyroid carcinomawasmismatched,
the initial validation set ultimately included 84 cases.

3.2. Diagnostic Efficiency of the CNN Systems. *e training
curves of the groups with epochs are shown in Figure 3. *e
training set accuracy of the groups was 75% (nontreated
images classified by type of disease), 88% (nontreated images

Table 1: Details of the data studied in our experiments.

Diseases Patients Training set Validation set

Breast tumors Fibroadenoma 91 182 22
Invasive carcinoma 56 197 13

*yroid nodules Nodular goiter 52 105 17
Papillary carcinoma 22 53 33

Total 221 537 85

BioMed Research International 3



classified by nature of the disease), 78% (segmented images
classified by type of disease), and 92% (segmented images
classified by nature of the disease). After 200 epochs, the
training was stopped due to the absence of further im-
provement in both accuracy and loss.

In addition, Table 2 lists the diagnostic efficiencies of the
different CNN models in the initial validation, and Tables 3
and 4 show the diagnostic consistencies of the CNN models
and pathology. *e results of the CNN model, which were
expressed as a percentage, were divided into “Benign ten-
dency” and “Malignant tendency.” *e diagnostic criterion
was set at “>50%.” *e comparison of the results of the
different processing methods indicated that after segmen-
tation, fewer benign lesions were misclassified as malignant

lesions (18 vs. 0), but the number of cases in which invasive
carcinoma was misclassified as papillary carcinoma in-
creased (3 vs. 17). *e results indicated that the CNN model
developed by segmenting images and classifying by the
nature of the disease achieved better diagnostic sensitivity,
specificity, and accuracy among the 4 models (P< 0.05).
According to the validation set, great diagnostic perfor-
mance was observed for the diagnosis of breast and thyroid
nodules (Figure 4). We used this model to perform the
subsequent validations.

3.3. Diagnostic Efficiency of ACR TI-RADS and BI-RADS
Individually and Combined with the CNN System. A total of
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Figure 2: Structures of the 4 CNNs.

(a) (b) (c)

Figure 1: Procedure of lesion boundary drawing. (a) Original image. (b) Targeted lesion region selected by the physician (red contours).
(c) *e corresponding binary masks used for training the CNN.
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140 images were analyzed prospectively. *e image data
were rooted in 14 cases of thyroid nodules (including 12
nodular goiters and 2 papillary carcinoma) and 16 breast
nodules (including 7 fibroadenoma and 9 invasive carci-
noma). We used 2017 ACR TI-RADS and 2013 BI-RADS as

the ultrasound guidelines for the diagnosis of thyroid and
breast nodules. According to the ACR TI-RADS categories,
51 images were classified as TR2 to TR3, and 12 images were
classified as TR4 to TR5. Among the 77 ultrasound images of
breast nodules, 19 images were classified as BI-RADS 2 to 3,
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Figure 3: Training set accuracy and loss curves of the CNNs. *e orange lines represent the changes in accuracy of the validation set, the
blue lines represent the dynamic loss of the training set, and the green lines represent the dynamic loss of the validation set. (a) Nontreated
images classified by type of disease. (b) Nontreated images classified by nature of the disease. (c) Segmented images classified by type of
disease. (d) Segmented images classified by nature of the disease.

Table 2: Diagnostic performance of the validation set in different CNN models.

Consistent with
pathology

Sensitivity
(%)

Specificity
(%)

PPV
(%)

NPV
(%)

Accuracy
(%)

Nontreated, classified by type of disease 48 55.6 76.9 73.5 60.0 57.1
Nontreated, classified by nature of the
disease 58 77.0 63.2 60.0 79.5 69.0

Segmented, classified by type of disease 50 86.7 84.6 86.7 84.6 59.5
Segmented, classified by nature of the
disease 74 81.8 100.0 100.0 74.4 88.1
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while the remaining 58 images were classified as BI-RADS 4
to 5. During the CNN diagnosis, 52 images of thyroid
nodules and 16 images of breast nodules were considered to
have benign tendency, while another 11 cases of thyroid
nodules and 61 cases of breast nodules were considered to
have malignant tendency (Figure 5).

In this study, the performance of the CNN model was
inferior to that of the ultrasound guidelines. However, there
was no significant difference between the two diagnostic
methods in the area under the receiver operating charac-
teristics curve (AUC) (0.769 vs 0.842, P> 0.05, Figure 6).
Compared with independent use, the combination of CNN
and ultrasound guidelines resulted in an improved speci-
ficity of 92.5% but lower sensitivity (78.5%). *e results of
the chi-squared test demonstrated that there was a signifi-
cant difference between independent use and combination
with CNN (P< 0.05), with superior diagnostic efficiency of
the combination (Table 5).

4. Discussion

*is study mainly aimed to establish a multiorgan ultrasonic
CADmodel based on a CNN deep learning algorithm and to
validate the clinical value of the model by comparison with
the efficiency of ultrasound diagnostic criteria. Although
CAD has been broadly applied in CT and MRI, its appli-
cation in ultrasound images is relatively rare.We believe that
screening will be the most common application of artificial
intelligence, and further improvements in CNNs (such as
multiorgan application) may provide an accurate and effi-
cient new strategy for thyroid and breast cancer screening.

To verify the performance of the different image pre-
processing strategies, in this study, we compared the effi-
ciency between the original image and the model established
from the image of the extracted nodule pixels after seg-
mentation, mainly focusing on the margin features and the
surrounding tissue features. *e results showed that the
performance of the CNN established by the segmented
image was better than that of the original image, and the
differences in margin features were enhanced due to the
removal of echo interference from the surrounding tissue.
After segmentation, the number of misdiagnoses in the
identification of malignant and benign nodules clearly de-
creased (18 vs. 0). In addition, the lack of segmentation and
recognition of tissue around the lesion led to an increase in
the number of invasive carcinomas misclassified as papillary
carcinoma (3 vs. 17). We further compared the performance
of the CNN for breast and thyroid nodules with that of the
physician, and the results showed that the diagnostic ac-
curacy of CNN was superior for both breast and thyroid
nodules (92% for thyroid and 91% for breast). However, for
separate diagnostic performance, the accuracy rates de-
creased to 42.9% for thyroid nodules (22 of the thyroid
nodules were correctly diagnosed, while 27 cases were
misdiagnosed) and 82.9% for breast tumors (29 cases of
breast tumors were correctly diagnosed, while 6 cases were
misdiagnosed) in the validation set. *e major cause was the
lack of segmentation of the surrounding tissue, which led to
the misclassification of invasive carcinoma and papillary
carcinoma. *ese results confirmed that compared with the

Table 3: Verification of the CNN model classified by type of disease based on segmented images.

Pathology
Nodular goiter Invasive carcinoma Papillary carcinoma Fibroadenoma

CNN model (segmented, classified
by type of disease)

Nodular goiter 11 0 4 2
Invasive carcinoma 0 11 1 1
Papillary carcinoma 0 17 10 5

Fibroadenoma 2 0 2 18

Table 4: Verification of the CNN model classified by type of disease based on nontreated images.

Pathology
Nodular goiter Invasive carcinoma Papillary carcinoma Fibroadenoma

CNN model (nontreated, classified
by type of disease)

Nodular goiter 11 0 3 3
Invasive carcinoma 1 6 1 5
Papillary carcinoma 13 3 15 1

Fibroadenoma 0 5 1 16
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(a) (b)

(c) (d)

Figure 5: Diagnosis of thyroid and breast nodules with benign or malignant tendency by ultrasound guidelines and CNN. (a) Fibroa-
denoma.*e nodule was classified as BI-RADS 3, while the diagnosis of CNNwas benign tendency (93.24%). (b) Invasive breast carcinoma.
*e nodule was classified as BI-RADS 4, while the diagnosis of CNN was malignant tendency (100%). (c) Papillary thyroid carcinoma. *e
nodule was classified as TR5, while the diagnosis of CNN was malignant tendency (99.39%). (d) Nodular goiter. *e nodule was classified as
TR2, while the diagnosis of CNN was benign tendency (100%).
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Figure 6: ROC curves of the CNN model and ultrasound guidelines. (a) *e AUC of the CNN model was 0.769 (95% CI: 0.688–0.850).
(b) *e AUC of the ultrasound guidelines was 0.842 (95% CI: 0.773–0.910).
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original images, the use of preprocessed ultrasound images
can effectively improve the performance for classifying
benign and malignant lesions but still has poor efficiency in
further differentiating the type of disease [18]. However,
once the target organ is confirmed, there will not be a
problem in practical application.

Prior studies of CAD systems based on deep learning
algorithms have consistently observed high sensitivity and
low specificity, especially for studies with small sample sizes.
For instance, in a retrospective study that developed a CNN
model using 342 cases of thyroid nodules, the sensitivity,
specificity, PPV, NPV, accuracy, and AUC of the CNN
model were 96.7%, 48.5%, 87.3%, 86.2%, 82.2%, and 0.73,
respectively, compared with values of 96.2%, 75.7%, 90.2%,
89.7%, 90.1%, and 0.87, respectively, for 2017 ACR TI-RADS
[19]. Another study compared the deep learning system with
the Automated Breast Ultrasound (ABUS) based on BI-
RADS [20]. Most studies have demonstrated high sensitivity
and low specificity of CNN models, similar to our study.
According to our CNN model, the sensitivity, specificity,
PPV, NPV, accuracy, and AUC were 84.9%, 69.0%, 62.5%,
88.2%, 75.0%, and 0.769, respectively, lower than the values
obtained according to the ultrasound guidelines (92.5%,
75.9%, 70.0%, 94.3%, 82.1%, and 0.842, respectively).
However, the differences were not significant (P> 0.05). In
addition to the small sample size, the low specificity is
probably due to selection bias and subjectivity of the training
set, discordance among the diagnostic standards, and the
difficulty of classifying isoechoic nodules or nodules without
a clear margin. Despite the above problems, our study
confirms the clinical value of the CNN model in ultrasound
diagnosis. To further increase the diagnostic efficiency,
parameter optimization and big sample data are needed.
Additionally, compared with independent use, the combi-
nation of CNN and ultrasound guidelines yielded higher
specificity (85.1%), supporting the adaptation of multiple
diagnostic criteria for CNN models.

*e neural network deep learning method is based on a
powerful feature recognition function that can, by learning
and analyzing a large amount of data, automatically find and
extract regular features to achieve good classification and
diagnostic results [21–24]. When establishing the neural
network deep learning model, it is difficult to adjust the
parameters of the model to fix on certain features as targets,
and a higher diagnostic accuracy rate can be obtained by
repeated training over a long period of time. To address
generalization and reduce overfitting to improve the ex-
pression of high-level features in CNN models, more data
and parameter adjustments are needed [25]. A large sample
size is an important guarantee for improving the accuracy of
the deep learning network, and studies have confirmed that
deep learning has better accuracy than other algorithms

(such as SVMs) in large sample data [26, 27]. In addition,
drawing the outline of the nodule margin is another factor
that affects the classification diagnosis; therefore, more se-
nior physicians should be included in this step to ensure
accuracy in manually drawing the outline. Furthermore, to
achieve a more objective evaluation of the model, it is
necessary to apply the same data set to other algorithmic
models for comparison, instead of comparing diagnostic
efficiency using different data sets. *is is also a limitation of
this paper that awaits improvement in further research.

5. Conclusion

In this study, we propose a thyroid-breast nodule CAD
ultrasonic diagnostic system based on deep learning. *e
system was shown to be useful in ultrasonic screening of the
lesions of two organs. *e system not only shortens the
examination time but also reduces the physician’s exami-
nation burden. Furthermore, its cost-effectiveness may help
promote the application of CAD in ultrasound imaging
examination. Nevertheless, the establishment of an efficient,
accurate, and valuable CAD model depends on a large
amount of sample, which is a difficult problem for the
collection of image data [25]. A multicenter study may help
with the development of large-sample research. As the
amount of data increases, classifier algorithm parameters
further improve, and deep learning technology benefits from
supervised and nonsupervised coordination. *e accurate
extraction of numerous effective classification features will
transform the ultrasonic CAD system into the truly “in-
telligent diagnosis” of our expectations.
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