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Abstract

Background Most current cell-based regenerative therapies are based on the indirect induction of the affected tissues re-
pair. Xenogeneic cell-based treatment with expanded human placenta stromal cells, predominantly from fetal origin (PLX-
RAD cells), were shown to mitigate significantly acute radiation syndrome (ARS) following high dose irradiation in mice, with
expedited regain of weight loss and haematopoietic function. The current mechanistic study explores the indirect effect of the
secretome of PLX-RAD cells in the rescue of the irradiated mice.
Methods Themitigation of the ARS was investigated following two intramuscularly (IM) injected 2 × 106 PLX-RAD cells, 1 and 5 days
following 7.7 Gy irradiation. The mice survival rate and their blood or bone marrow (BM) cell counts were followed up and correlated
with multiplex immunoassay of a panel of related human proteins of PLX-RAD derived secretome, as well as endogenous secretion of
related mouse proteins. PLX-RAD secretome was also tested in vitro for its effect on the induction of the migration of BM progenitors.
Results A 7.7 Gy whole body mice irradiation resulted in ~25% survival by 21 days. Treatment with two IM injections of 2 × 106

PLX-RAD cells on days 1 and 5 after irradiation mitigated highly significantly the subsequent lethal ARS, with survival rate increase
to nearly 100% and fast regain of the initial weight loss (P< 0,0001). This was associated with a significant faster haematopoiesis
recovery from day 9 onwards (P< 0.01). Nine out of the 65 human proteins tested were highly significantly elevated in the mouse
circulation, peaking on days 6–9 after irradiation, relative to negligible levels in non-irradiated PLX-RAD injected mice (P < 0.01).
The highly elevated proteins included human G-CSF, GRO, MCP-1, IL-6 and lL-8, reaching>500 pg/mL, while MCP-3, ENA, Eotaxin
and fractalkine levels ranged between ~60–160pg/mL. The detected radiation-induced PLX-RAD secretome correlated well with
the timing of the fast haematopoiesis regeneration. The radiation-induced PLX-RAD secretome seemed to reinforce the delayed
high levels secretion of related mouse endogenous cytokines, including GCSF, KC, MCP-1 and IL-6. Additional supportive in vitro
studies also confirmed the ability of cultured PLX-RAD secretome to induce accelerated migration of BM progenitors.
Conclusions A well-regulated and orchestrated secretion of major pro-regenerative BM supporting secretome in high dose irra-
diatedmice, treated with xenogeneic IM injected PLX-RAD cells, can explain the observedmitigation of ARS. This seemed to coincide
with faster haematopoiesis regeneration, regain of severe weight loss and the increased survival rate. The ARS-related stress signals
activating the IM injected PLX-RAD cells for the remote secretion of the relevant human proteins deserve further investigation.
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Introduction

Acute radiation syndrome (ARS) following exposure to high
dose ionizing radiation is associated with multiple severe sys-
temic multi-organ failures. The damages depend on the mo-
dality, the source, the dose and the rate of the radiation
exposure.1–6 Even low doses of whole body irradiation can
severely damage the radiosensitive haematopoietic system,7

while moderate high dose may lead to other systemic effects
such as cachexia and muscle damages.8 Early effects of ARS
are manifested by haematopoietic and gastrointestinal
failure, which are followed by the delayed effects of acute ra-
diation exposure, characterized by time and dose-dependent
multi-organ injury. A common possible solution to treat the
bone marrow (BM) failure is the transplantation of
haematopoietic stem cell (HSC). However, individually
matched BM transplantation (BMT) is not always available
and may not be practical in events associated with multiple
casualties with no accurate estimation of the doses of the ra-
diation exposure.1,9–13 It also does not address damages to
other organs. Other proposed approaches are based on the
treatment with pertinent growth factors, such as erythropoi-
etin (EPO), granulocyte and granulocyte-macrophage colony
stimulating factors (G-CSF and GM-CSF, respectively).14–19

Some of these factors have already been approved as pro-
regenerative emergency and investigative new drug to treat
BM failure following aggressive radiotherapy or chemother-
apy1,18,20 Several other drugs and growth factors, as well as
anti-inflammatory cytokines and chemokines and prostaglan-
dins, have also been proposed for mitigation of ARS, based
on various mechanisms, such as their anti-oxidative and
anti-apoptotic activity.21–24

Early studies employing BM or other tissue derived mesen-
chymal stromal/stem cells (MSC) proposed that the im-
planted cells take an active role in replacing the depleted
cells in damaged tissues by their differentiation to various
relevant mesenchymal cell types and their subsequent inte-
gration in the damaged tissues.25–34 Nevertheless, to date,
it is becoming more commonly accepted that the main
mechanism of pro-regenerative action of such cells is via their
paracrine/endocrine effects.33,35–39 Cell therapies based on
BM derived MSC (BM-MSC) were also proposed as an
option for enhancing the recovery from ARS.25,35,37,38,40–43

A wide variety of cell types have been investigated for their
potency in this respect.25,40,44–52 Nevertheless, some studies
questioned the pro-regenerative effect of these cells on
the haematopoietic system.53 To date, the best explanation
for the role of BM-MSC in mitigation of radiation effects
seems to be their induced systemic support of the affected
BM by the secretion of relevant pro-regenerative and
haematopoiesis promoting factors.28,37,38

The human placenta is an easily accessible source for isola-
tion of rapidly proliferating human stromal cells.54 Placental
stromal cell populations were initially investigated as an

easily available alternative to BM-MSC for stem-cell based tis-
sue repair. As to the trophic effect of these cells, some studies
suggested that they may have advantages over stromal cells
from other tissues for enhancing early development of the
haematopoietic system.55,56

It was previously reported that intravenously injected cells,
particularly stromal cells, such as BM-MSCs, are predomi-
nantly trapped in the lung immediately following their admin-
istration.36,57 In contrast, intramuscular (IM) injection allows
the delivery of higher numbers of cells, which remain within
the area of the injection site for at least 1–3 weeks with no
apparent adverse effects.26 Therefore, the apparently
complication-free IM cell delivery was adopted for the cur-
rent study.

PLacenta-eXpanded (PLX) cells are adherent human-
derived placental cells with typical mesenchymal cell pheno-
type, manufactured for cell therapy in highly regulated
standards. The cell product PLX, consisting of placental stro-
mal cells (PSC) from pure maternal tissues, was initially devel-
oped and tested pre-clinically and clinically as an allogeneic
cell therapy for treating different chronic conditions for pe-
ripheral artery disease (e.g. critical limb ischemia), neurolog-
ical disorders, pulmonary hypertension, muscle injury and
preeclampsia.26,40,58–62 While conducting a preliminary study
on mitigation of radiation effects, cells consisting predomi-
nantly of expanded mesenchymal stromal cells of the new-
born tissues of the placenta (which we termed PLX-RAD)
were found to be most effective in mitigating ARS. Following
IM injections with PLX-RAD cells to 7.7 Gy pre-irradiated
mice, close to 100% survival was recorded, relative to ~30%
survival of the irradiated untreated controls.26

The current continuation study was set in order to compre-
hend the mode-of-action of PLX-RAD-based cell therapy by
monitoring the secreted human and murine protein profile
in the plasma of the high dose irradiated mice at different
time points. This mechanistic animal study, supported by
in vitro data, proposes a mechanism of action of the PLX-
RAD cells as a well-controlled highly effective cell therapy
for lethal ARS which could be implied for other similar
cell-based therapies.

Methods and martials

Animals

C3H/HeNHsd male mice, 8–10 weeks old, were purchased
from Harlan/Envigo-RMS Israel Ltd (ISO 9001:200) The mice
were kept in specific pathogen free conditions at Hadassah
Hebrew University animal colony or at Harlan (Envigo) Israel
el, Ltd. They were acclimated for at least 5 days before the
initiation of the experiments. BALB-C mice for BM extraction
(ethics approval # IL-14-04-120) were purchased from
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Harlan/Envigo-RMS Israel. The animal model experiments
were approved with Ethical Animal Welfare Certificates
#GB06/68708 of the Institutional Animal Welfare Committee
of the Hebrew University of Jerusalem #MD-12-13296-4 (with
modified approved versions/amendments MD-16-14727-4
and MD 11-12877-4).

The personnel involved in the animal part of the study
were supervised personally by the Institutional responsible
veterinary staff on the humane handling of mice in this
specific high-risk protocol associated with expected severe
life-threatening heavy irradiation effects. They were
instructed how to monitor the animals discomfort at all
stages of the study and assure their minimal suffering.

Mice irradiation and follow-up

All the irradiated mice were subjected to total body irradia-
tion (TBI) of 7.7 Gy on day 0 (1 day prior to the first IM injec-
tion of cells or vehicle control solution). The mice were
irradiated by a clinical 6–18 MeV LINAC (Varian, Medical
Systems, CA, USA), in a sterilized box with height restriction
for homogenous dose distribution. A 1 cm plastic dose
build-up layer was used to assure uniform, accurate and
homogenous dose exposure as calibrated in the actual exper-
imental setup by high sensitivity ionizing chambers.

All the irradiated mice were weighed daily in all working
days in the week and in weekends in case of stress associated
with their pre-irradiation. They were inspected twice daily
upon the early appearance of any signs of stress or sharp
weight loss. In the cages housing mice suffering from severe
weight loss (>20%), wetted food was supplied. Mice which
suffered from dehydration were injected IP with 05-1 mL of
saline. In spite of the close tight follow-up of the mouse
condition, in about 20–25%, the deadly radiation induced
pancytopenia occurred by fast deterioration of their health
condition between the routine follow-ups. If severe signs of
stress occurred, including decreased mobility, heavy breath-
ing, curving back, sleepiness or decreased response to stimu-
lation, all hinting for irreversible deterioration of their health
condition, the mice were immediately humanely euthanized
and counted as non-surviving at that time point. As previ-
ously reported, 2 × 106 PLX-RAD cells injected IM on day 1
and 5 following 7.7 Gy irradiation, mitigate very significantly
the expected lethal radiation-induced ARS, as reflected by
major haematopoiesis failure and weight loss.26

Experimental setup

The experimental design is presented in Figure 1A. For cyto-
kine analyses, the tested mice were divided into three main
treatment protocols. The main experimental group was irra-
diated and injected IM with 2 × 106 PLX-RAD cells in the

vehicle solution (Plasma-lyte, Baxter, USA) 1 and 5 days after
irradiation. In parallel, the control irradiated mice were
injected only with the vehicle solution. A control group of
non-irradiated mice was treated with PLX-RAD cells 1 and
5 days after the initiation of the experiment. Another naïve
control group was not treated or irradiated. At different time
points, between days 2 and 23 of the experiment, four to five
mice were sacrificed from each of the experimental groups,
and their blood was collected for further analyses. In vitro
experiments were set in parallel to study the pro-migratory
effects of factors in conditioned medium (CM) secreted by
PLX-RAD cells in culture conditions as described in Figure 1B.

ARS induced mice death occurred within a period of
20 days after their irradiation. The survivors in the different
experimental groups at this stage were already in the process
of recovery from BM-related ARS. The follow-up that was ter-
minated on day 23 still allowed to assay the residual
radiation-induced damages to the haematopoietic system,
as reflected by peripheral blood cell counts, before further
recovery of the survivors could blur these differences. The
updated survival data of the irradiated mice presented in
the current report includes previously reported survival
data26 with additional mice which were added in this study
to assay their secretome for the full period of to 23 days.

The mice to be sacrificed were deeply anaesthetized with
ketamine/xylazine, and blood was collected directly from
the right ventricle of the heart for complete blood count.
Then, these mice were euthanized. BM cells were harvested
from both the femurs and tibias of the sacrificed mice as fol-
lows: the extremities of the bones were cut off, and the BM
plugs were flushed out of the bone cavities with PBS + 2%
FCS. The extracted BM cells were suspended in PBS + 2%
FCS, and the RBC were lysed by a lysis buffer (Biological In-
dustries, Israel), then the nucleated cells were counted by
hematocytometer.

PLX-RAD cells and their administration

PLX-RAD adherent PSCs (also termed PLX-R18) were isolated
from full term placentae of Caesarean section of normal
healthy male births in GMP conditions by Pluristem Ltd.
(Haifa, Israel). The cells were digested from placental tissue,
initially expanded in large tissue culture flasks and then trans-
ferred to bioreactors for further controlled 3D-expansion on
non-woven fibre made carriers. After harvesting, cells were
cryopreserved in liquid nitrogen. PLX-RAD cells consisted of
>70% fetal (X/Y) cells.58,61 The extended surface marker
profile of the PLX-RAD cells is shown in Figure 2. By FACS
analysis, these cells were negative to haematopoietic end en-
dothelial markers, expressing surface marker profile identical
to mesenchymal stromal cells from other sources. Those in-
clude also CD146 and CD166 which are shared with other cell
types including pericytes, which are proposed to be the
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Figure 1 Experimental overview flow of the animal study and in vitro experiments for evaluation of the mechanism of action of PLX-RAD cells in mit-
igation of ARS. The mice were irradiated by 7.7 Gy, and blood was collected at selected time points after irradiation and PLX-RAD treatment for analysis
of human and mouse proteins secretion in the plasma (A). For the studies on PLX-RAD secretome activity in vitro, CM from cultured PLX-RAD cells was
collected and tested for the relevant proteins of interest. Then, the conditioned medium was further tested for its effect on the migration of harvested
nucleated mouse BM cells by the trans-well migration assay (B).

Figure 2 Surface markers profile of the PLX-RAD placenta derived stromal cells. FACS histograms of the PLX-RAD cells surface markers similar to those
expressed by stromal cells with no expression of typical haematopoietic and endothelial cells markers. The cells are positive to CD146 and 166 which
are also shared with other cell types like pericytes.
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source of mesenchymal stromal cells63–65 (Figure 2). The PLX-
RAD cells in all the treated groups were injected on days 1
and 4 after the mice irradiation. Four to five mice were
sacrificed in each of the arms tested at different time points
of 0, 2, 6, 9, 14 and 23 days following irradiation for the
cytokine assay in the blood plasma. For their delivery, the
cryopreserved PLX-RAD cells were thawed, washed and re-
suspended in PlasmaLyte-A solution as the vehicle for their
injection (Baxter, Deerfield, IL, USA).

PlasmaLyte-A with no cells was used as a vehicle control. In
each mouse, a total 2 × 106 viable cell/0.1 mL (50 μL/limb)
were injected slowly to the right and left lateral and cranial
thigh muscles 1 and 4 days post-irradiation using fine 27G
needles as previously described.26 No discomfort of the ani-
mals following this IM cell administration was recorded in
any of the experiments.

Collection of conditioned medium from PLX-RAD
cells for in vitro assays

PLX-RAD cells were thawed and suspended in Dulbecco’s
Modified Eagle’s Medium (DMEM) (Sigma Aldrich), supple-
mented with 10% fetal bovine serum + 2 mM L-Glutamine,
and cultured in six well-plate (each well with 0.5 × 106

cells/4 mL DMEM) for 24 h in humidified CO2 incubator (5%
CO2, at 37°C). Twenty four hours later, the DMEM was re-
placed with fresh and neat DMEM for the cytokine assay or
alternatively with RPMI 1640 medium +2 mM L-Glutamine
(Biological Industries, Beit Haemek, Israel) supplemented
with 0.5% Human Serum Albumin for BM migration assay.
Then, PLX-RAD cells were incubated in the fresh media for ad-
ditional 24 h. Finally, the CM was centrifuged by 4500 g at
4 °C for 1 min and collected, and cell debris discarded.

Human and murine protein concentrations in
murine plasma or CM of cultured PLX-RAD cells

The experimental model of the current study is based on the
use of multiplex immunoassay for the measurement of the
plasma levels of an array of proteins of interest at different
time points. A minimal cross-reactivity was detected between
the mouse and human proteins, allowing the separate follow-
up of the human proteins secreted by the IM injected PLX-
RAD cells and the endogenously derived murine proteins.

For the irradiated mice secretome experiments for each
time point of interest for each arm of the experiment 4–5
mice were sacrificed and their blood collected. For the time
point of day 23, 10 mice of the vehicle control were included
for each arm since over 14 days a significant mortality from
ARS was recorded, but the four surviving mice in this group
could be tested in this time point.

Plasma samples were obtained from the sacrificed mice on
day 0, 2, 6, 9, 14 and 23 after irradiation. For in vitro
secretome analyses, CM of cultured PLX-RAD cells was used.

The cytokine levels in the peripheral blood were analysed
by Bio-Plex protein assays of BIO-RAD (Hercules, CA, USA)
with BIO-RAD software data analysis. The assays were read
by Luminex 100 system (Perkin Elmer, Waltham, MA, USA).
The levels of human factors were assessed by 39-Plex plat-
form for the detection and analysis of Eotaxin, Flt-3L,
Fractalkine, G-CSF, GRO, IL-6, IL-8, MCP-1, MCP-3, TGFα, IFNγ,
IL-10, MDC, IL-13, IL-17A, IL-1α, IL-2, MIP-1β, VEGF, EGF, GM-
CSF, IFNα, IL-12p40, IL-12p70, IL-15, IL-1RA, sIL-2RA, IL-9, IL-
1ß, IL-3, IL-4, IL-5, IL-7, IP-10, MIP-1a, TNFα, TNFβ, sol CD40-
ligand and FGF-2. Additional human proteins were tested
with a 23-plex platform, designed for analysis of ENA-78,
Eotaxin-2, BCA-1, MCP-4, TARC, Eotaxin-3, LIF, IL-33, IL23, I-
309, IL-16, 6CKine, TPO, SCF, TSLP, TRAIL, CTACK, IL-28A, IL-
20, MCP-2, MIP-1d, IL-21 and SDF-1α,β. An additional multi-
plex platform was set for analysis of PDGF-AA, PDGF-BB and
RANTES. All antibodies were tested to be prominently specific
to detect human proteins with <10% cross-reactivity with
mouse proteins. The levels of murine cytokines were
analysed by using murine 15-plex platform for the following
proteins: G-CSF, GM-CSF, IFNγ, IL-1β, IL-6, IL-10, IL-12p70,
KC, MCP-1, MIP-1α, MIP-2, IL-2, IL-4, IL-17 and TNFα. All
Luminex assays were performed as per the manufacturer’s
instructions and protocols.

Collection and process of BM cells for in vitro
migration assays

BM was collected from the bones of Balb/C mice. The BM
cells were harvested from the long bones as described above.
The isolated harvested cells were centrifuged for 10 min at
300 g and re-suspended in RPMI 1640 medium (Biological In-
dustries, Beit Haemek, Israel), supplemented with 0.5% HSA
to be used for BM migration.

BM cell migration assay in vitro

For the BM cell migration assay, 106 nucleated mouse BM
cells were seeded in duplicates per each experimental group
on the upper insert of Transwell 24 well plate with 5 μm
pores polyester permeable membrane (Corning, purchased
from Sigma Aldrich). Subsequently, 0.5 mL of either PLX-
RAD derived CM or fresh RPMI medium with 0.5% HSA
(which served as a negative control) were added to the lower
chambers of the Transwell plate. A day later, the upper in-
serts were gently removed, and the migrated cells were col-
lected from the lower chambers and counted by CyQuant
NF assay (Life Technologies Corporation, Carlsbad, CA, USA).
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Statistical analyses

Statistical analysis of the data for comparison between the
different groups of interest was done by Student’s t-tests of
two-sample assuming equal variances. The significance of
the difference between the survival curves was analysed by
a Log-Rank test of the Kaplan–Meier survival curves for both
the survival duration and for the endpoint survival rate
following different treatments.

Results

Follow-up with time after irradiation of human
PLX-RAD and murine endogenous proteins

The treatment with 2 × 106 PLX-RAD cells injected IM on day
1 and 5 after 7.7 Gy irradiation mitigated very significantly
the lethal radiation-induced ARS symptoms of weight loss
and haematopoiesis failure.26 The survival of the control irra-
diated vehicle treated mice by day 23 was only ~ 20% so that
higher number of mice had to be used (55) to allow enough
survivors to monitor at the end of the follow-up of survival.
In the group of PLX-RAD treated mice with a survival rate of
almost 100% at the end of the follow-up, 31 mice were suffi-
cient for the followed up.

The multiplex immunoassay measurement of the levels of
plasma proteins of interest at different time points allowed
monitoring the kinetics the specific human secretome in the
different arms tested. The detailed kinetics of the levels of
human proteins of interest in the plasma of the PLX-RAD
treated mice and the controls are shown in Figure 3B–J.
Only nine out of the 63 human proteins tested showed sig-
nificantly elevated levels in the mouse circulation. Among
these human proteins secreted by the PLX-RAD cells, G-
CSF, GRO (CXCL1), MCP-1 (CCL2), IL-6 and lL-8 (CXCL8)
reached high peak levels of >500 pg/mL 6 to 9 days after
irradiation and 2 to 5 days after the two cell injections, re-
spectively. The timing of the proteins secretion seems to
correspond to the induction of regeneration of the
haematopoietic system. The PLX-RAD secretome contained
growth factors which induce HSC proliferation while partici-
pating in their differentiation (such as GCSF), or as inducers
of cell migration from the BM into the circulation (i.e. GRO).
Additional chemokines which relate to the recruitment of
new blood cells to the circulation, such as the monocytes
and macrophage attractant and function regulator MCP-3
(CCL7), the neutrophil activating protein ENA78 (CXCL5),
the eosinophil chemotactic protein Eotaxin (CCL11) and T
cells and monocyte chemoattractant Fractalkine (CX3CL1)
were elevated. All these proteins showed similar kinetics
with peak proteins concentrations in the mouse circulation
in the range of 50–200 pg/mL.

Remarkably, when the PLX-RAD cells were injected IM in
the same manner in naïve non-irradiated mice, only negligi-
ble levels of the PLX-RAD secreted human proteins were
detected in the plasma (with very limited short-term eleva-
tions of IL-6, MCP-1 and Fractalkine). This suggests that the
systemic stress signals related to ARS stimulate the IM
injected PLX-RAD cells in the acute phase in which they were
needed to trigger the controlled transient co-secretion of
these proteins to the circulation in a manner in the acute
phase in which they were most needed (Figure 3B–J).

As expected, following high-dose irradiation, the mice also
secreted their own haematopoiesis supporting growth factors
and chemokines, including G-CSF, KC (a homologue of the hu-
man chemokine GRO), MCP-1 (CCL2) and IL-6 (Figure 3K–N).
These proteins were elevated with somehow earlier kinetics
in the irradiatedmice treatedwith PLX-RAD cells reaching peak
levels between days 6 and 9 after irradiation. This hints for the
possible contribution of the human PLX-RAD secretome to the
earlier critical time point of the induction of intrinsic secretion
of the murine proteins. In the irradiated non PLX-RAD treated
mice, the secreted murine protein levels peaked later,
between days 9 and 14 with higher levels of mouse derived
G-CSF and IL-6 in the critical phase of pancytopenia.

The above data suggest that PLX-RAD derived human
secretome, combined with the intrinsically secreted mouse
proteins, may join force to support an accelerated earlier pro-
liferation of the BM progenitors. This seems to explain the
mitigation of the ARS and recovery of the seriously BM de-
pleted PLX-RAD treated mice from lethal stage of pancytope-
nia, which was recorded typically from days 9–12 onward in
untreated mice (as shown in Figure 3A). Only negligible resid-
ual levels of the elevated human proteins were present in the
mouse circulation of the PLX-RAD treated mice from day 14
onwards, while the slope of the decline of most inherent mu-
rine proteins seemed to be further expanded to later days.
Therefore, the murine derived proteins levels were still ele-
vated on day 14 in the few surviving non PLX-RAD treated
mice. At this time point, the most affected weaker mice have
already died, assuming that the secretome records in this
group on the later time points, from ~day 14 and 23, repre-
sent the data of only the few stronger surviving mice. As to
the irradiated PLX-RAD treated group, all human proteins se-
creted by the PLX-RAD and the endogenous mice secretome
resumed to their normal low levels in the blood plasma by
day 23, in a stage by which the surviving mice were already
in an advanced process of BM recovery (Figure 3B–J).

To demonstrate the synchronized kinetics of the elevated
secretion of the human haematopoiesis-related proteins,
their secretion kinetics profiles were normalized to their peak
levels and superimposed, as presented in Figure 4A. This
illustrates the impressive overlap of the pharmacokinetics of
the elevated secretome, peaking on days 6–9 following
irradiation. To correlate the timing of the cytokine secretion
in relation to their protective effects, the common
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pharmacokinetics profile of all secreted PLX-RAD derived pro-
teins is presented in Figure 4B as a shaded filled peak. By
superimposing this secretion kinetics profile on the outline
of the survival and weight follow-up curves, it is apparent
that the peak PLX-RAD derived secretome just precedes the
eventual recovery of the PLX-RAD treated mice, resulting in
their enhanced survival from day 14 onward. This effect is
best demonstrated when this secretion peak is superimposed
on the records of the cell counts of main blood lineages. Up
to ~ 9 days after irradiation, the number of nucleated cells
of the BM, as well as RBC, WBC and platelets counts in pe-
ripheral blood dropped sharply to reach critically low levels
with similar initial kinetics for untreated and the PLX-RAD
treated mice. Then, supported by the high-level secretion of
the proteins by PLX-RAD cells to the circulation, a sharp faster
recovery is seen in all these blood related cell compartments
to rescue the mice form lethal ARS (Figure 4C).

In vitro effects of PLX-RAD cell secretion of
haematopoiesis-supporting growth factors and
chemokines

To further explore the secretion of the relevant
haematopoiesis inducing factors by PLX-RAD cells, their CM
were analysed by a Multiplex assay (Figure 5A). The results
provide in vitro support for the ability of PLX-RAD cells to pro-
duce and secrete these factors.26 Even with no major appar-
ent stress triggered signals, the cells secreted basal levels of
factors associated with haematopoietic cell mobilization,
which in culture conditions could accumulate in the CM in de-
tectable levels as seen in Figure 5. The CM collected from cul-
tured PLX-RAD cells was shown to induce in vitro the
migration of harvested BM-residing nucleated cells (Figure
5B). Of interest is the observation that the effect of the
PLX-RAD CM was ~three-fold more pronounced than the

Figure 3 Kinetics of plasma protein levels in irradiated and non-irradiated mice treated with PLX-RAD. (A) The time points in which plasma samples
were taken for analyses of protein secretion are posed relative to the survival data of the mice following 7.7 Gy irradiation with or w/o cell treatment
(***** P < 0.00001). The survival and weight follow-up, based on a previous report,26 are given in order to illustrate the correlation between the pro-
tein secretion kinetics and the fate of the mice at every time point tested. (B) Secreted human proteins in the mouse plasma, as analysed by Luminex
multi-protein panels. The cross-reactivity of the antibodies to human and mouse homologous proteins was <10%. Out of 63 human proteins tested in
the mouse plasma the 9 that were significantly elevated are presented in panels B–J. Red lines represent the secretion profile of PLX-RAD treated by
7.7 Gy irradiated mice. The green lines represent data from non-irradiated mice treated IM with PLX-RAD cells. Broken black lines represent the un-
treated irradiated mice. For all the presented proteins, the difference in the peak concentration in PLX-RAD treated groups between irradiated and
non-irradiated mice was significant (P < 0.01). The four murine proteins which were significantly elevated out of a panel of the 15 tested are shown
in panels K-N (n = 4 for most of the time points examined), the broken grey lines represent the levels of these proteins in the non-cell-treated mice
(P < 0.01).
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Figure 4 Correlation of the combined kinetics of main PLX-RAD secreted and murine analogues of haematopoiesis related cytokines in 7.7 Gy irradi-
ated mice. (A) The superimposed kinetics of human secretome associated with induction haematopoiesis in PLX-RAD treated mice as compared to
their murine homologues in the mouse circulation, based on the data from Figure 3 B–E,K–N. The human and murine proteins in PLX-RAD treated mice
were normalized to their peak level and superimposed to show the orchestrated kinetics of their secretion. The human proteins are presented as solid
and the mouse as broken lines, indicating a common secretion peak on days 6 and 9 after irradiation. (B) The basic outline of the survival trend and the
weight of the PLX-RAD treated and control non-cell treated mice at the points tested for proteins. The sequence of events of the elevated survival of
treated surviving vs. untreated mice and their weight regain occur shortly after the peak of PLX-RAD and murine derived protein secretion. The light
blue shaded area represents the kinetics of orchestrated PLX-RAD secreted proteins, preceding and possibly supporting the fast recovery of the cell
treated mice at the critical point (**** P < 0.0001). (C) A follow-up of whole BM counts, RBC,WBC and platelet counts with time following irradiation
and PLX-RAD cell treatment (days 1 and 5). The shaded secretion profile of the combined kinetics of the major elevated cytokine secretion as seen in
(A) is superimposed as a shadow on each of the parameters tested, showing the timing of the effect of the secretome relative to the preceding en-
hanced regeneration of the different haematopoietic components which seems to be directly related to the increased survival rate of the treated mice,
as shown in (B). Data points of panel C are taken from preliminary published data.26
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chosen positive control—SDF-1, which is considered as a
highly active pro-migratory factor.

Discussion

As we demonstrated in earlier report, cell therapy by IM in-
jections of human-derived PLX-RAD cells on days 1 and 5 af-
ter high dose of 7.7 Gy TBI dramatically mitigated lethal
ARS due to BM failure. This improved the survival rate of
the irradiated mice from ~28% to ~98% associated with a
complete recovery from a sharp weight loss by the end of
the experiment on day 23, when the experiments were termi-
nated.26 The selected highly active PLX-RAD cells with high
proportion of the neonate PSCs were shown to be much
more active for treating ARS than the cell product PLX-PAD
cells consisting predominantly of expanded PSCs of maternal
origin.26

The choice of the IM route administration of PLX-RAD cells
was adopted based on previous successful results showing a
lack of apparent adverse effects of the IM injected PLX-RAD
cells. The IM injected cells were found to be restricted within
the injection site in the highly vascular muscle. In contrast, in
systemic cell intravenous delivery, the cells are immediately
trapped in the lungs, as previously reported with other
stromal cells.26,36,57

The increased survival of the high dose irradiated mice
treated with PLX-RAD was found to be associated with highly
significant accelerated recovery of BM. This resulted in the
fast increase of peripheral blood cells counts within the criti-
cal life-threatening period of radiation induced pancytopenia,
relative to much lower regeneration in non-treated irradiated
controls. The main goals of the current study were to explore
the mechanism of action of the IM injected PLX-RAD cells in
the mitigation of the severe haematopoietic ARS.

In irradiated mice treated with PLX-RAD cells, nine out of a
panel of 63 tested human proteins were significantly elevated
in the mice circulation, coinciding with the development of
severe pancytopenia and sharp weight loss. These included
major haematopoiesis related cytokines, such as G-CSF,
GRO, MCP-1, IL-6 and IL-8, whose concentrations peaked on
days 6–9 of the experiment. Other cytokines, mostly associ-
ated with WBC recruitment and migration, included MCP-3
(CCL7), ENA (CXCL5), Eotaxin (CCL11) and Fractalkine
(CX3CL1), were also significantly elevated in a similar kinetics.

The kinetics and peak secretion of the elevated PLX-RAD
derived human proteins in the mouse circulation following
7.7 Gy TBI seemed to correspond well with the recovery time
from ARS of the cell injected mice (Figure 4), resulting in
threefold higher survival rate relative to the untreated irradi-
ated controls. This suggests that the IM injected PLX-RAD
cells respond from their remote injection site in the highly
vascularized muscle to the systemic stress signals in the

Figure 5 Cytokine levels in the CM of PLX-RAD and their effect in vitro on the migration potential of isolated BM cells. (A) High levels of selected hu-
man proteins are expressed in the CM of cultured PLX-RAD cells (n = 3, average of three different placentae). (B) The CM of the PLX-RAD cells showed a
significant ability to induce in vitro migration of BM cells in trans-well plate preloaded with mouse whole BM cells on the upper insert. SDF-1 supple-
mented RPMI medium was used as positive control and neat RPMI medium as a negative control. The fold change relative to negative control is rep-
resented as mean ± SE in 14 independent experiments.
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circulation. The radiation induced stress signals may be asso-
ciated with the massive cell death and the failing of the
haematopoietic system and systemic hypoxia due to reduc-
tion in the circulating RBC. This response is associated with
almost simultaneous secretion of a wide panel of relevant
proteins of interest. Moreover, the relatively extended pres-
ence of the injected low immunogenic xenogeneic PLX-RAD
cells in the muscle before they are cleared, as previously
demonstrated,26 may provide a dynamic secretion of high
levels of these factors, when needed, over a period of up to
several weeks. The stress is maximal when the number of
both BM and different blood lineage cells reach their lowest
levels, ~4–6 days after irradiation. Therefore, the peak
secretome concentrations released by the cells in response
to the irradiation are reached for most proteins tested only
~6–9 days after the exposure and not immediately after the
cells delivery. These findings on the need of activate the cells
to increase the cytokines and growth factors secretion are
supported by our findings that only negligible levels of this
secretome were detected when PLX-RAD cells were injected
to non-irradiated mice (Figure 3).

G-CSF, both from human and murine source, was one of
the cytokines which were secreted at highest levels. It plays
a major role in the regulation and induction of proliferation
of leukocyte progenitors, as well as in activation of HSC mo-
bilization. Therefore, growth factor-based therapies, and spe-
cifically those based on G-CSF, were proposed to treat BM
failure following nuclear disasters and/or high dose irradia-
tion.13,66–70 Of note is that most non cell-treated irradiated
mice survived ARS developed high levels of endogenously se-
creted murine G-CSF in a delayed phase relative to its secre-
tion by the PLX-RAD treated mice. These findings suggest that
the earlier controlled secretion of G-CSF by the PLX-RAD cells
helped supporting the recovery of the high dose irradiated
mice. Moreover, it is likely that G-CSF alone is not sufficient
to ideally induce the haematopoiesis regeneration in the
mice with depleted haematopoietic system.

Among other highly expressed factors of note GRO (CXCL1)
or its KC homologue in mice. These factors are inducers of
proliferation and migration of progenitor cells71–73 and pro-
mote arteriogenesis through enhanced monocyte recruit-
ment into neo-vascularized tissues.74

Both IL-6 and IL-8 have a significant role in
haematopoiesis. They were secreted in high levels by the
PLX-RAD cells, both in the CM of the in vitro models and into
the circulation of the irradiated PLX-RAD treated mice. The IL-
8 secretion could be associated with radio-protective activity
by inducing rapid mobilization of HSCs with the capacity for
long-term myelolymphoid repopulation.75 The administration
of IL-6 secreting stromal cells in combination with syngeneic
BM transplant was shown to accelerate the recovery of pe-
ripheral blood counts and HSC in mouse BM following high
dose irradiation.76 The activities of IL-6 as an acute-phase in-
duced cytokine include the triggering haematopoiesis by

inducing multi-lineage HSC stimulation and acceleration of
the regeneration of WBC, platelets and RBC in high dose irra-
diated mice.77 This could also aid the BM reconstitution after
syngeneic BMT, leading to the extension of IL-6 therapy from
irradiated rodents and primates to the clinical practice.78

Whereas murine IL-6 was not detectable in the few surviv-
ing irradiated control mice before the end of the second
week post-irradiation, the mice treated with PLX-RAD cells
expressed both human and murine IL-6 levels as early as
day 2 after irradiation. This early secretion of both IL-6 and
IL-8 by PLX-RAD cells in response to ARS-related stress signals
was associated with significantly lower levels of murine IL-6
secretion within the first week. This may also explain the
higher survival rate of the PLX-RAD treated mice relative to
irradiated vehicle treated controls.

It should be noted that highly relevant haematopoiesis in-
ducing factor EPO was not included in the panel of assayed
proteins since it is highly conserved in different species and
the cross-reactivity in immunoassays limits the ability to dis-
criminate between the mouse or human protein.79,80 Never-
theless, it was previously shown that IL-6 induced by
hypoxic or haematopoietic stress may control the subsequent
secretion of EPO to enhance haematopoiesis stimulation in
the BM.81,82 Therefore, the high IL-6 secretion, both by the
PLX-RAD and the mouse, may suggest a possible subsequent
recruitment of EPO in the molecular cascade that leads to the
faster regeneration of the BM and the haematopoietic
system.

Based on our findings, we propose that the accelerated re-
covery of the BM in heavily irradiated animals treated with
PLX-RAD cells was aided by the earlier secretion of PLX-RAD
derived chemokines and growth factors. Those might have
further stimulated endogenous secretion of relevant mice
proteins to help overcome the ARS and severe pancytopenia
by boosting earlier proliferation of the BM progenitor cells
and faster repopulation of the cell depleted BM.

It should be noted that the critical radiation induced pan-
cytopenia does not develop immediately. The possibility to
delay the treatment with first PLX-RAD cells injection to
24 h or more following radiation exposure is based on the
findings that the PLX-RAD cells express their elevated
secretome only upon the development of major stress, more
than 2 days following irradiation. This may be a critical advan-
tage of a relevant life-saving treatment for high dose irradi-
ated individuals, providing the grace time window needed
for global mobilization of deep frozen PLX-RAD cells to any
remote disaster site around the globe.

The finding that PLX-RAD cells in culture secrete some of
their secretome proteins to the CM may contradict our
in vivo findings where systemic stress regulated this
secretome elevation. This can be resolved considering that
in vitro these cells may continuously secrete basal low levels
of these proteins which accumulate. But in vivo, in the animal
experiments, these baseline protein secretion levels are
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probably cleared fast and dissipate in the mouse circulation
and are not accumulated to reach detectable levels. However,
following the development of severe ARS, the endogenous
stress signals probably boost the secretion of high levels of
these cytokines in the critical time points with transient accu-
mulation to reach higher detectable concentrations in the
blood plasma. Then, upon the fast mice recovery, the secre-
tion of these human proteins by the injected PLX-RAD cells
is immediately reduced below detectable levels.

Our findings, as summarized in Figure 6, suggest a possible
complex mechanism for the dramatic recovery from lethal
radiation-induced pancytopenia by IM PLX-RAD cells delivery
with an early involvement of pro-regenerative factors of the
haematopoietic niche and inducers of HSC proliferation.
Moreover, the early increase in human IL-6 and IL-8 levels
in the mouse circulation may also activate intrinsic secretion
of pro-regenerative murine factors, resulting in earlier regen-
eration of the compromised BM.83–85

The data on the pro-regenerative secretome of the PLX-
RAD cells in response to stress may have implications for
other wide range of regenerative therapies. Muscle regener-
ation by stem/progenitor cell recruitment, proliferation and
survival are supported by the inflammatory cells which are
affected by the PLX-RAD cell secretome in response to ARS.

We can hypothesize that the mechanism of PLX-RAD ef-
fects may be related to their possible physiological role in

the placenta, where they respond to messages carried by
the embryo circulation, potentially serving as both sensors
and responders to its stress signals and as secretors of pro-
regenerative proteins. In the current study which is focused
on short-term follow-up of acute effects of less than 8 Gy
irradiation, no muscle damage was expected. But in other
degenerative processes, the haematopoietic system is re-
cruited by the PLX-RAD secretome, boosting different
haematopoietic lineages including eosinophils, macrophages
and T cells. In such circumstances, the induced secretome
of potent PLX-RAD cells may participate in the regeneration
of tissues such as damaged muscles,86–88 an issue which
deserves further investigation.

In summary, we provide detailed mechanistic insights into
simple well-regulated allogeneic/xenogeneic PLX-RAD cell-
based treatments. The mode of action of these cells in miti-
gation of ARS following high dose irradiation is based on
the induction of a faster regeneration of highly damaged or
depleted BM, thus reversing subsequent life-threatening pan-
cytopenia and severe weight loss.
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