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Abstract

Dimethoate, a systemic insecticide, has been used extensively in vegetable production.

Insecticide residues in treated vegetables, however, pose a potential risk to consumers.

Photocatalytic degradation is a new alternative to managing pesticide residues. In this

study, the degradation of dimethoate in Bok choy was investigated under the field conditions

using cerium-doped nano titanium dioxide (TiO2/Ce) hydrosol as a photocatalyst. The

results show that TiO2/Ce hydrosol can accelerate the degradation of dimethoate in Bok

choy. Specifically, the application of TiO2/Ce hydrosol significantly increased the reactive

oxygen species (ROS) contents in the treated Bok choy, which speeds up the degradation

of dimethoate. Ultra-performance liquid chromatography coupled with mass spectrometry

(UPLC-MS) analysis detected three major degradation products, including omethoate, O,O,

S-trimethyl thiophosphorothioate, and 1,2-Bis (acetyl-N-methyl-) methane disulfide. Two

potential photodegradation pathways have been proposed based on the intermediate prod-

ucts. To understand the relationship between photodegradation and the molecular structure

of target insecticides, we investigated the bond length, Mulliken atomic charge and frontier

electron density of dimethoate using ab initio quantum analysis. These results suggest the

P = S, P-S and S-C of dimethoate are the initiation sites for the photocatalytic reaction in

Bok choy, which is consistent with our empirical data.

Introduction

Bok choy, a major Brassica vegetable, is cultivated widely throughout the world. Reducing

prostate cancer and breast cancer risks are some of the health benefits from Bok choy con-

sumption [1, 2]. During its production, dimethoate (IUPAC name: O, O-dimethyl S-methyl-

carbamoylmethyl phosphorodithioate), an organophosphate insecticide and acaricide, has

been used extensively to control arthropod pests. The mode of action of dimethoate is to

inhibit the activity of cholinesterase, an enzyme essential for normal functioning of the nerve
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systems of humans, other vertebrates and invertebrates, including insects. Dimethoate can

induce neurologic disorders [3, 4], decrease reproductivity [5,6], damage DNA [7, 8] and

cause other histopathological changes [9, 10]. Although dimethoate is acutely toxic and catego-

rized as moderately hazardous [11], it is highly toxic to a common carp, Cyprinus carpio
(Linn.), and severely affects their physiology and behaviour [12]. In addition, residues of

dimethoate and its derivatives have been detected in fruits, vegetables, even cow milk. In

China, the maximum dimethoate residue limit of 0.2 to 1 mg/kg for vegetables has been estab-

lished jointly by the Ministry of Agriculture and National Family Planning Council. It is of

great importance to limit dimethoate residue in vegetables and fruits to minimize its risks to

environment and human health.

Traditionally, physical, chemical, and biological methods have been used to eliminate

dimethoate residuals. However, physical degradation methods mainly aim at residues on the

surface of vegetables and fruits. Chemical degradation can be effective, however, incurs a

higher cost. Also, the toxicity of secondary metabolites needs further investigation. Biological

degradation is mainly through dilution, with bacteria or fungi as medium. The disadvantages,

however, are associated with a higher dilution rate, fluctuation of services and secondary pollu-

tion [13]. Advanced oxidation processes (AOPs), a procedure based on the photo-excitation of

a semiconductor, has drawn more attentions in recent years. Specifically, under the ultraviolet

light or sunlight, photocatalytic reaction may produce negative electron (e−) in the conduction

band and positive hole (h+) in the valance band of a semiconductor. e− and h+ are powerful

reductive and oxidizing agents. Then oxidation-reduction reaction was induced by e− and h+

[14,15]. Holes oxidize H2O on the surface of semiconductors and •OH is photogenerated. O2

on the surface of semiconductors traps electron and O2
•- and O2

2- are formed. These reactive

oxygen species (ROS) (e.g. O2
•-, O2

2- and •OH) exhibit high oxidative activity for organic com-

pounds. They can readily cleave C-C bond, lead to a partial or total decomposition, and miner-

alize into CO2, H2O and inorganic ion (e.g. Cl-, NO3
-, SO4

2-) [16, 17]. Particularly, TiO2 has

been used extensively among semiconductors. Its application involves disinfection [18], envi-

ronmental purification [19], health care and so on [20]. The main advantages of TiO2 photoca-

talysts are the immunity, catalytic stability, resistance to photocorrosion, low cost and non-

toxicity [21, 22]. High photocatalytic activity could yield high mineralization, and enhanced

oxidation process is considered a promising technology to resolve pesticide residual issues.

However, the photocatalytic activity of TiO2 is much higher under the ultraviolet light relative

to natural light. To extend the optical absorbance edge into the visible region and to enhance

the photocatalytic activity, surface modifications are required, e.g., doping TiO2 with Ce, C, S,

N, and Ag [23, 24]. Among the multi-doped TiO2, Ce doped TiO2 showed higher visible light

photocatalytic activity [25, 26].

Here, we investigated the photocatalytic degradation of dimethoate with TiO2/Ce hydrosol

as the catalytic system under the field condition. To reveal the catalytic capacity of TiO2/Ce

hydrosol, we determined the degradation efficiency of dimethoate and measured the content

of ROS in Bok choy, we then carried out UPLC-MS to identify the degradation products.

Based on the detected intermediate products, we proposed the potential photodegradation

pathway of dimethoate in TiO2/Ce system. Finally, the quantum chemistry analyses predict

degradation products and the molecular mechanism of photodegradation of dimethoate.

Materials and methods

Chemicals and reagents

Nano TiO2/Ce hydrosol was donated by Panzhixhua Iron and Steel Research Institute (Sich-

uan province, China), nano titanium dioxide exists in anatase forms, and Ce doping with a
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concentration of 0.6% in molar ratio. Dimethoate standard was obtained from Dr. Ehrenstor-

fer (Augsburg, Germany) with the purity of 99.9%. Commercial dimethoate 40% emulsifiable

concentrate (EC) was purchased from Hunan Haili Changde Co., Ltd. (Hunan province,

China). The chromatographically pure acetone and methanol were obtained from Tedia Com-

pany Inc. (USA). Plant reactive oxygen species (ROS) ELISA Kit (HG55780, Tsz Biosciences,

San Francisco, USA). All other reagents were supplied from Sinopharm Chemical Reagent

Co., Ltd (Shanghai, China).

Field trials

TiO2/Ce hydrosol-mediated solar photodegradation of commercial dimethoate was conducted

at the Research and Training Station of Hunan Agricultural University, Hunan, China. Soil in

this region is alluvial, with soil organic matter between 0–20 cm of 10–30 mg/kg and pH range

of 4.5–6.5. Here, the experiment plot was 20 m2 with a 30 cm buffer area left in-between two

plots. Seeds of Bok choy variety “ChuanShan (103)” (HSBC seed co., LTD, Hunan province,

China) were directly sowed in the plots with a dosage of 25 kg/ha. The nutrient and water

management was employed using conventional agricultural practice. After 20 d, commercial

dimethoate at 600 g a.i. /ha was sprayed onto Bok choy leaves with an electric sprayer (type of

3WBD-18, Shijiazhuang Prandi Electromechanical Instrument Co. Ltd, China). Dauterman

reported that the dimethoate can rapidly penetrate into the plant leaves, and is quickly

absorbed both on the surface and inside the leaves after application [27]. So TiO2/Ce hydrosol

at 2400 g a.i. /ha was applied to the same leaves after 1 h of dimethoate application. Bok choy

leaves without TiO2/Ce hydrosol served as the blank control. All treatments were carried out

in a randomized design with three biological replications. By five-point sampling method,

each 50 Bok choy plants were transported to the laboratory within 2 h of collection, and stored

at 4 ˚C in the refrigerator after 0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 d.

Sample preparation

Dimethoate 40% EC was applied onto Bok choy leaves. Due to dimethoate’s rapid penetration

into the plant leaves [27], Bok choy samples were not washed before they were shredded and

mixed in a blender. First, 10 g shredded Bok choy were put into a 100 mL glass centrifuge tube

containing 50 mL acetonitrile, 4 g anhydrous magnesium sulfate and 6 g sodium chloride for

extraction, and followed by homogenization for 2 min at 16000 rpm, then centrifuged for 5

min at 6000 rpm. The resultant 10 mL supernatant was evaporated to dryness by a rotary evap-

orator at 40 ˚C, and resuspended in 2 mL acetone. The extracts were then transferred to Flori-

sil solid-phase extraction (SPE) tube (ANPEL laboratory Technologies Inc, Shanghai, China)

which was previously washed with 3 mL acetone and 3 mL acetonitrile, subsequently eluted

by 4 mL acetone and 10 mL acetonitrile. The eluent was collected and dried by a rotary evapo-

rator at 40 ˚C, and resuspended in 2 mL acetone for GC analysis and 2 mL methanol for

UPLC-MS analysis. Prior to injection, samples were filtered through a 0.22 μm membrane

filter.

Gas chromatography (GC) analysis

The amount of dimethoate residue in Bok choy was determined by GC with a flame photome-

try detector (FPD) (Shimadzu GC-2010). The detector was linked to a data system for acquisi-

tion and calculation. The RTX-5 capillary column was 30 m × 0.25 mm I.D., 0.25 μm film

thickness and was employed with nitrogen as carrier gas. The following chromatographic con-

ditions were adopted according to the results of preliminary experiments obtained by injecting

directly standard solutions of dimethoate into the chromatographic column. The injector
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temperature was 220 ˚C. The injection volume was 1 μL and the split ratio was 5:1. The FPD

temperature was 210 ˚C. The column volume was 1 mL/min. The column temperature was

programmed at 120 ˚C, then it was increased at 20 ˚C/min rate from 120 ˚C to 200 ˚C, and

finally it was kept at 200 ˚C for 5 min. The retention time of dimethoate was 9.3 min under the

conditions. The standard curves were obtained based on the peak areas and its corresponding

solution concentrations, including 0.01, 0.02, 0.05, 0.1, 0.5, 1.0, 2.0, 5, 10, 50, 100 mg/L. The

percent recovery of dimethoate extracted from Bok choy was determined by adding standard

dimethoate to blank Bok choy samples at 0.1, 1, 10 mg/kg.

Reactive oxygen species (ROS) assay

After 1, 2, 3, 4 and 5 d of photocatalytic degradation treatments, Bok choy plants were collected

from the field, respectively, to measure the ROS contents using an enzyme-linked immunoas-

say (ELISA) method. 1 g of minced Bok choy was placed in a centrifuge tube and soaked in

ice-water. 9 mL of 10 mmol/L phosphate buffer (pH7.2–7.4) was then added to the tube,

homogenized for 2 min under ice-water condition, and centrifuged for 5 min at 4500 rpm at 4

˚C. The supernatant was collected to measure the ROS contents following the manufacturer’s

protocol of plant reactive oxygen species ELISA Kit (HG55780, Tsz Biosciences, San Francisco,

USA).

UPLC-MS analysis

To detect the degradation products of dimethoate, Bok choy samples were collected for the

analysis after treatment 1 d. Analysis was performed by Waters Acquity UPLC1 system sepa-

rations module coupled with a Waters TQD mass spectrometer (Waters, Milford, MA, USA)

on a reverse-phase Waters BEH C18 UPLC column (210 × 100 mm, 1.7 μm). The injection

volume was 5 μL. The column temperature was kept at 40 ˚C with a flow rate of 0.25 mL/min.

Mobile phases consisted of water (A), methanol (B), each containing 5% ammonium acetate

water (5 mmol/mL) (C). The gradient of mobile phases programmed: 5% C hold for the overall

process. 90% A and 5% B in 1 min, hold for 1 min, next a linear gradient of B from 5% to

47.5% in 1.5 min, hold for 0.5 min, afterwards a linear gradient of B from 47.5% to 95% in

1min, hold for 3.5 min, then a return to the initial conditions in 2 min before next injection.

An electrospray ionization (ESI)—mass spectrometry (MS) method was carried out for deg-

radation products identification in positive ion mode. The collision gas was argon, and the

desolvation gas was nitrogen at a flow rate of 750 L/h. A capillary and voltage cone voltage

were 2 kV and 35 V, respectively. The temperatures of desolvation and a source were set at 350

˚C and 120 ˚C, respectively. Under the daughter scan mode with collision gas flow of 0.12 mL/

min and collision energy of 20 V, the mass spectrums were acquired ranging from m/z 50 to

250 with the initial and final retention time set to 0.0 min and 8.0 min, respectively.

RHF/STO-3G calculation

The quantum chemistry analysis was carried out using Gaussview 3.08 and Hyperchem

Release 7.0 package. The optimal geometry conformation and the lowest energy of dimethoate

molecule were predicted using RHF/STO-3G. The bond length, the atomic charge and the

frontier electron density of the highest occupied molecular orbital (FEDHOMO
2) were calcu-

lated using Gaussview 3.08 package as well. Chart of the total charge density and the frontier

orbital density (HOMO) of dimethoate was calculated using Hyperchem Release 7.0 program

package.

Photocatalytic degradation of dimethoate
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Data analysis

All experiments were carried out twice independently with three replications. To assess the

effect of ROS content on TiO2/Ce photocatalytic degradation in Bok choy, one way ANOVA

was used to compare the ROS content in Bok choy between with and without TiO2/Ce under

different sampling time. Means were compared with LSD tests at P< 0.05. SPSS version 20.0

(SPSS Inc., USA) was used for statistical analyses. UPLC-MS detection data, including the

abundance, retention time-m/z pairs, and ion intensity, were analyzed by MassLynx V4.1 soft-

ware (Waters Corp., USA).

Results

Degradation kinetics of dimethoate in Bok choy

The standard curve for dimethoate degradation using GC analysis was y = 2117726 x—

1184948 (R2 = 0.9968), which showed a linear correlation between the peak area (y) and

dimethoate concentration (x) between 0.01 and 100 mg/L. The average recovery of dimethoate

ranged from 95 to 117% in Bok choy. The value of limit of detection (LOD) and limit of quan-

tification (LOQ) were 0.007 and 0.024 μg/kg, respectively.

With TiO2/Ce hydrosol, dimethoate residual was significant reduced in comparison to the

controls, especially for 0.5, 1, 2 and 3 d (Fig 1A). The digestion dynamic equation for dimetho-

ate alone was Ln (C0/C) = 0.6906t—0.0702, R2 = 0.9826, while dimethoate plus TiO2/Ce was

Ln (C0/C) = 0.7892 t + 0.1450, R2 = 0.9689 (Fig 1B). The half-life of dimethoate was 0.69 and

1.10 d with and without TiO2/Ce, respectively, illustrating TiO2/Ce could efficiently degrade

dimethoate under field conditions. In addition, with TiO2/Ce hydrosol, ROS content in Bok

choy was higher than the untreated controls (Fig 2). Under the sunlight, ROS generated by

TiO2/Ce can accelerate the degradation of organophosphate insecticides. These combined

results suggest that TiO2/Ce is a promising candidate for the photocatalytic degradation of pes-

ticide residuals.

Photocatalytic degradation products and pathway of dimethoate

The degradation products were identified by the analysis of mass spectrum. The mass spec-

trum of dimethoate and its photocatalytic degradation products are shown in Fig 3. In stan-

dard mass spectrums, the retention time of 4.245, 3.496, 4.182, 4.684 min and the their

corresponding prominent protonated molecular ions at m/z = 230 [M + H]+, m/z = 214

[M + H]+, m/z = 195 [M + Na]+ and m/z = 209 [M + H]+ were found, and the compounds cor-

responding to the protonated molecular ions were identified as dimethoate (C5H12NO3PS2),

omethoate (C5H12NO4PS), IUPAC name: 2-dimethoxyphosphorylsulfanyl-N-methylaceta-

mide), O,O,S-trimethyl thiophosphorothioate (C3H9O2PS2) and 1,2-Bis (acetyl-N-methyl-)

methane disulfide (C6H12N2O2S2). However, in the control samples, only dimethoate and

omethoate were detected.

According to the chemical structure of dimethoate and its metabolites, two pathways are

proposed for dimethoate photodegradation (Fig 4). In the first proposed pathway, the sulphur

atom in the P = S bond of dimethoate will be oxidized into P = O by the ROS attack, such as

•OH radicals, which leads to the formation of omethoate. The formation of oxidized deriva-

tives has been documented in the photocatalytic degradation of organophosphorus pesticides

containing P = S group [28, 29]. Omethoate, a major byproduct of dimethoate decomposition

[13, 30], could be subsequently mineralized into SO4
2-, NO3

-, CO2, and H2O through further

oxidization and hydrolysis processes. In the second proposed pathway, the sulphur atom in

the P-S or S-C bond could be attacked by positive holes to generate sulfide cation radicals to
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initiate the degradation reaction. This oxidation reaction process has been studied in the

photocatalytic degradation of thiocarbamate pesticides and thioethers [31, 32]. Under the sun-

light, photocatalytic reaction may produce a single electron from the sulfur atom, then initiate

P-S or S–C cleavage. The cleavage of P–S bond forms •SCH2CONHCH3 radicals, and the

cleavage of C–S bond forms (CH3O)2SPS• radicals. •SCH2C(O)NHCH3 radicals are easier to

dimerize and lead to the formation of 1,2-Bis (acetyl-N-methyl-) methane disulfide [32]. Simi-

larly, (CH3O)2SPS• radicals tend to combine with methyl radical (•CH3) to from the reaction

media. O, O, S-trimethyl thiophosphorothioate will be generated after oxidization, and succes-

sively mineralized into SO4
2-, PO4

3-, CO2, and H2O.

Fig 1. Degradation dynamics of dimethoate in Bok choy by TiO2/Ce. The residue change of dimethoate in Bok choy

(A: original data; B: log transferred data). C0 and C represent the initial and reacting (time = t) residues of dimethoate

in Bok choy, respectively. The C0 of dimethoate residual concentrations of 600 g a.i. /ha for time zero was 15.859 mg/

kg.

https://doi.org/10.1371/journal.pone.0197560.g001
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Ab initio quantum analysis of dimethoate degradation by TiO2 /Ce

In order to further confirm the degradation products from UPLC-MS and reveal the degrada-

tion mechanism of dimethoate, quantum chemistry analyses of dimethoate were calculated

Fig 2. ROS content in Bok choy with and without TiO2/Ce treatment. LSD test declares the differences between

means (P< 0.05). Different letters indicate significant differences among treatments.

https://doi.org/10.1371/journal.pone.0197560.g002

Fig 3. Mass spectrum of dimethoate and its degradation products in Bok choy in the presence of TiO2/Ce. (A) Dimethoate; (B)

Product I omethoate; (C) Product II O,O,S-trimethyl thiophosphorothioate; and (D) Product III 1,2-Bis(acetyl-N-methyl-) methane

disulfide.

https://doi.org/10.1371/journal.pone.0197560.g003
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based on the optimal geometry conformation of dimethoate molecule obtained at RHF/STO-3

level. The spatial configuration of dimethoate molecule is shown in Fig 5.

The bond lengths between atoms in dimethoate molecule are shown in Table 1. Specifically,

the bond lengths between P1-S13, P1-S2 and S13-C14 are 2.1330×10−10, 1.99716×10−10, and

1.80856×10−10 m, respectively. The bond energy and length are negatively correlated [33].

The bonds between P1-S13, P1-S2 and S13-C14 are easier to cleave when attacked by ROS. When

P1-S2 is attacked, P = S could be oxidized into P = O, which generates omethoate. If S13 is

attacked, the bond S13-C14 could be cleavaged, which leads to the generation of O, O, S-tri-

methyl thiophosphorothioate.

Based on the Mulliken atomic charges of dimethoate (Table 2), the largest positive point

charge of dimethoate molecule was located at P1 atom with a value of 0.779814, suggesting that

the P1 atom is most likely attacked by nucleophilic reagents (e.g. H2O, OH-). The hydrolysis of

phosphate ester bond leads to the generation of omethoate. This is a common process in the

degradation of organophosphorus pesticides [34]. In addition, based on the total charge den-

sity of dimethoate (Fig 6), the atom S13 has the greatest electric charge density, demonstrating

another vulnerable site of dimethoate. The existing S13 in P1-S13 and S13-C14 are the weaker

sites under the attack by nucleophilic reagents, which is consistent with the results of bond

length. Therefore, P1-S13 and S13-C14 are the likely initiation sites of photocatalytic degradation

of dimethoate.

Based on the frontier electron density (FED) value of the highest occupied molecular orbital

(HOMO) in the dimethoate molecule, the atom S2 possesses the highest FEDHOMO
2 with the

value of 1.020068 (Table 3). Additionally, the atom S13 has higher FEDHOMO
2 than other main

atoms in dimethoate molecule (Fig 7). According to the frontier electron density theory, the

Fig 4. Proposed degradation pathway of dimethoate in Bok choy in the presence of TiO2/Ce. (PI) omethoate; (PII) O,O,S-

trimethyl thiophosphorothioate; and (PIII) 1,2-Bis(acetyl-N-methyl-) methane disulfide.

https://doi.org/10.1371/journal.pone.0197560.g004
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atoms S2 and S13 are the vulnerable sites attacked by electrophilic reagent during the degrada-

tion of dimethoate. This theoretical research of frontier electron densities was reported by Parr

and Yang [35]. Here, atom S2 readily extracts an electron to form dimethoate cation radical,

and then P1 = S2 bond is cleaved, which allows P = S bond oxidize into P = O. This prediction

confirms the formation of omethoate. Likewise, S13 releases an electron to form positive

charged free radicals and then, is attacked by ROS to degrade dimethoate. Results from quan-

tum chemistry analyses were consistent with the degradation products identified by UPLC–

MS and proposed degradation pathway.

Fig 5. Spatial configuration of dimethoate molecule. This schematic drawing was based on the optimal geometry

conformation at RHF/STO-3 level using the Gaussview3.08 graphic interface.

https://doi.org/10.1371/journal.pone.0197560.g005

Table 1. Bond length on main atoms in dimethoate molecule at the RHF/STO-3 level.

Bond Bond length/ (×10−10 m) Bond Bond length/ (×10−10 m)

P1-S2 1.99716 P1- S13 2.13300

P1-O3 1.68445 S13- C14 1.80856

O3-C4 1.43702 C14- C17 1.54590

P1-O8 1.69091 C17- O18 1.21916

O8-C9 1.43474 C17- N19 1.45652

https://doi.org/10.1371/journal.pone.0197560.t001
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Discussion

Degradation efficiency of dimethoate using nano-TiO2

Nanoparticles have been well accepted in environment, pharmaceutical and food industry

[36–39]. As an attractive material, nano-TiO2 is widely used in many fields. In recent decade,

nano-TiO2 plays an important role in sustainable agriculture, concerning the improvement of

nutrient use efficiency [40], management of the diseases and enhancement of crop yields [41].

However, there has been relatively little applications in the degradation of pesticide residues in

field trials. Zeng et al. demonstrated the rare-earth doped nano-TiO2 can increase the degrada-

tion efficiency of chlorpyrifos, acephate and carbendazim residues in tomato leaves and soil

under the sunlight [42]. Liu et al. demonstrated that the degradation of acephate in pak choi

was significantly accelerated in the presence of TiO2/Ce [29]. In addition, Evgenidou et al.

found the photocatalytic degradation reaction of dimethoate using TiO2 was a first-order pro-

cess [43]. These combined reports suggest that TiO2 can speed up the degradation of pesticide

residuals.

Table 2. Mulliken atomic charges of dimethoate molecule at the RHF/STO-3 level.

Atom Charge Atom Charge

P1 0.779814 C9 -0.084473

S2 -0.333127 S13 0.036325

O3 -0.340566 C14 -0.226141

C4 -0.083176 C17 0.281797

O8 -0.352946 O18 -0.249928

N19 -0.3520827 C21 -0.106428

https://doi.org/10.1371/journal.pone.0197560.t002

Fig 6. Atomic charge density of dimethoate molecule. This chart was generated using Hyperchem Release 7.0

program package.

https://doi.org/10.1371/journal.pone.0197560.g006
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Here, the application of TiO2/Ce indeed led to a rapid degradation of dimethoate residue in

Bok choy. With TiO2/Ce, the half-life of dimethoate is 1.6 times shorter, which means the pre-

harvest interval between dimethoate application and harvest will be significantly reduced. The

recommended intervals for dimethoate application on vegetables are, at least, 10 days before

the harvest. In practice, however, excessive use of pesticides and the ignorance of the recom-

mended intervals often results in vegetables containing pesticide residues exceeding the maxi-

mum limits established by FAO/WHO. The rapid removal of pesticide residues by TiO2/Ce

might be a potential resolution. Specifically, TiO2/Ce can be applied on targeted vegetables

3-days prior to the harvest. Although there are some concerns regarding the potential phyto-

toxicityto Bok choy as a result of the ROS burst generated from the exposure to TiO2/Ce [44],

we did not observe any adverse effects in our field trials, which is consistent with Larue et al

[45].

Table 3. Frontier electron densities (FEDHOMO2) on major atoms of dimethoate molecular at the RHF/STO-3

level.

Atom FEDHOMO
2 Atom FEDHOMO

2

P1 0.008667 S13 0.084516

S2 1.020068 C14 0.017092

O3 0.019753 C17 0.000117

C4 0.001158 O18 0.002393

O8 0.003233 N19 0.001243

C9 0.000307 C21 0.011392

https://doi.org/10.1371/journal.pone.0197560.t003

Fig 7. Frontier orbital density (HOMO) on main atoms of dimethoate molecule. This calculation was carried out

using Hyperchem Release 7.0 program package.

https://doi.org/10.1371/journal.pone.0197560.g007
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TiO2 is, in general, considered nontoxic. The plant growth and yield can be promoted by

higher concentrations of nanoscale TiO2 [46, 47]. There is no damage caused by the consump-

tion of farm products sprayed with TiO2 as a photocatalyst [48]. However, previous studies

have demonstrated acute toxicity of nanoscale TiO2 to mice [49]. Although low dose TiO2 had

negligible impacts on haemostasis blood system and immune system in mice after oral intake,

Duan et al. noted that higher dose can damage liver function [50]. In addition, higher dose of

TiO2 can have negative impacts on aquatic ecosystems [51] and soil microbiota [52]. There-

fore, assessing the environmental risks of TiO2/Ce nanoparticle and examining the responses

of mammalian species to vegetables containing nano- TiO2/Ce are warranted before the adop-

tion of this technology in agricultural practices.

The degradation products and possible pathway of dimethoate

TiO2 mediated photocatalytic degradation of pesticides has proven to be a promising method

to purify the polluntants from the environment. Nano-TiO2 are capable of degrading dimetho-

ate has been reported [53–55]. However, the degradation pathway of dimethoate has only been

reported in a slurry system with TiO2 [56]. To date, there is no clear photocatalytic degradation

pathway of dimethoate reported in any crops by TiO2 in field trials. In the present study, TiO2/

Ce hydrosol could efficiently degrade dimethoate residue in Bok choy under field conditions,

suggesting that TiO2/Ce is a promising candidate for the photocatalytic degradation of pesti-

cide residues of plants in agricultural production. Due to the fast mineralization capability of

TiO2 and simple structure of dimethoate, only three degradation products, omethoate, O, O,

S—trimethyl thiophosphorothioate and 1, 2—Bis (acetyl—N—methyl -) methane disulfide,

were successfully confirmed with UPLC-MS analysis combined with the quantum chemistry

analysis. According to the dimethoate and its intermediates, two degradation pathways of

dimethoate by TiO2/Ce in Bok choy are proposed for the first time. Additionally, the degrada-

tion of dimethoate has elucidated in microbes and in mammals. In microbial degradation of

dimethoate, employing the Pseudomonas aeruginosa of bacterial strain, four unknown degra-

dation products were detected by thin layer chromatography [57]. However, degradation path-

way of dimethoate was not put forward. In mammals, dimethoate could be desulfurated to

form omethoate through cytochrome P450s and was subsequently metabolized into dimetho-

ate carboxylic acid, or could be directly hydrolysised to form dimethoate carboxylic acid

through esterase-dependent hydrolytic cleavage of the C-N bond. Dimethoate carboxylic acid

was then metabolized further into non-toxic metabolites, including dimethyldithiophosphate,

dimethylthiophosphate and dimethylphosphate [58].

As regard to the mineralization of dimethoate, results are inconsistent. Evgenidou et al

demonstrated TiO2 was not able to mineralize dimethoate [43]. Dimethoate in water achieved

the 100% decomposition using TiO2 immobilized on silica gel under UV exposure, however, it

was not completely mineralized [59]. When wastewater containing dimethoate was processed

by photocatalysis–biological coupled system, dimethoate was totally decomposed with 90%

mineralization and complete nitrification [60]. The mineralization by-products of dimethoate

warrant further investigation to confirm the final products of pesticide decomposition are

harmless inorganic ions and to determine which photocatalytic process should applied to alle-

viate the pesticide residual issue.

Photodegradation and molecular structural of dimethoate

Degradation of organophosphorus pesticide mainly involves hydrolysis and photodegradation.

A primary mechanism of hydrolysis is the substitution reaction of nucleophilic group attacked

by H2O and OH-. Photodegradation is a process of the chemical bond cleavage of molecules
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excited by lights. The former is a process associated with positive charge of atoms, and the lat-

ter is a process related to the molecular bond length, atomic charges and other quantum

parameters. In principle, the bond length, atomic charge and frontier electron density of the

highest occupied molecular orbital are positively correlated with the degradation activity. The

degradation mechanism proposed in this study is testified and improved by the ab initio quan-

tum chemistry. Sun et al. performed a study on degradation mechanism of polychlorinated

dibenzo-p-dioxins using high-level molecular orbital theory calculations [61]. Zhang et al.

employed Gaussian 03 package to investigate the atmospheric photooxidation of dichlorvos

[62]. In this study, the resultant degradation pathways are energetically feasible for dimethoate

photodegradation by TiO2/Ce in Bok choy and are consistent with the three degradation prod-

ucts we observed empirically.

Conclusion

TiO2/Ce hydrosol can accelerate the degradation of dimethoate in Bok choy under the field

conditions, especially within 3 d of photocatalytic treatment. ELISA results suggest that ROS

generated by TiO2/Ce facilitates the rapid degradation. Three degradation products of dimeth-

oate, including omethoate, O,O,S-trimethyl thiophosphorothioate, and 1,2-Bis (acetyl-N-

methyl-) methane disulfide are detected by UPLC-MS. In addition, two pathways are proposed

for dimethoate photodegradation, which are confirmed by ab initio quantum chemistry analy-

ses. Our combined results indicate that photocatalytic degradation of pesticides using TiO2/Ce

is a feasible alternative to managing pesticide residues in vegetables.
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