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PET imaging of brain aromatase 
in humans and rhesus monkeys 
by 11C‑labeled cetrozole analogs
Kayo Takahashi1, Takamitsu Hosoya1,2*, Kayo Onoe1, Tomoko Mori1, Shusaku Tazawa1, 
Aya Mawatari1, Yasuhiro Wada1, Yumiko Watanabe1, Hisashi Doi1 & Yasuyoshi Watanabe1*

Aromatase is an estrogen synthetic enzyme that plays important roles in brain functions. To quantify 
aromatase expression in the brain by positron emission tomography (PET), we had previously 
developed [11C]cetrozole, which showed high specificity and affinity. To develop more efficient 
PET tracer(s) for aromatase imaging, we synthesized three analogs of cetrozole. We synthesized 
meta-cetrozole, nitro-cetrozole, and iso-cetrozole, and prepared the corresponding 11C-labeled 
tracers. The inhibitory activities of these three analogs toward aromatase were evaluated using 
marmoset placenta, and PET imaging of brain aromatase was performed using the 11C-labeled 
tracers in monkeys. The most promising analog in the monkey study, iso-cetrozole, was evaluated 
in the human PET study. The highest to lowest inhibitory activity of the analogs toward aromatase 
in the microsomal fraction from marmoset placenta was in the following order: iso-cetrozole, nitro-
cetrozole, cetrozole, and meta-cetrozole. This order showed good agreement with the order of the 
binding potential (BP) of each 11C-labeled analog to aromatase in the rhesus monkey brain. A human 
PET study using [11C]iso-analog showed a similar distribution pattern of binding as that of [11C]
cetrozole. The time–activity curves showed that elimination of [11C]iso-cetrozole from brain tissue 
was faster than that of 11C-cetrozole, indicating more rapid metabolism of [11C]iso-cetrozole. [11C]
Cetrozole has preferable metabolic stability for brain aromatase imaging in humans, although [11C]
iso-cetrozole might also be useful to measure aromatase level in living human brain because of its high 
binding potential.

Estrogen is involved in anxiety, depression, and Alzheimer’s disease1,2 and its substrate androgen is also related 
to depression and anxiety-like disorders3,4. Positron emission tomography (PET) is one of the most suitable 
techniques for investigating the dynamics of these hormones’ behavior, including their receptor systems in the 
body5. Several PET tracers for sex hormone systems have been developed. 16α-[18F]Fluoro-17β-estradiol is one 
of the most frequently used PET tracers for estrogen receptor imaging6–8, while [18F]fluorodihydrotestosterone 
has been used for androgen receptor imaging in animals9,10 and human studies11,12. These tracers have also been 
used for cancer and tumor imaging in clinical studies.

Estrogen is produced by aromatase, which catalyzes the demethylation of the androgen’s carbon 19. Aromatase 
is also involved in several brain functions such as cognition, behavior, emotion, and the pathophysiology of 
Alzheimer’s disease and autism spectrum disorder13–18. In postmortem studies in humans, decreased aromatase 
immunoreactivity was observed in the hypothalamus of the patients with major depressive disorder19 and Alz-
heimer’s disease20.

We had previously developed [11C]cetrozole as a PET tracer for aromatase21. [11C]Cetrozole shows better 
specificity and selectivity for aromatase than the previously developed [11C]vorozole22. Furthermore, the radioac-
tive metabolites of [11C]cetrozole were not taken up into the brain, unlike the metabolite of [11C]vorozole, indi-
cating that [11C]cetrozole could be used for highly quantitative measurement of aromatase in the brain. Human 
PET studies with [11C]cetrozole were performed in healthy participants23,24 and demonstrated the association 
between aromatase levels in the brain and human personality24.

To develop more efficient PET tracer(s) for aromatase imaging in the human brain, we synthesized three 
analogs of cetrozole: meta-cetrozole, nitro-cetrozole25 and iso-cetrozole26 previously referred to as TMD-32227 
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(Fig. 1). These analogs differed from cetrozole in terms of the position of the methyl group, replacement of the 
cyano group with a nitro group, or the positioning of one nitrogen atom in triazole, respectively. The inhibitory 
activities of these three analogs toward aromatase were evaluated, and PET imaging of brain aromatase was 
performed using the corresponding 11C-labeled tracers in nonhuman primates. Iso-cetrozole, which was the 
most promising analog in a monkey PET study, was evaluated in the present human PET study and compared 
with the previous human PET study with [11C]cetrozole.

Results
Aromatase inhibitory activity.  Aromatase inhibitory activity was measured using marmoset placenta 
homogenate with unlabeled meta-cetrozole, nitro-cetrozole, iso-cetrozole, and cetrozole. IC50 values were 3.50, 
0.73, 0.68, and 0.98 nM for meta-cetrozole, nitro-cetrozole, iso-cetrozole, and cetrozole, respectively (Supple-
mental Fig. S22).

Animal PET studies.  The distribution volume ratio (DVR) images of all tracers showed a similar distribu-
tion pattern, i.e., high binding of the tracers was observed in the amygdala, hypothalamus, and nucleus accum-
bens; however, the signal intensity was different (Fig. 2). The images of [11C]iso-cetrozole showed the highest-
intensity signals among the tracers. Nondisplaceable binding potential (BPND) in the amygdala, hypothalamus, 
nucleus accumbens, thalamus, white matter, and temporal cortex were calculated using the superior semilunar 
lobule of cerebellum as a reference region with the four tracers, as shown in Fig. 3. The BPND values of [11C]cetro-
zole and [11C]nitro-cetrozole were comparable. BPND of [11C]meta-cetrozole was significantly lower than that of 
[11C]cetrozole in the aromatase-rich regions (amygdala, P < 0.01; hypothalamus, P < 0.01; nucleus accumbens, 
P < 0.01). BPND of [11C]iso-cetrozole was 178–195% higher than that of [11C]cetrozole in the aromatase-rich 
regions (amygdala, P < 0.05; hypothalamus, P < 0.01; nucleus accumbens, P < 0.05). All tracers showed low bind-
ing to the nonspecific binding region of the thalamus, white matter, and temporal cortex in rhesus monkey brain.

The time–activity curves of all tracers showed a time-dependent gradual decline in the accumulated regions 
(Fig. 4). The curves for [11C]cetrozole, [11C]nitro-cetrozole, and [11C]iso-cetrozole showed higher accumulation of 
tracers in the aromatase-rich regions (amygdala, hypothalamus, and nucleus accumbens) than in the aromatase-
less region (cerebellum). In contrast, the gap in the curves between the aromatase-rich and aromatase-less regions 
was small for [11C]meta-cetrozole.

Human studies.  Human PET studies were performed with [11C]iso-cetrozole and the data were compared 
with the previously published results for [11C]cetrozole24. The distribution pattern of [11C]iso-cetrozole was 
similar to that of [11C]cetrozole in humans (Fig.  5). High binding of [11C]iso-cetrozole was observed in the 
amygdala, hypothalamus, thalamus, and medulla. The time–activity curves of both tracers are shown in Fig. 6. 
The time–activity curves of [11C]iso-cetrozole demonstrate relatively quick clearance from tissues in compari-

Figure 1.   The chemical structures of [11C]cetrozole (A) and its analogs, [11C]meta-cetrozole (B), [11C]nitro-
cetrozole (C), and [11C]iso-cetrozole (D). The methyl moiety in [11C]meta-cetrozole showed a different position 
from that in [11C]cetrozole. [11C]Nitro-cetrozole contained a nitro group instead of the cyano group of [11C]
cetrozole. [11C]Iso-cetrozole showed a different nitrogen position in the triazole in comparison with [11C]
cetrozole.
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son with [11C]cetrozole. Both tracers showed faster clearance from tissues in humans in comparison with their 
clearance in rhesus monkeys (Fig. 4). In calculations performed with the Logan reference tissue model, [11C]
iso-cetrozole showed higher BPND values in the hypothalamus than [11C]cetrozole (P < 0.05); however, the two 
tracers did not show differences in the BPND values in the thalamus, amygdala, white matter, temporal cortex, 
and nucleus accumbens (Fig. 7). The measurement of [11C]iso-cetrozole metabolites in the plasma revealed the 
relatively quick metabolism of this tracer (Fig. 8). The proportions of the parent compound of [11C]iso-cetrozole 
remained at 27% and 19% at 20 and 60 min, respectively, after injection.

Discussion
In this study, we prepared three analogs of [11C]cetrozole to determine the significant structural factors for a 
potent PET tracer for brain aromatase imaging (Fig. 1). We also aimed to develop a more potent tracer than [11C]
cetrozole21,24 that could enable more precise analysis of aromatase expression in the human brain. The three ana-
logs were [11C]meta-cetrozole, [11C]nitro-cetrozole, and [11C]iso-cetrozole. The inhibitory activity of the analogs 
including cetrozole toward aromatase in the microsomal fraction of marmoset placenta was in the following 
order: iso-cetrozole (IC50 = 0.68 nM), nitro-cetrozole (IC50 = 0.73), cetrozole (IC50 = 0.98), and meta-cetrozole 
(IC50 = 3.50). This result indicated that (1) the methyl group substituted at the para position of the benzene ring 
is important, (2) the cyano group can be replaced with other electron-withdrawing groups without a significant 
decrease in the inhibitory activity, and (3) the triazole moiety can be exchanged with other types of triazoles. 

Figure 2.   The distribution volume ratio images of [11C]cetrozole (A), [11C]meta-cetrozole (B), [11C]nitro-
cetrozole (C), and [11C]iso-cetrozole (D) in rhesus monkey brain (coronal section). The slices contain the 
amygdala indicated by arrowhead. The scale ranges of the color bar are 0.4–1.5 for [11C]cetrozole, [11C]meta-
cetrozole, and [11C]nitro-cetrozole, and 0.4–2.0 for [11C]iso-cetrozole.

Figure 3.   BPND values in the amygdala, hypothalamus, nucleus accumbens, and the white matter of [11C]
cetrozole, [11C]meta-cetrozole, [11C]nitro-cetrozole, and [11C]iso-cetrozole (N = 4, mean ± S.E.) in rhesus 
monkey brain. [11C]Meta-cetrozole showed a lower BPND than [11C]cetrozole in the amygdala, hypothalamus, 
and nucleus accumbens (**P < 0.01). [11C]Iso-cetrozole showed a higher BPND than [11C]cetrozole in the 
amygdala, nucleus accumbens (*P < 0.05), and hypothalamus (**P < 0.01).
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Figure 4.   Time-activity curves of [11C]-cetrozole (A), [11C]meta-cetrozole (B), [11C]nitro-cetrozole (C), 
and [11C]iso-cetrozole (D) in rhesus monkey brain (N = 4, mean ± S.E.). Aromatase-rich regions (amygdala, 
hypothalamus, and nucleus accumbens), nonspecific region (white matter), and reference region for Logan 
reference tissue model analysis (cerebellum) are shown.

Figure 5.   The representative SUV images of [11C]cetrozole (A,B) and [11C]iso-cetrozole (C,D) in the brains of 
similar individuals (A,C transaxial slices; B,D sagittal slices). Arrow heads indicate the thalamus.
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These features were consistent with the results reported for the structure–activity relationship of YM51125,27, 
which is a leading aromatase inhibitor of cetrozole. To examine the potential of each analog as a PET tracer, 
11C-labeled analogs were prepared by palladium(0)-mediated rapid 11C-methylation28 from the corresponding 
tributylstannyl precursors.

PET studies with rhesus monkeys were conducted using three tracers and the data were compared with the 
previous results using [11C]cetrozole. All analog tracers penetrated the blood–brain barrier and showed a distri-
bution pattern similar to that of [11C]cetrozole. However, the binding properties of the analogs were somewhat 
different from those of [11C]cetrozole. [11C]Meta-cetrozole showed low BPND, which was 35–43% of that of [11C]
cetrozole in the aromatase-rich regions (Fig. 2B vs. A). [11C]Nitro-cetrozole had comparable binding ability to 
[11C]cetrozole (Fig. 2C vs. A). [11C]Iso-cetrozole had higher BPND than the other analogs and [11C]cetrozole 
(Fig. 2D vs. A). This variation in BPND between analogs was in accordance with the order of magnitude of IC50 
values of analogs.

Since the rhesus monkey PET study demonstrated the high potential of [11C]iso-cetrozole for imaging and 
quantitation of brain aromatase, we performed a human PET study. Six healthy volunteers (three females and 

Figure 6.   Time-activity curves of [11C]cetrozole (A, N = 21) and [11C]iso-cetrozole (B, N = 6) in the human 
brain (mean ± S.E.). The aromatase-rich regions (thalamus, amygdala, and hypothalamus) and the reference 
region for Logan reference tissue model analysis (cerebellum) are shown. The [11C]iso-cetrozole curves 
demonstrate rapid clearance from the tissues in comparison with cetrozole.

Figure 7.   BPND values in the thalamus, hypothalamus, amygdala, white matter, temporal cortex, and nucleus 
accumbens of [11C]cetrozole (N = 21) and [11C]iso-cetrozole (N = 6) in the human brain. Each dot indicates 
individual value. Mean and 95% confidence intervals are also shown. In the hypothalamus, [11C]iso-cetrozole 
showed significantly higher BPND than [11C]cetrozole. No significant difference was observed between the BPND 
of [11C]iso-cetrozole and [11C]cetrozole in the other regions.
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three males) were recruited for 60-min PET scans with [11C]iso-cetrozole. The distribution pattern of [11C]iso-
cetrozole was similar to that of [11C]cetrozole, suggesting that [11C]iso-cetrozole binds to aromatase in the human 
brain (Fig. 5). However, unlike the rhesus monkey study, [11C]iso-cetrozole showed higher BPND than [11C]
cetrozole only in the hypothalamus (Fig. 7). The time–activity curves of [11C]iso-cetrozole showed a relatively 
rapid decline, indicating that [11C]iso-cetrozole showed higher susceptibility to metabolism than [11C]cetrozole 
(Fig. 8). The parent fraction of [11C]iso-cetrozole remained at 27% and 19% at 20 and 60 min, respectively, after 
administration. In contrast, the parent fraction of [11C]cetrozole remained at 80% and 53% at 20 and 60 min, 
respectively, after administration. These observations are consistent with the results of a cassette-microdose clini-
cal study in which we administered cetrozole and iso-cetrozole intravenously or orally to healthy participants27. 
The cassette-microdose study showed that total body clearance and bioavailability were 12.1 mL/min/kg and 
34.9% for cetrozole, and 16.8 mL/min/kg and 18.4%, respectively, for iso-cetrozole. The underlying mechanisms 
remain unknown, however, it might be caused by the hepatic CYP-mediated metabolism. CYP2C19 had high 
metabolic activities against cetrozole, in the meanwhile, not only CYP2C19 but CYP1A2 and CYP3A4 showed 
rapid velocity of metabolism against iso-cetrozole27. A desirable molecular imaging probe should have distinc-
tive characteristics such as high stability in vivo to ensure the quantitative measurments29. [11C]cetrozole has 
preferable metabolic stability for brain aromatase imaging in humans, although [11C]iso-cetrozole might also be 
useful to measure aromatase level in living human brain because of its high binding potential.

In the present study, we developed three analogs of cetrozole, namely, meta-cetrozole, nitro-cetrozole, and 
iso-cetrozole, to identify a more efficient PET tracer for aromatase imaging in the human brain. [11C]Iso-cetrozole 
showed high binding potential in the rhesus monkey brain; however, it did not function similarly in the human. 
From this perspective, PET is a significant tool that allows us to investigate molecular dynamics in living humans. 
By using [11C]cetrozole/[11C]iso-cetrozole and PET techniques, the mechanism of brain functions and diseases 
in which aromatase is involved in humans might be clarified in the near future.

Materials and methods
Synthesis of cetrozole analogs and their tributylstannyl precursors for 11C‑labeled PET trac-
ers.  Detailed synthetic procedures are provided in the Supplemental Data.

Synthesis of 11C‑labeled cetrozole analogs.  11C-radiolabeling of meta-cetrozole, nitro-cetrozole, and 
iso-cetrozole was achieved by methods similar to those used our previous report on [11C]cetrozole21,24, which 
involved palladium-mediated 11C-methylation using the corresponding tri-n-butylstannane precursors28,30. 
After radiopharmaceutical formulation for the in vivo PET study, the molar activities were 30–134, 44–81, and 
42–170  GBq/μmol for 11C-labeled meta-cetrozole, nitro-cetrozole, and iso-cetrozole, respectively. The radio-
chemical purity of all radiotracers was greater than 99%. The chemical purity of all radiotracers was regularly 
greater than 95%; however, some chemical experiments yielded 80% purity once in the synthesis of [11C]meta-
cetrozole and 84–88% purities twice in the synthesis of [11C]iso-cetrozole. Detailed radiochemistry is described 
in the Supplemental Data.

Aromatase inhibitory activity.  The aromatase inhibitory activity assay using marmoset placenta was per-
formed by the same protocols as previously described21. Briefly, the incubation mixture contained 110–120 nM 
[4-14C]testosterone (1.96 GBq/mmol, GE Healthcare Japan, Tokyo, Japan), 0.24 mM NADPH (Sigma-Aldrich, 
St. Louis, MO, US), 0.3, 1, 3, 10, or 30 nM unlabeled cetrozole, meta-cetrozole, nitro-cetrozole, or iso-cetrozole, 
and 10 μL of the microsomal fraction of marmoset placenta in a total volume of 400 μL at 37 °C. The mixture 
was centrifuged and the aqueous phase was evaporated. The residue was dissolved in ethyl acetate, and aliquots 

Figure 8.   Parent composition of [11C]cetrozole (A, N = 21) and [11C]iso-cetrozole (B, N = 5) in human plasma 
(mean ± SD). The parent fraction of [11C]cetrozole and [11C]iso-cetrozole remained 80% and 27%, respectively, 
at 20 min after the injection.
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were applied to Silica 60 thin-layer chromatography plates (Merck Millipore, Burlington, MA, US). The plates 
were developed with ethyl acetate/isooctane. After migration, the plates were dried and exposed to BAS-SR2040 
imaging plates overnight. The distribution of radioactivity on the imaging plates was determined with digital 
PSL autoradiography.

Animals.  Male adult rhesus monkeys (Macaca mulatta; 3.9–7.7 kg) were housed individually and received 
food twice a day and water ad libitum. Animals were maintained and handled in accordance with the recom-
mendations of the United States National Institutes of Health, and the study was approved by the Animal Care 
and Use Committee of Kobe Institute at RIKEN.

Animal PET studies.  PET scans were performed in rhesus monkeys by using [11C]meta-cetrozole, [11C]
nitro-cetrozole, and [11C]iso-cetrozole (N = 4 each). The monkeys were sedated with ketamine hydrochloride 
(15 mg/kg, i.m.), and venous cannulae were placed in the saphenous veins for further continuous anesthesia with 
propofol (10 mg/kg/h) and PET tracer injection. Before the emission scan, a transmission scan was performed 
for 30  min for attenuation correction. Each tracer ([11C]meta-cetrozole, 153–310  MBq; [11C]nitro-cetrozole, 
219–292 MBq; [11C]iso-cetrozole, 214–345 MBq) was administered intravenously as a bolus. The monkeys were 
scanned for 90 min in list mode with the PET scanner of Focus220 (Siemens, Knoxville, TN, US). The acquired 
data were sorted into dynamic sinograms (4 × 30 s, 3 × 60 s, 2 × 150 s, 2 × 300 s, and 7 × 600 s) and reconstructed 
using Fourier Rebinninig (FORE) and 2D-filtered back projection (FBP) with a Hann filter and a cutoff fre-
quency of 0.4 cycle per pixel.

Analysis of animal PET data.  For PET image analysis, we employed same modeling and protocol as [11C]
cetrozole analysis reported previously21. Briefly, using PMOD software (PMOD Technologies Ltd., Zurich, Swit-
zerland), volumes of interest (VOIs) were delineated in the superior semilunar lobule of cerebellum, amygdala, 
hypothalamus, nucleus accumbens, white matter, thalamus and temporal cortex. The data were analyzed with 
Logan’s reference tissue model based on the averaged k2′31 values. The averaged k2′ values were calculated in the 
aromatase-rich regions, namely amygdala and hypothalamus, with simplified reference tissue model32 using the 
superior semilunar lobule of cerebellum as a reference region. Then, BPND and DVR were calculated. The differ-
ence in BPND between the tracers was analyzed statistically using the Mann–Whitney U test.

Human participants.  We recruited six healthy volunteers (three females and three males, average age of 
38.0 ± 1.0, and 38.0 ± 6.9 y.o., mean ± SD, respectively) for the PET study with [11C]iso-cetrozole. All participants 
underwent a brain PET scan, and two of the three females (38 and 39 years old) underwent a whole-body PET 
scan to measure their radiation exposure. Two females and two males had undergone a brain PET scan with 
[11C]cetrozole in a previous study (3.3–3.9 yr previously). All participants provided written informed consent.

Human PET studies.  The human PET studies were performed by the same protocols as human PET stud-
ies with [11C]cetrozole which were previously described24. The participants lay down in the PET scanner (Bio-
graph-16, Siemens, Knoxville, TN, US) with their heads fixed with bandages to minimize movement. The left 
and right median cubital veins were cannulated for blood sampling and radiotracer administration, respectively. 
CT scans were carried out for head positioning and attenuation correction before the emission scans. At the start 
of the emission scan, [11C]iso-cetrozole (201–309 MBq) was intravenously administered for approximately 30 s, 
and the catheter line was flushed with 15–20 mL saline to prevent radiotracer retention. Serial PET scanning 
of the brain was performed for 60 min in the list mode and sorted into dynamic sinograms (6 × 10 s, 6 × 30 s, 
11 × 60 s, and 15 × 180 s). Images were reconstructed with FORE and FBP with no post filter. Blood samples were 
taken from the venous line at 5, 10, 20, 30, 45, and 60 min after administration of [11C]iso-cetrozole, and used for 
radiometabolite analyses (N = 5). One sample was missed because blood could not be collected from one person.

Analysis of human PET data.  For quantitative analyses, PMOD software was used. VOIs were deline-
ated in the thalamus, amygdala, and hypothalamus, which are known to contain a rich supply of aromatase 
enzyme33–35, and in the superior semilunar lobule of cerebellum, temporal cortex and nucleus accumbens. 
Decay-corrected time-activity curves were generated for each brain region. The data were analyzed with a Logan 
reference tissue model based on the k2′ value. The k2′ values were calculated in the aromatase-rich region, 
namely thalamus, with simplified reference tissue model32 using the superior semilunar lobule of cerebellum as 
a reference, and BPND and DVR were calculated. A 95% confidence interval was calculated to evaluate the differ-
ence in BPND between the tracers.

Radiometabolite analysis in plasma (rhesus monkey and human).  The radiometabolite analysis 
in plasma was performed by the same protocols as previously described21,24. Briefly, the collected blood sam-
ples were deproteinated and centrifuged. The supernatants were subjected to thin-layer chromatography using 
RP-18 plates (Merck Millipore). The plates were developed with acetonitrile/water/formic acid (50:50:0.75). 
After migration, the plates were exposed to BAS TR2040 imaging plates (Fuji Photo Film Co., Tokyo, Japan) for 
40 min. The distribution of radioactivity on the imaging plates was determined with digital PSL autoradiography 
using a Fuji FLA-7000 analyzer, and the data were analyzed using the MultiGauge image analysis program (Fuji 
Photo Film Co.).
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Data for [11C]cetrozole.  In this study, the data of [11C]cetrozole in monkeys were originally published 
in JNM. Takahashi et al. 11C-Cetrozole: An improved C-11C-methylated PET probe for aromatase imaging in 
the brain. J Nucl Med. 2014;55:852–85721. The data of [11C]cetrozole in humans were published in Scientific 
Reports. Takahashi K et  al. Association between aromatase in human brains and personality traits. Sci Rep. 
2018;8:1684124.

Ethics approval.  The protocol was approved by the Ethics Committee of Kobe Institute of RIKEN and 
Osaka City University Graduate School of Medicine. All experiments were conducted in compliance with 
national legislation and the Code of Ethical Principles for Medical Research Involving Human Subjects of the 
World Medical Association (Declaration of Helsinki) and registered in the UMIN Clinical Trials Registry (No. 
UMIN000006586). The study was carried out in compliance with the ARRIVE guidelines.
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