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Abstract

Motivation: Over the past two decades, a circular form of RNA (circular RNA), produced through al-

ternative splicing, has become the focus of scientific studies due to its major role as a microRNA

(miRNA) activity modulator and its association with various diseases including cancer. Therefore,

the detection of circular RNAs is vital to understanding their biogenesis and purpose. Prediction of

circular RNA can be achieved in three steps: distinguishing non-coding RNAs from protein coding

gene transcripts, separating short and long non-coding RNAs and predicting circular RNAs from

other long non-coding RNAs (lncRNAs). However, the available tools are less than 80 percent ac-

curate for distinguishing circular RNAs from other lncRNAs due to difficulty of classification.

Therefore, the availability of a more accurate and fast machine learning method for the identifica-

tion of circular RNAs, which considers the specific features of circular RNA, is essential to the de-

velopment of systematic annotation.

Results: Here we present an End-to-End deep learning framework, circDeep, to classify circular

RNA from other lncRNA. circDeep fuses an RCM descriptor, ACNN-BLSTM sequence descriptor

and a conservation descriptor into high level abstraction descriptors, where the shared representa-

tions across different modalities are integrated. The experiments show that circDeep is not only

faster than existing tools but also performs at an unprecedented level of accuracy by achieving a

12 percent increase in accuracy over the other tools.

Availability and implementation: https://github.com/UofLBioinformatics/circDeep.

Contact: juw.park@louisville.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Non-coding RNA (ncRNA) (Mattick and Makunin, 2006) is func-

tional RNA that is transcribed from DNA, but is incapable of being

translated into protein. ncRNAs can be categorized into two groups

based on length. Short non-coding RNAs are shorter than 200

nucleotides, and long non-coding RNA (lncRNA) are longer than

200 nucleotides. lncRNAs have a critical role in several cellular

functions involving protein synthesis within a multitude of distinct

processes and gene regulation (Mercer et al., 2009) and the develop-

ment and pathophysiology of disease (Chen et al., 2012).

A subcategory of lncRNAs, circular RNA (circRNA), has be-

come the focal point of scientific studies over the last two decades in

a variety of species due to its correlation with a myriad of diseases

including cancer (Bachmayr-Heyda et al., 2015; Burd et al., 2010;

Cooper et al., 2009; Eriksson et al., 2003; Lukiw, 2013;

VC The Author(s) 2019. Published by Oxford University Press. 73

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 36(1), 2020, 73–80

doi: 10.1093/bioinformatics/btz537

Advance Access Publication Date: 3 July 2019

Original Paper

http://orcid.org/0000-0002-4610-6893
https://github.com/UofLBioinformatics/circDeep
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz537#supplementary-data
https://academic.oup.com/


Morel et al., 2006) and its vital function as a microRNA (miRNA)

activity modulator (Chen et al., 2015; Memczak et al., 2013).

CircRNA is produced by ligating a downstream donor site (50 splice

site) of a flanking downstream intron with an upstream acceptor site

(30 splice site) of a second upstream intron; this process is a unique

type of alternative splicing, referred to as back-splicing. This is con-

trasted by canonical alternative splicing which joins an upstream

donor site (50 splice site) with a downstream acceptor site (30 splice

site) within a single intron and produces a linear configuration of

RNA.

Recently, there has been a growing number of circRNAs identi-

fied. It has been estimated that circRNAs are assembled from over

10 percent of genes (Lasda and Parker, 2014). CircRNAs have a

greater stability than linear RNAs due to their structure which

excludes 50 and 30 ends. CircRNAs are also immune from exonucle-

ase mediated degradation.

The detection of circRNAs is a vital operation for continued

comprehension of their biogenesis and purpose. A substantial

amount of circRNAs have been annotated in the transcriptome with

the advent of modern experimental technology. Unfortunately, it

remains an extensive problem to distinguish circRNAs from trad-

itionally labeled lncRNAs due to the computational complexity of

experimental data analysis and the low expression that almost all

lncRNAs have (Derrien et al., 2012).

As of now, only two tools are available for computational cat-

egorization of circRNA. The first is PredcircRNA (Pan and Xiong,

2015) which is a computational approach based on a multiple kernel

learning framework trained with a variety of features; i.e. graph fea-

tures, component composition features, conservation score features,

features of ALU and tandem repeats, the ORF and SNPs from tran-

scripts. The second is H-ELM which extracts identical features and

categorizes circRNAs from other lncRNAs by utilizing a hierarchical

extreme learning machine (H-ELM) algorithm with feature selection

(Chen et al., 2018). For the dataset proposed (Chen et al., 2015),

PredcircRNA reached 0.778 accuracy with 0.554 Matthews correl-

ation coefficient (MCC) and H-ELM reached 0.789 accuracy with

0.561 MCC. Neither method is perfect, and both have non-

negligible drawbacks that could prevent them from being reliably

adapted by the bioinformatics community. Neither succeeds at

using features that describe the unique structure of circRNA, and

both methods use sequence information with trinucleotide frequen-

cies but fail to employ the co-occurrence relationship of

trinucleotides.

To address the limitations of existing approaches, we propose

circDeep, an end-to-end machine learning framework for robust

circRNA prediction. In this work, we introduced an innovative fea-

ture descriptor that we called Reverse Complement Matching

(RCM) descriptor which aims to extract the potentiality of the

flanking sequences to the query sequence to make the circularization

process. We also propose another feature descriptor that we called

ACNN-BLSTM sequence descriptor which combines the asymmet-

ric convolution neural network (ACNN) with the Bidirectional

Long Short-Term Memory network (BLSTM) which is able to ex-

tract, from each sequence, local patterns as well as the long-range

dependencies. These two novel descriptors are fused with a conser-

vation descriptor which is composed of features that contain infor-

mation about the conservation of a specific sequence among species

as well as conserved motifs. Finally, to fuse different heterogeneous

descriptors, we propose a deep architecture to construct the nonlin-

ear representation from different aspects of information sources. To

the best of our knowledge, circDeep is the first method that uses a

deep model for circRNA prediction.

We compared circDeep, PredcircRNA and H-ELM using the

dataset from (Chen et al., 2015). Figure 1 shows comparisons of

results from different statistical measures to compare circDeep,

PredcircRNA and H-ELM for the same dataset proposed in (Chen

et al., 2015). In this paper, we describe how the improvements in

performance were obtained for circDeep over other circRNA predic-

tion tools.

2 Materials and methods

In this section, we describe our deep learning framework that inte-

grates different sources of data to predict circRNAs. We describe a

method for extracting distinctive representations of different sour-

ces, which are subsequently integrated using feature fusion learning

to predict circRNAs.

2.1 Feature descriptors
2.1.1 RCM descriptor

Many studies support the idea that reverse complement matching in

flanking introns and circularization are highly associated. Ivanov

et al. (2015) demonstrated that reverse complementary sequences

between introns bracketing circRNAs were notably elevated in com-

parison to linear controls. It has also been demonstrated that the

presence of long inverted repeats (IR) flanking the mouse Sty genes

results in the creation of the Sty circular transcript in cultured cells

(Dubin et al., 1995). Zhang and colleagues provide several lines of

evidence to support the deduction that circRNA formation is reliant

on flanking complementary sequences, either with repetitive or non-

repetitive components (Zhang et al., 2014). Consequently, it has

been suggested that RCMs (Fig. 2a) encourage hairpin creation of

the transcript which describes how an upstream acceptor site (30

splice site) of an upstream intron is fastened to a downstream donor

site (50 splice site) of a flanking downstream intron. A feature like

this can be a strong key feature to help our model predict the poten-

tial of a sequence to be transformed to circRNA.

Therefore, we begin by deriving score H for computing the pres-

ence of reverse complementary sequences in flanking sequences. It

represents the absolute number of all reverse complement sequences

in the flanking sequences. Therefore, for each query sequence S, we

take two flanking sequences, each of length L0 base pairs (bps). We

then split the two sequences into k-mers using the sliding window

approach. We extract all subsequences of length k with stride s ¼ 1,

resulting in L subsequences L ¼ L0� kþ 1. There are D ¼ 4K pos-

sible words of length K in the sequences. For each word in the vo-

cabulary; Wa; i ¼ f1; . . . ;4kg, we count the number of occurrences

in the left flanking sequence occL Wið Þ and the number of

Fig. 1. Comparison of circular RNA prediction tools: circDeep significantly

outperforms previous proposed methods (see Section 3 for details)
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occurrences of the reverse complement to Wi in the right flanking se-

quence occR RC Wað Þð Þ. RC Wað Þ is the reverse complement of the

word Wa, for example RC ACCGUð Þ ¼ ACGGU.

Then the score of the sequence S is given by Eq. 1 which is the

sum of scores Ha of all words Wa where Ha is the absolute number

of occurrences of the word Wa:

H K;L0ð Þ ¼
X4k

a¼1

Ha (1)

where Hi ¼ min occL Wað Þ; occR RC Wað Þð Þð Þ
Our score H k;L0ð Þ can be informative about the absolute number

of reverse complement sequences. This can be very useful, according

to current models for the production of circRNAs, which posit that

RNA secondary structures formed by inverted sequences in flanking

introns are necessary elements for circularization.

Dubin and colleagues have suggested that at least 400 comple-

mentary nucleotides are necessary for Sry circularization in vivo

(Dubin et al., 1995). Other research (Hansen et al., 2013) has shown

that artificially surrounding an exon with introns containing 800

nucleotides (nt) of perfectly complementary repeats is sufficient to

allow circularization which suggests that long reverse complement

sequences promotes circularization. Lacking detailed mechanistic

models of circularization generally makes the prediction of

circRNAs difficult but, based on some previous studies, we hypothe-

size that strengthening the hairpin between the reverse complement

sequences may increase the likelihood of circularization. Therefore,

the availability of a measure describing the longest reverse comple-

mentary sequence in flanking sequences to a query sequence for our

classifier should improve discrimination between circRNAs and

other lncRNAs.

In the following pseudocode, we describe our procedure for com-

puting score V that describes the strengthening of the hairpin between

flanking sequences. In the result section, we show the effectiveness of

such a feature for discriminating circRNAs from other lncRNAs.

In order to evaluate the strengthening of the hairpin between

flanking sequences (Fig. 2b), our method provides a new dynamic

programming approach that computes score V for the longest re-

verse complement sequences while allowing some mismatches and

penalizing non-complementary nucleotides. To calculate the longest

reverse complement matching between two sequences of length L1

and L2 respectively, we split each sequence into overlapping k-mers

of length k with stride equal to 1, so each sequence is represented by

Wi, i ¼ f1; . . . ;L1 � kþ 1g and Wj; j ¼ f1; . . . ;L2 � kþ 1g respect-

ively. RC(Wi) is the reverse complement of the word Wi, for ex-

ample RC(ACGUG) ¼ CACGU.

Let V L1;L2;kð Þ be the score for the longest reverse complementary

matching between sequences Wi; i ¼ f1; . . . ;L1 � kþ 1g and

Wj; j ¼ f1; . . . ;L2 � kþ 1g with allowing some mismatches.

In our formulation of the score V, we are allowing some mis-

matches for longest reverse complementary matching between

sequences. If it contains many mismatches, the score V will be low,

which reflects flanking sequences less likely to form a hairpin and

more likely to form circular RNA. The time complexity of our algo-

rithm to compute V K;L1 ;L2ð Þ is O L1 � L2ð Þ. We use k-mers for com-

puting score V. As a constraint, at least 1 k-mer is matched between

two flanking sequences. However, this algorithm can be extended to

eliminate this constraint by simply taking k¼1. The choice of the

hyper-parameters to calculate the score V such as match score, mis-

match score, L1 and L2 are based on preliminary experiments.

2.1.2 Conservation descriptor

The PhastCons (Mikolov et al., 2013) method is used to give a score

ranging from 0 to 1 to each nucleotide based on its conservation

level. We gather pre-computed conservation scores from the UCSC

database (https://genome.ucsc.edu). For every exon sequence in

every transcript, we average the scores in the exon sequence and

then compute the maximum, the average and the median of those

averaged scores. If a transcript does not have an exon, the entire

transcript is held as a single exon for our computation.

CircRNAs have a multitude of conserved docking sites for

miRNA such as ciRS-7 which holds over 70 selectively conserved

miRNA target sites (Goldberg and Levy, 2014). This is a result of

most circRNAs having almost identical motif sequences.

Consequently, we sum the number of frequencies of successive bases

whose scores are larger than the specified threshold and then divide

the frequency by the whole length of the sequence. We alter the

number of successive bases in the scope of 4 through 7, incrementing

by 1 and setting a threshold in the range of 0.5 through 0.7, incre-

menting by 0.1. This gives us a total of 15 features to create our con-

servation descriptor.

2.1.3 ACNN-BLSTM sequence descriptor

In order to extract ACNN-BLSTM sequence descriptor, we build a

deep learning architecture as shown in Figure 3 consisting of three

main components: Embedding layer, Asymmetric convolutional

neural network (ACNN) and Bidirectional long short-term memory

(BLSTM) network.

First, each sequence is converted to a sequence of k-mer indexes

and then we map the k-mers to vectors found at the corresponding

Fig. 2. (a) Reverse Complement Matches between flanking sequences pro-

mote circularization of RNA. (b) Computing the strength of hairpin in flanking

sequences allows circular RNA prediction

Calculation of scoreV k;L1 ;L2ð Þ

FOR fi ¼ 1; . . . ;L1 � kþ 1g
v i;0ð Þ ¼ 0

FOR fj ¼ 1; . . . ;L2 � kþ 1g
v 0;jð Þ ¼ 0

FOR i ¼ 1; . . . ;L1 � kþ 1f g
FOR fj ¼ 1; . . . ;L2 � kþ 1g

IF Wi ¼ RC Wj

� �
v i;jð Þ ¼ max 0; v i�1;j�1ð Þ þmatch score

� �
ELSE

v i;jð Þ ¼ max 0; v i�1;j�1ð Þ þmismatch score
� �

V k;L1 ;L2ð Þ ¼ max v i;jð Þð Þ
where i ¼ 1; . . . ;L1 � kþ 1f g; j ¼ f1; . . . ;L2 � kþ 1g
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index in the embedding matrix. The embedding matrix is pre-

trained first with the word2vec model (Mikolov et al., 2013) called

skip-gram that computes the co-occurrence statistics of k-mer and

learns to project them into a D-dimensional space Rd. It will be fur-

ther fine-tuned during the training process.

As the convolution layer in our model requires fixed-length input, we

pad each sequence that has a length less than maxlen with special sym-

bols at the end that indicate the unknown k-mers and for those that have

a length longer than maxlen, we simply cut extra k-mers at the end of

these sentences to reach maxlen. So now, each sequence is represented as:

x1:maxlen ¼ x1;x2; . . . ; xmaxlen½ � (2)

where xj 2 Rd be the d-dimensional word vector corresponding to

the jth k-mer in the sequence.

A deeper network will generally have more representational

power than a shallower network, but the training time and the greater

number of parameters makes them difficult to train. The number of

parameters can be greatly reduced with a minor loss in performance

by the use of asymmetric convolutions (Szegedy et al., 2015), allow-

ing for deeper models to be trained using the same resources.

We divide the more common k� d rectangular convolutional fil-

ter into two separate steps. First we apply n 1� d convolutions, fol-

lowed by n k� 1 convolutions (Szegedy et al., 2015).

The 1� d convolution filter mj 2 Rd is applied to each k-mer xj

in the sentence and generates corresponding feature mj

mj ¼ f w1
8xj þ b

� �
(3)

where 8 is element-wise multiplication, b is the bias and f is a non-

linear function. We chose the ReLU activation function, because it is

known to perform well in CNNs We get the feature map m 2 RL

m ¼ m1;m2; . . . ;mL½ � (4)

The k� 1 convolution with filter w2 in R
k is applied to a win-

dow of k features in the feature map m to produce the new feature cj

and the feature map c

cj ¼ f w2
8mj:jþk�1 þ b

� �
(5)

c ¼ c1; c2; . . . ; cL�kþ1½ � (6)

Dropout is then employed (Srivastava et al., 2014) to reduce

overfitting. The output of the ACNN is read by a BLSTM, enabling

long term dependencies to be captured in both directions.

Recurrent networks are especially well suited for finding dependen-

cies and complex relationships in sequential data. However, they can

only recognize very short-term dependencies. This problem is over-

come using forget gates, which allow some information to be preserved

for long stretches of time while selectively forgetting data that is not

needed. In this task in particular, dependencies in both directions are

important, so a BLSTM network is used to capture this.

2.2 Feature fusion learning for circular RNA prediction
Since we have different heterogeneous descriptors from different

sources of data, feature fusion learning is incorporated in the model

to learn shared features across different sources of data. The pro-

posed model can learn and combine high-level heterogeneous repre-

sentations simultaneously.

The first step in our method involves training the model

described in Section 2.1.3 and computing the optimal parameters

W1;W2; . . . ;Wh;Whþ1 where h is the number of hidden layers for

ACNN-BLSTM architecture. Next, for each sequence, we compute

the ACNN-BLSTM sequence descriptor using the feed-forward pass

procedures by taking the final representation before the output

layer. We extract, at the same time, conservation and RCM descrip-

tors using methods described in 2.1.1 and 2.1.2.

The second step of our method involves teaching the model with

the three obtained descriptors. To achieve this, we can utilize either

‘late fusion’ (decision fusion) or ‘early fusion’ (brute force feature

concatenation). Early fusion takes features from the three modal-

ities, chains them together, and then uses the new vector formed to

train a deep neural network. The only issue with early fusion is that

it fails to consider the different statistical properties of the informa-

tion it concatenates together. Late fusion creates a final prediction,

which is simply an amalgamation of each unimodal prediction from

the three modalities. Each unimodal prediction has an output inter-

preted as a confidence score; these scores are combined to give us

the final confidence score. The final prediction allows us to maxi-

mize the capabilities of each unimodal classifier; however this

method loses some correlation in multi-dimensional space. To avoid

this, we use a slight variation of late fusion called ‘feature fusion

fine-tuned’ which is shown in Figure 4. In our variation, we put each

information source through multiple layers to construct a high-level

representation of each source. The final representation is just an

amalgamation of each individual high-level representation.

While feature learning, individual DNN’s are trained beforehand

separately and then fused together for the last common training which

utilizes backpropagation. Learned parameters from each model are

adjusted automatically during each training epoch. After multiple train-

ing epochs, the model can recognize depictions from the RCM, the

ACNN-BLSTM sequence and the conservative descriptors for ensuing

categorization. Additionally, the model is better able to learn features

for each modality using backpropagation when various modalities are

present. This method avoids various problems present in other methods

of fusing such as struggling to recognize highly nonlinear relationships,

superfluity and reliance between several descriptors, and over-fitting.

3 Results and discussion

3.1 Experiment setup
In order to gauge the capabilities of our deep learning model, we used

human circRNAs from the database circRNADb (Hall, 2000) which

Fig. 3. The flowchart of proposed circDeep for classification of circular RNA

from other lncRNA. It extracts three descriptors and then use feature fusion

learning to integrate different representations for classification
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contains 32 914 human circRNAs carefully selected from diversified

sources. After we removed circRNAs shorter than 200 nucleotides,

we were left with 31 939 circRNAs to act as our positive dataset. We

used GENCODE (Zeng et al., 2016) to create our negative dataset

which was made of other lncRNAs such as processed transcript, anti-

sense, lncRNA, sense intronic and sense overlapping. The annotated

lncRNAs in GENCODE have three validation levels for RNA annota-

tion: validation, manual annotation and automated annotated. Only

transcripts that were validated or manually annotated were chosen to

obtain 19 683 samples that compose our negative data.

We then divided each dataset into training data, validation data

and testing data where 75% were used for training, 10% for valid-

ation and 15% for testing. The training data was used to fit the opti-

mal parameters for our model. We then used the validation data to

test the performance of the model with these parameters. The test

data was then used to test the model with the best performance on

the validation data. The testing was used to provide an unbiased

evaluation of a final model fit on the training dataset.

For the unsupervised training of k-mer embedding, we generated

the corpus of k-mer sequences by setting k to 3, and the stride s to 1.

Consequently, the k-mer vocabulary size was V¼43¼64. Word2vec

(Skip-gram with negative sampling) was implemented using efficient

multicore implementation by Gensim (Tatomer and Wilusz, 2017),

an open source Python library for processing large amounts of text

with a focus on topic modeling. We set the window size (context) to

18, the length of the dense vector to represent each trinucleotide

to 40, the initial learning rate to 0.025 and the number of

iterations to 100.

circDeep is implemented in python using keras 1.0.4 which is

found at https://github.com/fchollet/keras, with the backend of

Theano (0.9.0) (Legnini et al., 2017). In order to benefit from the

parallel computation of the tensors, we trained our model on a

NVIDIA Tesla C2050.

To allow the deep architecture to extract an ACNN-BLSTM se-

quence descriptor, we set max length (maxlen) to 8000 bps, the

number of asymmetric convolutional filters to 100, the filter length

to 7, the memory dimension to 100, initial learning rate to 0.02,

batch size to 128 and the maximum number of epochs to 45 (see

Supplementary Table S1 for more details about architecture). This

model is optimized using the RMSprop algorithm to learn all model

parameters, including the convolution filters.

For the feature fusion learning, the number of hidden units for

two fully connected layers (FCL) for each descriptor are listed in

Supplementary Table S2. Batch normalization is added to all

hidden layers. We set the initial learning rate set to 0.01, batch size

to 64, the dropout rate to P¼0.3 and the maximum number of

epochs to 70.

The evaluation measures used in the analysis included accuracy,

sensitivity, specificity, F1 score and Matthews Correlation

Coefficient (MCC).

3.2 Efficacy of RCM descriptor
To explore whether the new proposed features H(k, L0) and V(k, L1,

L2) are able to predict circRNAs and improve the performance of

our model, we used Pearson’s correlation score (Hall, 2000) to

measure the relevance of these features and the dependence between

the features and the class label (circRNA or other lncRNA). In other

words, Pearson’s correlation score can be used to measure the cap-

ability that H(k, L0) and V(k, L0) features can discriminate between

circRNAs and other lncRNAs. It is one of the most powerful feature

selection techniques, and it is easy to compute and interpret. The

resulting value lies in [-1; 1], with -1 meaning perfect negative cor-

relation and þ1 meaning perfect positive correlation. Higher scores

equate to more relevant features.

We calculate H(k, L0) for k in the interval [3, 11] with stride of 1 and

L0 in the interval [250, 2000] with a stride of 250. We calculate V(k, L1,

L2) by taking the same length for flanking sequences L1¼L2¼L0 and

varying it in the interval [250, 1750] with a stride of 250, and k is varied

in the interval [1, 7] with a stride of 1. We set the matching score to 12

and the mismatch penalty to -2. The results for Pearson’s correlation for

our proposed features H and V are shown in Figure 5. To make our

results more rigorous, we also calculate the information gain for the

same features (Supplementary Tables S3 and S4).

We can see that the results are very similar and give the same in-

terpretation using any of the statistical methods. As can be seen in

Figure 5, the Pearson’s correlations for H(k, L0) and V(k, L0) are con-

siderably high, starting from 500 bps in the flanking sequences, indi-

cating that the RCM that promotes the hairpin for circRNAs is

mostly located after 250bps.

The results provide preliminary evidence to support our hypoth-

esis that the features H(k, L0) and V(k, L0) for flanking sequences

Fig. 4. Graphical illustration of our end-to-end deep learning architecture

used to extract ACNN-BLSTM sequence descriptor
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longer than 500bps facilitate the identification of circRNAs since

most Pearson’s correlation scores are higher than 0.70 and can reach

approximately 0.83.

It can be seen also from Figure 5 that Pearson’s correlation scores

increase when the length of flanking sequences is increased for all

values of k-mer length. However, these scores are not extracted for

larger k-mer sizes and longer flanking sequences because the run

time for both features, H(k, L0) and V(k, L0), is increased with the

increased length and size (see Supplementary Tables S3 and S4).

When we compare features H and V for any fixed length of

flanking sequences from Figure 5, H(k, L0) features reached better

Pearson’s correlations scores than V(k, L0) features. This shows that

the absolute number of RCM is more informative than the score of

the longest hairpin in the flanking sequences when determining the

likelihood of circRNA formation. Therefore, our results strongly in-

dicate that circularization can be altered by the competition of RNA

pairing across flanking introns and does not rely on the single lon-

gest reverse complement sequence.

Since we aim to obtain a robust classifier, we ranked the features

using the Pearson’s correlation score and then selected the first 70

ranked features to obtain the final RCM descriptor composed of

42 H(k, L0) features and 28 V(k, L0) features.

3.3 Efficacy of ACNN-BLSTM sequence descriptor
3.3.1 Comparing with baseline architectures for sequence

classification

To evaluate the efficacy of our proposed ACNN-BLSTM sequence

descriptor, we compared the performance of our proposed

architecture (Fig. 3) with several baseline methods for sequence clas-

sification. We compared with a one-hot CNN architecture adopted

by (Zeng et al., 2016), a one-hot CNN-LSTM adopted in (Tatomer

and Wilusz, 2017), a Glove-CNN-BLSTM adopted by (Min et al.,

2017), a one-hot CNN-BLSTM, a one-layer LSTM, a one-layer Bi-

LSTM, an ACNN and a CNN that we implemented (see

Supplementary Table S5 for more details about each architecture).

Table 1 shows the accuracy on training and validation sets and

the accuracy and MCC on the test set for all methods described

above in addition to the number of epochs and average running time

per epoch. By comparing different models, we noticed that convolu-

tional neural networks (one hot-CNN, ACNN, CNN) outperform

LSTM related models (LSTM, BLSTM); this validates the import-

ance of convolutional operations in predicting circRNAs. The

ACNN architecture is considered the fastest and the best among

convolutional neural networks, it reached 0.833 accuracy and

0.6625 MCC on test data which demonstrates its power for captur-

ing local sequence patterns and detecting spatial motifs that charac-

terize the circRNAs. For LSTM related models, BLSTM architecture

achieved best performance with 0.8020 accuracy and 0.5997 MCC.

This indicates that it is more useful to have access to both, the past

and the future context for predicting circRNAs.

The most interesting aspect of our results is how the performance

is improved by combining a convolutional neural network with a re-

current neural network. This is not surprising when considering that

recurrent neural networks excel at sequential modelling while con-

volutional networks completely fail at learning sequential correla-

tions. Recurrent neural networks fail to derive features in parallel

but convolutional networks can learn local responses from dimen-

sional data. Consequently, the amalgamation of the two networks

gives us both the benefits from the two and allows us to predict

circRNA more accurately. Our method completely eclipsed the base-

line models when predicting circRNA; it achieved 0.8933 accuracy

and 0.7730 MCC on test data. We compared also the performance

of all methods described above using 5-fold cross validation on

training data, and the results are shown in Supplementary Table S6.

We achieved almost identical results using cross validation and also

when we ran validation and test data, which suggests that we have a

low risk of over-fitting by using validation data and an early stop

strategy.

3.3.2 Model analysis

In order to analyze the aspect of our architecture used to extract the

ACNN-BLSTM descriptor, we evaluated its robustness and inter-

preted the influence of four hyper-parameters: the k-mer length k,

the splitting stride s, the maxlen parameter and the embedding

Fig. 5. (a) Pearson’s correlation coefficient as a function of H(k, L0) score for

different k-mer length k and different flaking sequence length L0. (b)

Pearson’s correlation coefficient as a function of V(k, L0) score for different k-

mer length k and different flaking sequence length L0

Table 1. Performance comparison between our ACNN-BLSTM pro-

posed architecture and other baseline methods for sequence

classification

Method Train Val Test Test #epochs Time

ACC ACC ACC MCC

One-hot-CNN 0.8176 0.8185 0.8117 0.6164 24 368s

ACNN 0.8402 0.8385 0.8330 0.6625 32 308s

CNN 0.8225 0.8208 0.8194 0.6299 38 338s

LSTM 0.7836 0.7820 0.7826 0.5568 24 712s

BLSTM 0.8029 0.8034 0.8020 0.5997 31 748s

Glove-CNN-BLSTM 0.8804 0.8756 0.8737 0.7324 48 354s

One-hot-CNN-BLSTM 0.8609 0.8570 0.8541 0.6890 42 394s

ACNN-BLSTM 0.8947 0.8935 0.8933 0.7730 36 347s
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dimension d. We evaluated our model using the MCC measure on

the test set, and the results are shown in Figure 6.

Starting with the k-mer length, k, we expected that increasing k

would increase the total number of different k-mers, increase the in-

formation in the co-occurrence statistics and improve our model.

However, we find that k¼3 gives the best performance. In fact, as

the k-mer size increases, the performance decreases. This can best be

seen in the significant drop in performance at k¼5. This leads us to

the importance of mining the sequences with trinucleotides for

circRNAs prediction. Even though circRNAs are classified as non-

coding RNAs, recently, several studies demonstrate that circRNAs

can be translated (Legnini et al., 2017; Pamudurti et al., 2017;

Tatomer and Wilusz, 2017). In agreement with these findings, the

peak at the k-mer size of 3, which is the size of one amino acid, in

Figure 6a suggests that the translation of circRNAs is not trivial.

The second hyper-parameter is splitting stride, s. As expected, a

larger stride will decrease the corpus size, which in turn, decreases

the contained information in the sequence, and decreases the per-

formance. Therefore, we set stride at s¼1 in our model.

The third hyper-parameter is maximum sequence length, max-

len. There is a positive correlation between MCC and maxlen. The

reason behind the correlation is obvious, as some input sequences

are truncated at shorter lengths, which results in a loss of informa-

tion contained in the sequence. We were limited to a maxlen of

8000 bps, due to limitations in computer memory.

The final hyper-parameter is the embedding dimension d. We

can see that it has no impact on the performance of the model, how-

ever, when d is increased, the time to train the weights of the embed-

ding matrix is increased; this led us to choose d¼40 in our model.

Next, we investigated the impact of different filter configurations

in the asymmetric convolutional layer on the model performance. In

Figure 7, we show that the MCC measure on the testing data using

different filter configurations. For each filter configuration, the best

result under extensive grid-search on hyperparameters is shown in

Figure 7. In the asymmetric convolutional layer of our model, filters

are utilized to represent local trinucleotide features. We initially

thought that several convolutional layers in parallel with filters of

various sizes would perform better than any single asymmetric con-

volutional layer with filters of the same length due to different sized

filters being able to find features of different n-grams (n consecutive

3-mers). However, our experiments demonstrated that a single con-

volutional layer with a filter length of seven always surpasses the

other options. When multiple layers were run together, filter combi-

nations with a filter of length seven always performed better. This

further aided the verification of 7-g features playing a vital role in

representing local features while predicting circRNA.

Seven-grams means we extract local features from every seven over-

lapping trinucleotides, which means three non-overlapping trinucleoti-

des. This is in agreement with the results found in a study (Asgari and

Mofrad, 2015) where using the word2vec skip-gram model was able

to generate trigram of amino acids representations (one amino acid is

equivalent to trinucleotide in DNA sequence) reproducing known

physical relationships that were useful for protein classification. Our

results show once again how circRNA sequences share characteristics

with coding sequences when mining the sequences with text mining

techniques where the sequence is treated as collection of k-mers.

3.4 Feature fusion performance for classification of

circular RNA from other lncRNA
Table 2 shows the performance of unimodal classifiers, bimodal

classifiers, multimodal classifiers and PredcircRNA. For unimodal

classifiers, we stack two fully connected layers for each descriptor.

For bimodal classifiers, we fuse two descriptors with each using our

feature fusion approach. For multimodal classifiers, we fuse all three

descriptors using feature fusion fine-tuned method described above,

feature fusion by just the concatenation of the representations from

individual trained DNN per descriptor without the tuning oper-

ation, early fusion and late fusion (see Supplementary Table S7 for

Fig. 6. Matthews Correlation Coefficient (MCC) scores for test data with vary-

ing four hyper-parameters

Fig. 7. Matthews Correlation Coefficient scores for test data with different fil-

ter size strategies. For the horizontal axis, S means single convolutional layer

with the same filter length and M means multiple convolutional layers in par-

allel with different filter lengths. In both single- and multiple-filter lengths, a

filter of length 7 always showed higher MMC score (blue bars)

Table 2. Performance comparison between Unimodal classifiers,

bi-modal classifiers, multimodal approaches and PredcircRNA

Accuracy MCC F1 score Time (min)

SEQ 0.8977 0.7792 0.8596 0.2

CONS 0.7611 0.4969 0.6897 15

RCM 0.7158 0.4072 0.64 27

SEQ þ RCM 0.9263 0.8520 0.9268 47.2

SEQ þ CONS 0.9333 0.8654 0.9333 15.2

RCM þ CONS 0.8478 0.6838 0.8102 62

Feature fusion fine-tuned 0.9417 0.8833 0.9402 62.2

Feature fusion 0.9325 0.8653 0.9321 62.2

Early fusion 0.9271 0.8542 0.9278 62.2

Late fusion 0.9314 0.8628 0.9307 62.2

PredcircRNA 0.8056 0.6113 0.8108 515

SEQ, ACNN-BLSTM sequence descriptor; CONS, conservation descriptor;

RCM, RCM descriptor; Time, time needed to extract features used for classi-

fication for test data. Bold ones are the best performer in each column.
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performance comparison using 5-fold cross validation on training

data). We also compared the time needed to extract all features on

the test data, which contains 7630 samples. The comparisons were

performed on an IBM desktop with 8 Intel Xeon CPU cores at 2.33

GHz and 24 GB memory.

As indicated in Table 2, ACNN-BLSTM sequence descriptor

outperforms two other descriptors with an improvement of more

than 15% in F1 score, which reflects its huge importance for our

task. Even though our proposed RCM descriptor had the lowest per-

formance capability with a high running time to be extracted, it was

considered good with a 0.64 F1 score. We can also see its effect in

improving performance when combined with other descriptors.

It is interesting that only 0.2 min is required to extract the ACNN-

BLSTM descriptor with an 0.8596 F1 score, while PredcircRNA

required approximately 8 h and 35 min to extract all features. This

included graph features, component composition features, including

frequencies of trinucleotides, conservation score features, features of

ALU and tandem repeats, the ORF and SNPs from transcripts

(GraphProt is taking most of running time) with only an 0.8108 F1.

This reflects the importance of sequence patterns and long-range

dependencies between trinucleotides in predicting circRNAs.

As expected, Table 2 shows that the multimodal fusion produces

much higher performance than any individual modality. This indi-

cates the strong complementarity shared between the three descrip-

tors. Furthermore, feature fusion fine-tuned, which is adopted by

circDeep, leads to a 0.9402 F1 score. This is greater than all uni-

modal learners and also other multimodal fusion baseline methods.

To once again make a comparison with PredcircRNA and H-

ELM, we tested our tool with the data proposed by (Pan and Xiong,

2015), and the results are shown in Figure 1. This further supported

our results and interpretations by having an improvement of more

than 12% in accuracy using our proposed method.

4 Conclusions

In this paper, we propose a new multimodal deep learning tool

circDeep to distinguish circRNA from other lncRNA. Compared to

existing approaches, our approach has the following advantages: (i)

It takes advantage of our proposed RCM descriptor which can pro-

vide the likelihood of circularization given the flanking sequences

and the query sequences. (ii) It successfully integrates the ACNN,

BLSTM and DNNs for dealing with the different input data types to

enhance discrimination ability. (iii) The hybrid framework of flex-

ible multimodal learning and fusion at an abstraction level makes

our approach handle different features in an easy manner. The top-

shared hidden layer at the fusion level will improve discovery of

shared properties across different modalities. (iv) circDeep achieved

an improvement of more than 12% in accuracy in both datasets

with a very small running time compared to existing tools.
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