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ABSTRACT: Cold collisions serve as a sensitive probe of the interaction potential. In
the recent study of Klein et al. (Nature Phys. 2017, 13, 35−38), the one-parameter
scaling of the interaction potential was necessary to obtain agreement between
theoretical and observed patterns of the orbiting resonances for excited metastable
helium atoms colliding with hydrogen molecules. Here, we show that the effect of
nonrigidity of the H2 molecule on the resonant structure, absent in the previous study, is
critical to predict the correct positions of the resonances in that case. We have
complemented the theoretical description of the interaction potential and revised
reaction rate coefficients by proper inclusion of the flexibility of the molecule. The
calculated reaction rate coefficients are in remarkable agreement with the experimental data without empirical adjustment of the
interaction potential. We have shown that even state-of-the-art calculations of the interaction energy cannot ensure agreement with
the experiment if such an important physical effect as flexibility of the interacting molecule is neglected. Our findings about the
significance of the nonrigidity effects can be especially crucial in cold chemistry, where the quantum nature of molecules is
pronounced.

1. INTRODUCTION

The breakthrough in controlling the movement and internal
degrees of molecules with external fields,1 which started about
20 years ago, currently allows one to study the collisions,
reactivity, and properties of molecules in cold regime. Such
molecules provide new and propitious prospects in precision
spectroscopy, fundamental physics, astrochemistry, and
quantum engineering. Understanding of quantum effects,
resonance phenomena, and reaction dynamics in a low-energy
range opens the gate to design and create materials with
unusual functionality and elements of quantum computers.2,3

Cold collision experiments realized by merging two supersonic
beams have become an important technique for studying
chemical reactions in temperatures near 1 K4−9 in which
unseen earlier quantum features, such as resonances or
interference, are revealed. The group of Narevicius performed
the first experiment in that field focused mainly on the Penning
ionization (PI) process of colliding hydrogen isotopologues
with excited metastable helium atoms.4,5,8,9 In such a reaction,
an electron is moved from the molecule to the only partially
occupied orbital of an excited atom; then, the initially excited
electron of the atom is kicked out of the system. Three
products occur: the atom in the ground state, the molecular
ion in the ground state, and a free electron. These colliding
systems are of great interest to astrophysicists and astro-
chemists studying conditions and reactions in outer space.
Hydrogen and helium are the most abundant elements,
whereas molecular hydrogen is the most common molecular

species in the Universe.8,10 The first observation of a
metastable helium atom in the atmosphere of one of
exoplanets11 has boosted its importance for astrochemistry,
and one can expect that its interaction with the omnipresent
hydrogen molecule will be carefully investigated.
Recently, Narevicius and coworkers directly probed the

anisotropy in atom−molecule interactions through orbiting
resonances by changing the rotational state of the molecule.9

That work reveals a crucial role of the anisotropy of the
interaction energy, due to various orientations of the H2
molecule in the complex of He(1s2s,3S1) (≡ He*) with H2,
in the dynamics in the subkelvin regime. To elucidate physical
phenomena presented in their novel experiment, the authors of
ref 9 used state-of-the-art first-principles calculations. The
interaction energy of the complex composed of the metastable
helium atom and the hydrogen molecule was first calculated
using the supermolecular approach employing the coupled
cluster method with singles, doubles, and perturbative triples
(CCSD(T)) and is further denoted as Eint

CCSD(T). The
CCSD(T) method is known as the gold standard in quantum
chemistry and in many cases provides values of properties
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accurate enough to predict experimental results.12 However, in
the case of He* + H2, the values of reaction rate coefficients
calculated with the potential based on Eint

CCSD(T) did not agree
with the experiment even qualitatively. Thus, the correction to
the interaction energy, denoted here by δEint

FCI, was calculated
from the full configuration interaction (FCI) method and
added to the Eint

CCSD(T) energy. The agreement of the rate
coefficients calculated from the Eint

CCSD(T) + δEint
FCI energies with

the experimental values was improved but still qualitatively
incorrect, since one additional resonance, not present in the
experiment, was predicted for low collision energies. To obtain
quantitative agreement of the calculated rate coefficients with
the experiment, the authors scaled the correlation part of the
interaction energy by a factor of 1.004, which can be viewed as
adding the correction 0.4%Eint

corr to the Eint
CCSD(T) + δEint

FCI energy,
suggesting that the basis set incompleteness was responsible
for the inaccuracy of the rigorous ab initio interaction energy
surface.
The motivation of the present studies was to find a reason

why the ab initio interaction energy surface, even obtained at
the FCI level of theory, was not accurate enough to precisely
reproduce the experimental results. Here, we show that the
missing piece of the puzzle is the nonrigidity of the H2
molecule, neglected in the theoretical study of ref 9. It has
been recently shown that taking into account the monomer
nonrigidity effects is necessary to obtain precise agreement
with the spectroscopic or scattering experiments.13−17 In the
present Article, we demonstrate the striking importance of the
monomer flexibility in low-energy molecular anisotropic
collisions. Only by inclusion of vibrations of the molecule in
description of the complex are we able to correctly predict
results of subtle scattering experiments with no fine-tuning to
the experimental data whatsoever. Moreover, we present how
to incorporate, in a simple and effective way, the nonrigidity
effects into theoretical studies for collisions of excited species.
Our approach involves the calculation of derivatives of the
interaction energy with respect to a varied molecular geometry.
This is nontrivial in the case of such system, and we present
how symmetry-adapted perturbation theory (SAPT) can be
used to obtain stable numerical derivatives.

2. THEORY WITH RESULTS
Theoretical investigations of rotationally and vibrationally
inelastic scattering in atom−diatom and next diatom−diatom
systems, based on a full-dimensional treatment of the problem,
have been intensively developed since the late 1990s (for a
comprehensive review, see ref 18). The research was
stimulated mainly by astrochemical observations and cold
chemistry. The full-dimensional approach requires reliable
potential energy surfaces, an advanced theoretical description,
and finally high-end computing resources. These are the
reasons why the full-dimensional scattering calculations are still
limited to the relatively small interaction partners. Such
calculations were started by Balakrishnan and coworkers19 to
study the quenching of H2 vibrations in collisions with He.
Since then, more ab initio calculations of cross sections and
rate coefficients for vibrational relaxation in cold inelastic
collisions of atoms with diatomic molecules were pub-
lished.20−22 Using the full-dimensional approach to describe
processes that involve a change of vibrational state of an
interacting molecule, like relaxation of vibrationally exited
molecules in collisions with atoms, seems to be natural, yet it
can be very expensive. However, one can think to avoid a full-

dimensional description when only rotational excitations or
deexcitations take place. In such cases, the rigid-rotor
approximation has been widely employed. The direct
comparison of the two theoretical models, one treating the
molecule as a rigid rotor and the other with vibrations included
for colliding O2 with He in the subkelvin regime, was
presented by Volpi and Bohn.23 All these with other theoretical
studies on reactive scattering24−26 initiated by Balakrishnan
and Dalgarno27 made a seminal contribution to the emerging
field of cold controlled chemistry, where unexpected quantum
effects occur. Until recently, the full dimensional calculations
for the van der Waals complexes containing two diatomic
molecules have been limited to the simplest case, i.e., H2 +
H2.

28,29 Lately, the larger complexes involving other atoms
have been considered. The systems that are of interest to the
astrochemical community, such as H2 + CO,16,30,31 H2 + CN,32

H2 + SiO,33 H2 + CS,34 H2 + HCl,35 and H2 + SO,36 have been
investigated within the full-dimensional methods. For a broad
list of references of these studies, see the recent review article
of ref 18 and the book of ref 37.
In our case of scattering H2 and He*, the helium atom is in

the excited state. On the other hand, there is no vibrational
excitation of the hydrogen molecule, which allows us to
employ the rigid-rotor formalism in the scattering calculations.
In principle, theoretical consideration of our problem can be
divided into two steps: First is the preparation of the most
reliable interaction energy surface, and second is the scattering
calculations. Since the complex comprises the metastable atom
He* and the diatomic molecule H2, the positions of the nuclei
can be described by three coordinates: the distance R between
He* and center of mass (COM) of H2, the angle θ between
the H2 bond and the COM−He* direction, and the distance r
between the hydrogen nuclei. Thus, one has to use the three
variables (R, θ, r) to parametrize the interaction energy surface
and next to perform the scattering calculations. However, even
for relatively small atom−diatom systems, the full-dimensional
treatment is still rather rare. In most applications, the quantum
scattering calculations are performed within the rigid-rotor
approximation, i.e., assuming that the molecules in the complex
are rigid. This widely used approximation is well physically
motivated, since the internal vibrations of interacting
molecules are much more energetic than the intermolecular
modes.13 Usually, in the rigid-rotor calculations, the rigid
monomer interaction energy surfaces are used, obtained from
ab initio calculations for the monomers with fixed geometries.
Such calculations have been employed also in ref 9 to study the
PI reaction of He* + H2. However, it has been shown very
recently16 that if in the rigid-rotor scattering calculations one
uses the interaction energy averaged over the vibrations of the
monomers then the results are closer to the full-dimensional
calculations and experimental data. It has been demonstrated
that the vibrationally averaged surfaces perform better than the
rigid-monomer ones also in predictions of other physical
properties, like rovibrational spectra13−15,38,39 or virial
coefficients.40,41 A main drawback of such an approximation
is that, in principle, to obtain the vibrationally averaged surface
one has to know the corresponding full-dimensional one. To
avoid construction of a full-dimensional surface and minimize
the number of geometries for which ab initio calculations have
to be performed, we use the method developed in ref 42. The
details of this method, referred to as the Taylor-expansion
method, are presented in the Computational Details section.
Thus, in the current study, we try to capture the nonrigidity
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effect by using the interaction energy surface averaged over the
vibrations of H2 and rigid-rotor scattering calculations. We
have to emphasize that although the averaged surface depends
only on the intermolecular coordinates (R, θ) it cannot be
regarded as the rigid one, since to obtain it one has to perform
ab initio calculations for various values of the internuclear
distance r. Such a surface includes in an effective way
information about the nonrigidity effects of the complex.
To use the Taylor-expansion method, one has to calculate

the derivatives of the interaction energy with respect to the
internal coordinates of the molecule. We have employed the
SAPT method43 to obtain these derivatives, instead of the
supermolecular approach based on the CCSD(T) method
used in the previous applications. The complex including the
metastable helium is much more demanding with respect to
calculations of the interaction energy than the complexes
composed of the electronic ground state molecules previously
studied. The combination of the Taylor-expansion method and
SAPT allowed us to calculate the interaction energy with a
precision sufficient to calculate numerical derivatives.
The most common technique to obtain PI rate coefficients is

to use the complex potential in which the imaginary part
describes the losses due to the ionization process.44,45 With
such a potential, one can solve the Schrödinger equation for
the nuclear coordinates, for instance, using the close-coupling
scattering method. More recently, two of us developed a new
approach based on adiabatic theory and scattering theory for
cold collision experiments46,47 dubbed as adiabatic variational
theory (AVT). AVT together with the dedicated new closed-
form expression for PI rate coefficients48 provides a relatively
simple method to implement and was used in our
investigation. This technique, where the diatom is treated as
a rigid rotor, allows one to uncouple the rotations of the
diatom and the complex from the atom−molecule separation.
In Figure 1, we present the reaction rate coefficients of He*

with para-H2 in the ground rotational state (j = 0) and ortho-
H2 in the first excited rotational state (j = 1). The strong effect
of anisotropy on the resonant structure was discussed in details
in refs 9 and 47; however, it is worth mentioning that in the
interaction between He* and para-H2 (j = 0) only the isotropic
part of the potential is probed because the wave function of the
molecular hydrogen in the lowest rotational state is spherically
symmetric. When the interacting H2 molecule is in the j = 1
rotational state, the leading term of anisotropy of the potential
contributes directly into the effective interaction and can firmly
affect the positions of resonances. As demonstrated in ref 47,
by excluding from calculations the orientation-dependent part,
the low-temperature resonance at collision energy of
kB × 0.27 K is missed in the theoretical results. It shows that
this peak, as opposed to the peak at 2.4 K, arises totally from
the anisotropic interaction. It takes place when the excited
helium atom collides with ortho-H2 (j = 1). Hence, the rate
structures are entirely different for different rotational states of
the hydrogen molecule.
The evidence of monomer nonrigidity effects in cold

anisotropic collisions is demonstrated in Figure 1. It is clearly
seen that the results with the interaction potential from the
CCSD(T) method supplemented by the FCI correction are
still not satisfactory. We found out that the discrepancy
between the reported theoretical and experimental data is not
due to the incompleteness of the used basis set as the authors
of ref 9 stated but due to the assumed stiffness of the molecule.
By adding the correction corresponding to the flexibility of the

diatom, termed as δEint
flex, where the vibrations are averaged, we

obtained an excellent agreement with the measurements over
the whole range of temperatures. The nonrigidity correction
shifts the energy of the resonance at 0.27 K to the position
matching the experimental data. Also, the magnitude of the
rate coefficient curve is about 25% larger than the one
calculated without the nonrigidity correction. These results are
very similar to those obtained in ref 9 with the artificial 0.4%
increase in the correlation part of the interaction energy. Note
that in our entire calculations we did not apply any scaling or
fitting parameters as well as we did not shift the final results to
adjust to the experiment. Our results are slightly below the
experimental ones, but the latter have been normalized to the
absolute scale according to thermal rate observations at 300 K
(see the Methods section in refs 8 and 9), and this procedure
introduced a systematic error to the experimental data much
larger than the vertical discrepancy. In the Supporting
Information, we provide a figure corresponding to Figure 1,
with the rate coefficient curves shifted by a constant value to
match the normalized experimental data at the collision energy
around kB × 2.4 K, as was done in ref 9. After such additional

Figure 1. Reaction rate coefficients of He(1s2s,3S1) with para-H2 in
the ground rotational state (j = 0) (upper panel) and ortho-H2 in the
first excited rotational state (j = 1) (lower panel) with respect to
relative energy (in K) between the colliding subsystems. The
theoretical rate coefficients have been calculated based on the four
interaction potentials: (a) obtained at the CCSD(T) level of theory,
Eint
CCSD(T), (b) the CCSD(T) one with the FCI correction, Eint

CCSD(T) +
δEint

FCI, (c) the CCSD(T) + δFCI surface with 0.4% of the correlation
energy added, Eint

CCSD(T) + δEint
FCI + 0.4%Eint

corr, and (d) the CCSD(T) +
δFCI surface with the correction describing the effect of the hydrogen
molecule nonrigidity on the interaction energy, Eint

CCSD(T) + δEint
FCI +

δEint
flex. The results have been convoluted with the experimental energy

spread. Neither scaling nor fitting parameters have been used in the
calculations. The experimental values are taken from ref 9 (black
points with error bars). Theoretical results are slightly below the
experimental data; however, the latter are burdened with systematic
normalization error larger than the vertical discrepancy.
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“normalization”, the theoretical resonance structure around
0.27 K perfectly agrees with the experiment.
In the experimental data for para-H2, given in the upper

panel of Figure 1, one can see a flat bump around the collision
energy of kB × 0.3 K not discussed in ref 9. If a part of the plot
with the bump is magnified, as in the inset of Figure 2, one can

see that the experimental points forming this feature have error
bars smaller than a magnitude of the bump; thus, one can
suspect that it is not an accidental effect. On the basis of our
theoretical considerations, we can try to explain an origin of
that feature. One of the beams used in the Narevicius’
experiment is formed of the para-H2 molecules. However, a
purity of para-H2 was limited to 98%.9 Therefore, we have
added 2% of the reaction rate coefficients of ortho-H2 (j = 1)
given in the lower panel of Figure 1 to 98% of the reaction rate
coefficients of para-H2 (j = 0) given in the upper panel of
Figure 1; the resulting rates are presented in Figure 2. Now
one can see, in the inset of this figure, that the bump appears
on the theoretical curve, properly predicting the position and
the shape of its experimental counterpart. The explanation
presented above can be verified in an experiment similar to
that of Klein et al.9 with amount of ortho-H2 gradually
increasing in the beam to observe if the magnitude of the
bump changes accordingly.

3. COMPUTATIONAL DETAILS
3.1. Vibrationally Averaged Surface. To construct an

interaction energy surface averaged over the vibrations of the
monomers, ⟨V⟩, one can take advantage of the fact that the
molecules in the complex preserve their identity, the
frequencies of internal vibrations are much higher than those
of the intermolecular modes, and thus, averaging can be
performed over the internuclear coordinates similarly to the
adiabatic approximation in the electronic-structure theory.13

Since we are interested in the He* + H2 complex, let us limit
our consideration to the atom−diatom case. If the Jacobi
coordinates are used, the interaction energy surface V(R, θ, r)
can be represented as the truncated Taylor expansion around
some reference geometry rc

42

V R r f R f R r r

f R r r

( , , ) ( , ) ( , )( )
1
2

( , )( )

c

c

TE 0 1

2
2

θ θ θ

θ

= + −

+ −
(1)

where f 0(R, θ) = V(R, θ, rc),

f R V R r r( , ) ( , , )/c1 θ θ= ∂ ∂

and

f R V R r r( , ) ( , , )/c2
2 2θ θ= ∂ ∂

The higher order terms can be neglected if only modest
deformations of the monomer are allowed, as those
corresponding to a few lowest vibrational states of the H2
molecule. The f 0 function is in fact the rigid monomer two-
dimensional surface calculated for the H−H separation equal
to rc, while the remaining terms account for the nonrigidity
effects, i.e., the dependence of the surface on the internal
coordinate of H2. The potential VTE from eq 1 can be easily
averaged over the v vibrational state of the monomer, and the
resulting formula reads

V R f R f R r r

f R r r r r

( , ) ( , ) ( , )( )
1
2

( , )( 2 )

v c

v v c c

TE 0 1

2
2 2

θ θ θ

θ

⟨ ⟩ = + ⟨ ⟩ −

+ ⟨ ⟩ − ⟨ ⟩ +
(2)

We can use the ⟨VTE⟩ surface as an approximation to the ⟨V⟩
one, i.e., assume ⟨V⟩ ≈ ⟨VTE⟩. The values of ⟨r⟩v and ⟨r2⟩v can
be calculated from the theoretical properties of the monomer
or even estimated from the empirical spectroscopic constants.
The surfaces averaged according to the approximation of eq 2
and the corresponding formula for the diatom−diatom case
were used in the rigid-rotor dynamical calculations, both the
bound states and the scattering, and provided the results in
excellent agreement with the experimental ones.14−16,38,39 In
practical applications, there is no need to know the surface
⟨VTE⟩ for any values of the (R, θ) coordinates, but it would be
enough to calculate it on the grid points, for instance, the ones
used in the scattering calculations. For each grid point in (R,
θ), we can compute the interaction energy f 0 and the
numerical values of the f1 and f 2 derivatives. Of course, one
can also calculate ⟨VTE⟩ for a given grid of geometries and then
fit an analytical function to obtain the surface. From eq 2, one
can see a useful feature, namely, that the values of f1 and f 2 may
be calculated on a different level of theory than f 0, e.g., the
leading term f 0 on the highest possible level, and the values of
f i defining the higher order terms, specifying the dependence of
VTE on r, may be calculated at a somehow lower level of theory.
Since the first- and second-order terms are much smaller than
the leading term f 0, such an additional approximation only
slightly increases the uncertainty of VTE or ⟨VTE⟩, whereas it
may significantly reduce the computational effort required.
Such a strategy has been applied, for instance, to the H2 + CO
complex and led to the accurate rovibrational spectra.14,15

To prepare the vibrationally averaged surface for the He* +
H2 complex, we have used the formula of eq 2 in the following
way. The leading term f 0 was set to be equal to the rigid-
monomer interaction energy of ref 9. That interaction energy
can be written as Eint

CCSD(T) + δEint
FCI, using our notation, and was

obtained as a sum of the interaction energy calculated at the
CCSD(T) level and the FCI correction for the intramolecular
distance 1.4487 bohr. Thus, we have to set rc to be equal to the
same value to make our choice of f 0 consistent with eq 2. Since

Figure 2. Reaction rate coefficients of He(1s2s,3S1) with H2 with
respect to relative energy (in K) between the colliding subsystems.
The theoretical rate coefficients have been calculated based on the
interaction potential obtained using CCSD(T) with additional
corrections resulting from FCI and inclusion of the effect of the
hydrogen molecule nonrigidity. The black solid curve represents
results for 100% of para-H2 (j = 0), whereas the magenta dashed−
dotted curve represents results for the mixture of 98% of para-H2 (j =
0) and 2% of ortho-H2 (j = 1). The inset exhibits the region with a
small bump in the millikelvin regime. The experimental data are
shown as black points with error bars.9
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we consider the ground vibrational state of H2, v = 0, the values
of ⟨r⟩0 and ⟨r2⟩0 for j = 0 were set to the round-off values from
ref 49 equal to 1.4487 and 2.1270 bohr, respectively. The
equality of rc and ⟨r⟩0 is of course not accidental because the
interaction energy of ref 9 was calculated for the rigid H2
molecule with the vibrationally averaged geometry. With such
a choice of rc, the first-order term in eq 2 vanishes, and the
nonrigidity effect is fully described by the second-order term.
The values of ⟨r⟩0 and ⟨r

2⟩0 for the molecule in the first excited
rotational state (j = 1) are slightly different: 1.4509 and
2.1334 bohr, respectively. Therefore, for this case, the first-
order term in eq 2 contributes to the nonrigidity correction.
In the standard, supermolecular approach, the interaction

potential is difficult to obtain due to the fact that our potential
is not the ground-state one and is coupled to the scattering
state of the He + H2

++ e− system. In ref 50, it was shown that
using a carefully tailored start guess it is possible to converge
the CCSD(T) interaction potential and that also SAPT43,51,52

provides a good representation of the short-range potential.
Nonetheless, it is very difficult to stabilize first and second
derivatives of the interaction potential with respect to the
nuclear coordinate motion in the supermolecular method as it
inherently relies on subtraction of big numbers, and loss of
accuracy is unavoidable. We previously stated that the
derivative of the interaction energy can be obtained at a
lower level of theory, and it still catches the essential physics.
As a matter of fact, the application of SAPT greatly facilitates
the calculation of nonrigidity effects. Since in SAPT the
interaction energy is obtained directly from the wave function
of monomers, it is stable and inexpensive. This is due to the
fact that in this method we obtain the interaction energy
directly as a sum of the perturbation theory terms in which the
expansion parameter is the interaction potential between
monomers. Here, we use the interaction energy which is the
sum of first two terms of perturbation series in the interaction
operator between H2 and helium analogously to ref 50. The
values of f1 and f 2 were calculated from the four- and five-point
central-difference formula, respectively, with h = 0.05 bohr. For
each grid point in (R, θ), the interaction energy was calculated
for five separations, rc + kh, where k = −2, − 1, 0, 1, 2. The
SAPT calculations were carried out with the d-aug-cc-pVTZ
basis set.
Let us now discuss the uncertainty of the flexibility

correction δEint
flex. In Table 1, we gathered second derivatives

of the components of the interaction energy for 10.5 bohr for a
T-shape and linear geometry. As one can see, the dispersion
energy by far dominates the total flexibility correction. Given
how good overall performance of SAPT was for the classically
allowed region,51 one can safely assume that the effect of
higher order SAPT corrections will be marginal. There are two
main uncertainties related to the dispersion derivative used in
this Article: basis set incompleteness and time-dependent
Hartree−Fock (TDHF) approximation.51,52 To address the
first uncertainty, we performed test calculations using the d-
aug-cc-pVQZ basis set for a few geometries around the
minimum in T-shape and linear configurations. To estimate
the uncertainty of the dispersion and the exchange−dispersion
components due to the basis truncation, these components can
be extrapolated using the standard basis set extrapolation
technique,53 while one cannot use such extrapolation for the
other components present in our SAPT expansion. We found
that for the linear geometry the second derivative is
underestimated by about 2%, while for the T-shape by about

10%. Since in the scattering calculations we used the
interaction energy surface expanded in Legendre polynomials
(see Section 3.2), it is interesting how the uncertainties of the
second derivative transform to the uncertainties of two leading
radial isotropic (V0) and anisotropic (V2) terms in that
expansion. It turned out that the uncertainties amount to about
6% (underestimation) and 3% (overestimation) for V0 and V2,
respectively. In absolute numbers, these values are well below
the uncertainty of basis set incompleteness for the Eint

CCSD(T)

part of the total interaction energy. To address the uncertainty
of the TDHF method, let us note that this model only slightly
overestimates the dispersion energy for the metastable helium
dimer by about 3%.52 Similarly, the comparison of the long-
range isotropic C60 coefficient (i.e., the leading term in the
inverse power expansion of V0) obtained with TDHF50 (112.8
Eha0

6) and the accurate value of Bishop and Pipin54 (108.24
Eha0

6) suggests that, indeed, the dispersion energy can be
slightly overestimated. Assuming that

E r r r/ at c
2

disp
(2) 2∂ ∂ =

is proportional to overall performance of the dispersion, one
can conclude that the inaccuracy due to the TDHF method is
marginal and contributes to less than 0.01 cm−1 in the
minimum range.
In Table 2, we present, for selected geometries of the

complex, the values of the leading part of the interaction
energy Eint

CCSD(T) obtained at the CCSD(T) level of theory and
the values of various corrections to this energy. One can see
that for the geometry close to the global minimum of the
interaction energy surface, for θ = 0° and R = 10.5 bohr, the
value of δEint

flex is equal to −0.29 cm−1, and although it seems to
be small in the absolute scale, it amounts to about 2% of the
Eint
CCSD(T) + δEint

FCI interaction energy. For the same distance and
θ = 90°, δEint

flex amounts to 1% of the total energy. Thus, the
δEint

flex correction slightly changes the anisotropy of the
potential. It is also interesting that the ratio of δEint

flex to δEint
FCI

is significantly different for θ = 0° and 90° and amounts to 0.60
and 0.15, respectively, that shows that the anisotropy of these
two corrections is completely different. The ratio is almost
constant for the whole range of values of R at the same values
of θ. The most important comparison one can draw from
Table 2 is between the δEint

flex and 0.4%Eint
corr corrections. For θ =

90°, they are almost equal, whereas for θ = 0° the values of

Table 1. Second Derivatives of Interaction Energy
Components for the He* + H2 System for the Atom−
Molecule Distance of 10.5 bohra

d-aug-cc-pVTZ estimated basis set limit

component θ = 0° θ = 90° θ = 0° θ = 90°

∂
2Eelst

(1)/∂r2 −1.5729 −0.0805 −1.3607 −0.1609
∂
2Eexch

(1) /∂r2 7.3257 −0.0086 7.2694 −0.0313
∂
2Eind

(2)/∂r2 −6.1842 0.0467 −6.1974 0.0326
∂
2Eexch‑ind

(2) /∂r2 0.8964 −1.0450 0.8999 −1.0168
∂
2Edisp

(2) /∂r2 −23.1951 −6.8707 −23.8827 −7.7385
∂
2Eexch‑disp

(2) /∂r2 2.1722 0.9165 2.3144 1.1485
∂
2V(R, θ, r)/∂r2 −20.5579 −7.0416 −20.9571 −7.7666

aTo estimate the basis set limit, we used the d-aug-cc-pVQZ results
for Eelst

(1), Eexch
(1) , Eind

(2), Eexch‑ind
(2) , and extrapolated values of Edisp

(2) and
Eexch‑disp
(2) . For the induction and dispersion energies, we used the

TDHF model;50−52 exchange and electrostatic interactions were
obtained from the Hartree−Fock densities. The derivatives with
respect to r were calculated at r = rc, in units cm−1/(bohr)2.
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δEint
flex are about two times larger than the 0.4%Eint

corr ones.
Nevertheless, there is no doubt that the 0.4%Eint

corr correction
introduced in ref 9 to reproduce the experimental rate
coefficients can be recognized, on the basis of our
investigation, as the result of the nonrigidity effect of H2 on
the interaction energy.
In ref 9, the effect on the interaction energy surface beyond

the Born−Oppenheimer approximation was neglected on the
basis of the analysis of the value of the diagonal Born−
Oppenheimer (DBO) correction55 calculated at the minimum
of the surface. Here, we performed an extended analysis for
two angular orientations, θ = 0° and 90°, several values of R,
and the H2 geometry fixed at rc. The DBO correction to the
interaction energy, δEint

DBO, was obtained by subtracting from
the DBO correction calculated for the complex the value
calculated for the monomer at large separations of interacting
species. The calculations were performed at the CCSD level of
theory, with the aug-cc-pVTZ basis set augmented by the
midbond functions. This δEint

DBO correction causes a small
positive shift of the interaction energy, smaller than about
0.06 cm−1 in the minimum region, i.e., five times smaller than
the value of δEint

flex at this geometry. The values of δEint
DBO for

some other geometries are given in Table 2. For the values of R
smaller than 10.0 bohr for θ = 0° and 9.0 bohr for θ = 90°, we
have problems to converge the calculations of δEint

DBO at the
CCSD level; thus, for small values of R in the scattering
calculations, we have used the values of δEint

DBO extrapolated
from the region of R greater than or equal to 10.0 and 9.0 bohr
for θ = 0° and 90°, respectively. From Table 2, one can see that
for geometries close to the geometry of the minimum, θ = 0°
and R = 10.5 bohr, the value of δEint

DBO amounts to 20% of
δEint

flex. The δEint
DBO/δEint

flex ratio is similar also for the same value
of R and θ = 90°. However, one can observe that if the value of
R increases then the value of δEint

DBO decreases to zero faster
than δEint

flex. For instance, already for R = 12 bohr, δEint
DBO

amounts to only 10% of δEint
flex, whereas for 14 bohr this ratio

drops below 4%. This feature of the ratio between the δEint
DBO

and δEint
flex corrections means that one can expect that adding

δEint
DBO to Eint

CCSD(T) + δEint
FCI + δEint

flex should not change
significantly the calculated reaction rate coefficients, since in
the major part of the range of the propagation of the resonance
wave function the δEint

DBO correction is very small in comparison
with other components of the interaction energy. Indeed, in
Figure S1 of the Supporting Information, one can see that the
curve representing the rate coefficient calculated with the
Eint
CCSD(T) + δEint

FCI + δEint
flex + δEint

DBO surface is very close to the
curve representing the calculations with the Eint

CCSD(T) + δEint
FCI +

δEint
flex one. Concluding, the δEint

DBO correction has a tiny effect
on the position and shape of the considered resonances.
Finally, let us discuss the effect of basis set incompleteness.

It is difficult to estimate since the basis set extrapolation
techniques are questionable to use in the present case, where
the system is not in its ground state and the system concerned
is essentially a resonance. The basis set used in the present
calculations at the CCSD(T) level, aug-cc-pV6Z with bond
functions, is already well saturated for the dispersion energy
which dominates the interaction energy for the considered
system. A computationally expensive increase in the basis set to
aug-cc-pV7Z shifts the interaction energy in the global (linear)
minimum by about −0.022 cm−1, while for the local minimum
at a T-shape geometry (for 10.85 bohr) the shift is about
−0.027 cm−1. Close to the inner turning points at 9.5 bohr,
these values are −0.034 and −0.045 cm−1, respectively.
Unfortunately, one cannot perform an extrapolation to the
complete basis set, since the resonant nature of the interaction
affects the stability of ab initio calculations at the level of
accuracy of the order of 0.01 cm−1. Nonetheless, one should
bear in mind that such an interaction energy should not be
extrapolated in the usual sense but rather than that stabilized.
For this particular system, the coupling between the

Table 2. Values of Interaction Energy of He* + H2 Obtained from CCSD(T) Calculations, Eint
CCSD(T), and Various Corrections

to This Energy: δEint
FCI Resulting from Full Configuration Interaction, 0.4%Eint

corr Equal to 0.4% of the Correlation Part of the
Interaction Energy, δEint

flex Resulting from Taking into Account the H2 Nonrigidity Effect, and δEint
DBO Resulting from the Use of

the Born−Oppenheimer Approximationa

θ (deg) R (bohr) Eint
CCSD(T) δEint

FCI 0.4%Eint
corr δEint

flex δEint
DBO

0 9.0 2.7023 −1.0109 −0.3276 −0.5909 0.2675b

0 10.0 −13.1925 −0.6402 −0.1848 −0.3694 0.0888
0 10.5 −14.3044 −0.4906 −0.1385 −0.2899 0.0562
0 11.0 −13.6141 −0.3741 −0.1041 −0.2274 0.0357
0 11.5 −12.0889 −0.2901 −0.0785 −0.1794 0.0227
0 12.0 −10.3777 −0.2226 −0.0594 −0.1419 0.0142
0 13.0 −7.0985 −0.1358 −0.0348 −0.0854 0.0053
0 14.0 −4.6985 −0.0846 −0.0210 −0.0522 0.0019
0 15.0 −3.0959 −0.0542 −0.0131 −0.0320 0.0006
90 9.0 9.3624 −1.4660 −0.2520 −0.2558 0.0721
90 10.0 −7.2224 −0.8892 −0.1455 −0.1318 0.0281
90 10.5 −9.2548 −0.6835 −0.1098 −0.0993 0.0184
90 11.0 −9.5490 −0.5244 −0.0833 −0.0751 0.0117
90 11.5 −8.8666 −0.4074 −0.0631 −0.0593 0.0075
90 12.0 −7.8076 −0.3102 −0.0481 −0.0447 0.0048
90 13.0 −5.5574 −0.1880 −0.0284 −0.0276 0.0018
90 14.0 −3.7612 −0.1155 −0.0172 −0.0177 0.0007
90 15.0 −2.5106 −0.0733 −0.0108 −0.0116 0.0002

aThe values of Eint
CCSD(T), δEint

FCI, and 0.4%Eint
corr were calculated for purposes of ref 9, while δEint

flex and δEint
DBO in this work. Two angular orientations,

the linear one (θ = 0°) and the T-shape one (θ = 90°), and selected values of the intermolecular separation R are represented. Energies are given in
cm−1. bExtrapolated value.
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continuum and the bound state is weak; hence, the potential
obtained by the standard quantum chemistry methods gives
right answer for right reasons. An improvement of theory to go
below the 0.01 cm−1 accuracy is a formidable task, and a new
approach would be needed to address such demands. Since the
real potential is dominated by the dispersion energy which is a
variational quantity, the more complete basis set implies a
deeper potential. However, if one proceeds from the aug-cc-
pV6Z basis set to the aug-cc-pV7Z one, a shift of the
interaction energy surface by 0.02−0.03 cm−1 at a minimum
separation is an order of magnitude smaller than in the case of
the δEint

flex correction. Thus, the effect of the basis set
incompleteness on the positions and intensities of the
resonances is negligible in comparison to the effect caused
by the δEint

flex correction and is also much smaller than the effect
of the δEint

DBO correction.
3.2. Expanding the Surface. According to the works of

refs 56 and 57, we may expand the vibrationally averaged
surface ⟨V⟩ in Legendre polynomials

V R V R P( , ) ( ) (cos )∑θ θ⟨ ⟩ =
η

η η
(3)

For the collision of an atom with a homonuclear diatomic
molecule, the index η is even due to symmetry reasons, ⟨V⟩(R,
−θ) = ⟨V⟩(R, θ). In other words, terms for odd η vanish. Thus,
the two leading terms are given by V0(R) and V2(R)(3 cos

2θ −
1)/2, where V0(R) and V2(R) are radial isotropic and
anisotropic interaction potential terms, respectively.
It should be emphasized that the considered complex is not

in the bound state but in the resonance one. The total
potential energy surface is above the ionization threshold, thus
the electronic state of the He(1s2s,3S1) + H2 system is
embedded in the continuum of the He(1s2,1S1) + H2

+ + e−

system. Consequently, the total potential energy surface has to
be complex where the imaginary part represents the ionization
width (inverse lifetime). Two new approaches have been lately
developed for PI widths: One is based on the Fano-algebraic
diagramatic construction method,58 and the next one uses the
stabilization method with an analytical continuation via the
Pade ́ approximant.59−61 In our studies, we took the imaginary
part of V0 and V2 from ref 60, obtained by the latter technique.
The calculated isotropic, V0, and anisotropic, V2, radial

interaction potential terms obtained on three levels of theory
are presented in the upper panel of Figure 3. One can see that
adding the δEint

FCI correction to Eint
CCSD(T) apparently changes

both V0 and V2, but in opposite directions: V0 becomes deeper
and V2 slightly shallower. The subsequent addition of δEint

flex to
the Eint

CCSD(T) + δEint
FCI interaction energy makes the resulting V0

even deeper, whereas for the V2 term the effect of δEint
flex almost

cancels the effect of δEint
FCI. The lower panel of Figure 3

presents how the δEint
FCI and δEint

flex corrections to the interaction
energy enter the V0 and V2 terms of the interaction potential.
3.3. Adiabatic Variational Theory. To solve the

Schrödinger equation for the complex with the previously
prepared interaction potential and consequently to calculate
rate coefficients, we used the AVT approach that has been
developed for cold atom−molecule collision experiments.46,47

This technique has been recently successfully applied for the
He(1s2p,3P2) + H2 system.62 It enables one to reduce the
complexity of the problem enhancing the computational
performance without losing physical essence. Within AVT,
we represent the potential (eq 3) in a basis set consisting of
many angular functions. In our case, the single angular function

is a product of two spherical harmonics: One is responsible for
the description of rotations of the molecule, whereas the other
one is for the description of rotations of the whole complex.
Such a matrix constructed for a given intermolecular distance R
needs to be diagonalized providing a set of eigenvalues. The
process has to be repeated for different values of R. The
obtained eigenvalues, after ordering, create so-called adiabats
(effective potentials) depending on R. Then, from the practical
reasons, all adiabats are shifted to get asymptotes at zero.
Therefore, for each of them, the dissociation threshold is at
zero. Next, we solve the one-dimensional Schrödinger equation
many times, each time with a different adiabat treating R as a
variable. At this point, any technique can be used, for example,
by fitting an analytical function to the adiabat and spanning the
wave function space in a basis of trial functions.63 Finally, we
apply the simple and easy to implement formula for reaction
rate coefficients that has been derived based on AVT and non-
Hermitian scattering theory.48 Only the information about
complex eigenenergies, the reduced mass of the atom−diatom
system, and the rotational state of the molecule are required. In
calculations, we used 21 partial waves corresponding to end-
over-end angular momenta of the complex (l = 0, 1, ..., 20).
The Schrödinger equation was solved by the DVR with a box
size of 500 bohr and with 2000 basis sine functions. The results
are fully converged with respect to the number of partial waves
and of basis functions. The calculated reaction rate coefficients

Figure 3. Real part of the interaction energy components of the He*
+ H2 potential in various approximations. Upper panel: Isotropic,
V0(R), and anisotropic, V2(R), radial interaction potential terms,
obtained at a few levels of theory: CCSD(T) (in green), CCSD(T)
plus the correction resulting from FCI (in blue), and CCSD(T) plus
the FCI correction plus the correction due to the effect of the
hydrogen molecule nonrigidity (in black). Lower panel: Values of the
δEint

FCI and δEint
flex corrections corresponding to the V0 and V2 terms.
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are convoluted over the experimental collision energy spread
(8 mK). Neither scaling nor fitting parameters have been used
in our calculations.

4. CONCLUSIONS
Low-energy collision experiments allow one to directly and
clearly reveal the true nature of interactions. Only at a high
level of theory are we able to predict or confirm experimental
data as well as understand quantum phenomena in chemical
reactions. In this Article, we have demonstrated a significant
role of monomer nonrigidity effects on the position and
intensity of scattering resonances in anisotropic cold molecular
collisions. We have investigated excited metastable helium
atoms colliding with hydrogen molecules in the temperature
range from a few dozen kelvins down to 1 millikelvin. We have
provided the most accurate interaction energy surface that can
be treated as the reference one for all semiclassical algorithms
as well as for novel quantum chemistry methods for molecular
systems in the resonance state, where the Hamiltonian is real
or complex. The calculated rate coefficients are in remarkable
agreement with the measurements.9 We have demonstrated
that the discrepancy between the experimental and theoretical
results discussed in ref 9 is due to the assumption that the H2
molecule is rigid. We have complemented the theoretical
description of the interaction energy of the complex by
inclusion of its dependence on the flexibility of the molecule.
For such a challenging complex as He* + H2, it was necessary
to use the SAPT method to calculate the interaction energy
with a precision sufficient to obtain numerical derivatives
required by the Taylor-expansion method to describe the
flexibility effects. Our results exhibit that the approach beyond
the commonly used rigid-rotor approximation is indispensable
even when rigorous state-of-the-art computations are per-
formed at the FCI level of theory. By thorough analysis of the
uncertainties, we have shown that the two largest of them,
caused by basis-set incompleteness and generated by the
Born−Oppenheimer approximation, are a few times smaller
than the correction to the interaction energy due to the
nonrigidity of the monomer. Thus, this is the only missing
important correction we had to take into account to achieve
the full agreement between the theory and experiment for the
He* + H2 collision pair. Our finding concerning the
significance of the nonrigidity effects is not limited to a
specific complex considered here nor restricted to the PI
reaction process. We believe that it can be vitally important in
precisely controlled cold chemistry, where quantum effects in
chemical reactions dominate.
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(2) Côte,́ R. Quantum Information and Computation for Chemistry;
John Wiley & Sons, Ltd., 2014; pp 403−448.
(3) Bohn, J. L.; Rey, A. M.; Ye, J. Cold molecules: Progress in
quantum engineering of chemistry and quantum matter. Science 2017,
357, 1002−1010.
(4) Henson, A. B.; Gersten, S.; Shagam, Y.; Narevicius, J.;
Narevicius, E. Observation of Resonances in Penning Ionization
Reactions at Sub-Kelvin Temperatures in Merged Beams. Science
2012, 338, 234−238.
(5) Lavert-Ofir, E.; Shagam, Y.; Henson, A. B.; Gersten, S.; Kłos, J.;
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